-
Notifications
You must be signed in to change notification settings - Fork 2.8k
/
Copy pathtest_arrow_dataset.py
4560 lines (3971 loc) · 230 KB
/
test_arrow_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import contextlib
import copy
import itertools
import json
import os
import pickle
import re
import sys
import tempfile
from functools import partial
from pathlib import Path
from unittest import TestCase
from unittest.mock import MagicMock, patch
import numpy as np
import numpy.testing as npt
import pandas as pd
import pyarrow as pa
import pytest
from absl.testing import parameterized
from fsspec.core import strip_protocol
from packaging import version
import datasets.arrow_dataset
from datasets import concatenate_datasets, interleave_datasets, load_from_disk
from datasets.arrow_dataset import Dataset, transmit_format, update_metadata_with_features
from datasets.dataset_dict import DatasetDict
from datasets.features import (
Array2D,
Array3D,
ClassLabel,
Features,
Image,
LargeList,
Sequence,
Translation,
TranslationVariableLanguages,
Value,
)
from datasets.info import DatasetInfo
from datasets.iterable_dataset import IterableDataset
from datasets.splits import NamedSplit
from datasets.table import ConcatenationTable, InMemoryTable, MemoryMappedTable
from datasets.utils.logging import INFO, get_logger
from datasets.utils.py_utils import temp_seed
from .utils import (
assert_arrow_memory_doesnt_increase,
assert_arrow_memory_increases,
require_dill_gt_0_3_2,
require_jax,
require_not_windows,
require_numpy1_on_windows,
require_pil,
require_polars,
require_pyspark,
require_sqlalchemy,
require_tf,
require_torch,
require_transformers,
set_current_working_directory_to_temp_dir,
)
class PickableMagicMock(MagicMock):
def __reduce__(self):
return MagicMock, ()
class Unpicklable:
def __init__(self, **kwargs):
for key, value in kwargs.items():
setattr(self, key, value)
def __getstate__(self):
raise pickle.PicklingError()
def picklable_map_function(x):
return {"id": int(x["filename"].split("_")[-1])}
def picklable_map_function_with_indices(x, i):
return {"id": i}
def picklable_map_function_with_rank(x, r):
return {"rank": r}
def picklable_map_function_with_indices_and_rank(x, i, r):
return {"id": i, "rank": r}
def picklable_filter_function(x):
return int(x["filename"].split("_")[-1]) < 10
def picklable_filter_function_with_rank(x, r):
return r == 0
def assert_arrow_metadata_are_synced_with_dataset_features(dataset: Dataset):
assert dataset.data.schema.metadata is not None
assert b"huggingface" in dataset.data.schema.metadata
metadata = json.loads(dataset.data.schema.metadata[b"huggingface"].decode())
assert "info" in metadata
features = DatasetInfo.from_dict(metadata["info"]).features
assert features is not None
assert features == dataset.features
assert features == Features.from_arrow_schema(dataset.data.schema)
assert list(features) == dataset.data.column_names
assert list(features) == list(dataset.features)
IN_MEMORY_PARAMETERS = [
{"testcase_name": name, "in_memory": im} for im, name in [(True, "in_memory"), (False, "on_disk")]
]
@parameterized.named_parameters(IN_MEMORY_PARAMETERS)
class BaseDatasetTest(TestCase):
@pytest.fixture(autouse=True)
def inject_fixtures(self, caplog, set_sqlalchemy_silence_uber_warning):
self._caplog = caplog
def _create_dummy_dataset(
self, in_memory: bool, tmp_dir: str, multiple_columns=False, array_features=False, nested_features=False
) -> Dataset:
assert int(multiple_columns) + int(array_features) + int(nested_features) < 2
if multiple_columns:
data = {"col_1": [3, 2, 1, 0], "col_2": ["a", "b", "c", "d"], "col_3": [False, True, False, True]}
dset = Dataset.from_dict(data)
elif array_features:
data = {
"col_1": [[[True, False], [False, True]]] * 4, # 2D
"col_2": [[[["a", "b"], ["c", "d"]], [["e", "f"], ["g", "h"]]]] * 4, # 3D array
"col_3": [[3, 2, 1, 0]] * 4, # Sequence
}
features = Features(
{
"col_1": Array2D(shape=(2, 2), dtype="bool"),
"col_2": Array3D(shape=(2, 2, 2), dtype="string"),
"col_3": Sequence(feature=Value("int64")),
}
)
dset = Dataset.from_dict(data, features=features)
elif nested_features:
data = {"nested": [{"a": i, "x": i * 10, "c": i * 100} for i in range(1, 11)]}
features = Features({"nested": {"a": Value("int64"), "x": Value("int64"), "c": Value("int64")}})
dset = Dataset.from_dict(data, features=features)
else:
dset = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(x) for x in np.arange(30).tolist()]})
if not in_memory:
dset = self._to(in_memory, tmp_dir, dset)
return dset
def _to(self, in_memory, tmp_dir, *datasets):
if in_memory:
datasets = [dataset.map(keep_in_memory=True) for dataset in datasets]
else:
start = 0
while os.path.isfile(os.path.join(tmp_dir, f"dataset{start}.arrow")):
start += 1
datasets = [
dataset.map(cache_file_name=os.path.join(tmp_dir, f"dataset{start + i}.arrow"))
for i, dataset in enumerate(datasets)
]
return datasets if len(datasets) > 1 else datasets[0]
def test_dummy_dataset(self, in_memory):
with tempfile.TemporaryDirectory() as tmp_dir:
with self._create_dummy_dataset(in_memory, tmp_dir) as dset:
self.assertDictEqual(dset.features, Features({"filename": Value("string")}))
self.assertEqual(dset[0]["filename"], "my_name-train_0")
self.assertEqual(dset["filename"][0], "my_name-train_0")
with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset:
self.assertDictEqual(
dset.features,
Features({"col_1": Value("int64"), "col_2": Value("string"), "col_3": Value("bool")}),
)
self.assertEqual(dset[0]["col_1"], 3)
self.assertEqual(dset["col_1"][0], 3)
with tempfile.TemporaryDirectory() as tmp_dir:
with self._create_dummy_dataset(in_memory, tmp_dir, array_features=True) as dset:
self.assertDictEqual(
dset.features,
Features(
{
"col_1": Array2D(shape=(2, 2), dtype="bool"),
"col_2": Array3D(shape=(2, 2, 2), dtype="string"),
"col_3": Sequence(feature=Value("int64")),
}
),
)
assert (dset[0]["col_2"] == np.array([[[["a", "b"], ["c", "d"]], [["e", "f"], ["g", "h"]]]])).all()
assert (dset["col_2"][0] == np.array([[[["a", "b"], ["c", "d"]], [["e", "f"], ["g", "h"]]]])).all()
def test_dataset_getitem(self, in_memory):
with tempfile.TemporaryDirectory() as tmp_dir:
with self._create_dummy_dataset(in_memory, tmp_dir) as dset:
self.assertEqual(dset[0]["filename"], "my_name-train_0")
self.assertEqual(dset["filename"][0], "my_name-train_0")
self.assertEqual(dset[-1]["filename"], "my_name-train_29")
self.assertEqual(dset["filename"][-1], "my_name-train_29")
self.assertListEqual(dset[:2]["filename"], ["my_name-train_0", "my_name-train_1"])
self.assertListEqual(dset["filename"][:2], ["my_name-train_0", "my_name-train_1"])
self.assertEqual(dset[:-1]["filename"][-1], "my_name-train_28")
self.assertEqual(dset["filename"][:-1][-1], "my_name-train_28")
self.assertListEqual(dset[[0, -1]]["filename"], ["my_name-train_0", "my_name-train_29"])
self.assertListEqual(dset[range(0, -2, -1)]["filename"], ["my_name-train_0", "my_name-train_29"])
self.assertListEqual(dset[np.array([0, -1])]["filename"], ["my_name-train_0", "my_name-train_29"])
self.assertListEqual(dset[pd.Series([0, -1])]["filename"], ["my_name-train_0", "my_name-train_29"])
with dset.select(range(2)) as dset_subset:
self.assertListEqual(dset_subset[-1:]["filename"], ["my_name-train_1"])
self.assertListEqual(dset_subset["filename"][-1:], ["my_name-train_1"])
def test_dummy_dataset_deepcopy(self, in_memory):
with tempfile.TemporaryDirectory() as tmp_dir:
with self._create_dummy_dataset(in_memory, tmp_dir).select(range(10)) as dset:
with assert_arrow_memory_doesnt_increase():
dset2 = copy.deepcopy(dset)
# don't copy the underlying arrow data using memory
self.assertEqual(len(dset2), 10)
self.assertDictEqual(dset2.features, Features({"filename": Value("string")}))
self.assertEqual(dset2[0]["filename"], "my_name-train_0")
self.assertEqual(dset2["filename"][0], "my_name-train_0")
del dset2
def test_dummy_dataset_pickle(self, in_memory):
with tempfile.TemporaryDirectory() as tmp_dir:
tmp_file = os.path.join(tmp_dir, "dset.pt")
with self._create_dummy_dataset(in_memory, tmp_dir).select(range(0, 10, 2)) as dset:
with open(tmp_file, "wb") as f:
pickle.dump(dset, f)
with open(tmp_file, "rb") as f:
with pickle.load(f) as dset:
self.assertEqual(len(dset), 5)
self.assertDictEqual(dset.features, Features({"filename": Value("string")}))
self.assertEqual(dset[0]["filename"], "my_name-train_0")
self.assertEqual(dset["filename"][0], "my_name-train_0")
with self._create_dummy_dataset(in_memory, tmp_dir).select(
range(0, 10, 2), indices_cache_file_name=os.path.join(tmp_dir, "ind.arrow")
) as dset:
if not in_memory:
dset._data.table = Unpicklable()
dset._indices.table = Unpicklable()
with open(tmp_file, "wb") as f:
pickle.dump(dset, f)
with open(tmp_file, "rb") as f:
with pickle.load(f) as dset:
self.assertEqual(len(dset), 5)
self.assertDictEqual(dset.features, Features({"filename": Value("string")}))
self.assertEqual(dset[0]["filename"], "my_name-train_0")
self.assertEqual(dset["filename"][0], "my_name-train_0")
def test_dummy_dataset_serialize(self, in_memory):
with tempfile.TemporaryDirectory() as tmp_dir:
with set_current_working_directory_to_temp_dir():
with self._create_dummy_dataset(in_memory, tmp_dir).select(range(10)) as dset:
dataset_path = "my_dataset" # rel path
dset.save_to_disk(dataset_path)
with Dataset.load_from_disk(dataset_path) as dset:
self.assertEqual(len(dset), 10)
self.assertDictEqual(dset.features, Features({"filename": Value("string")}))
self.assertEqual(dset[0]["filename"], "my_name-train_0")
self.assertEqual(dset["filename"][0], "my_name-train_0")
expected = dset.to_dict()
with self._create_dummy_dataset(in_memory, tmp_dir).select(range(10)) as dset:
dataset_path = os.path.join(tmp_dir, "my_dataset") # abs path
dset.save_to_disk(dataset_path)
with Dataset.load_from_disk(dataset_path) as dset:
self.assertEqual(len(dset), 10)
self.assertDictEqual(dset.features, Features({"filename": Value("string")}))
self.assertEqual(dset[0]["filename"], "my_name-train_0")
self.assertEqual(dset["filename"][0], "my_name-train_0")
with self._create_dummy_dataset(in_memory, tmp_dir).select(
range(10), indices_cache_file_name=os.path.join(tmp_dir, "ind.arrow")
) as dset:
with assert_arrow_memory_doesnt_increase():
dset.save_to_disk(dataset_path)
with Dataset.load_from_disk(dataset_path) as dset:
self.assertEqual(len(dset), 10)
self.assertDictEqual(dset.features, Features({"filename": Value("string")}))
self.assertEqual(dset[0]["filename"], "my_name-train_0")
self.assertEqual(dset["filename"][0], "my_name-train_0")
with self._create_dummy_dataset(in_memory, tmp_dir, nested_features=True) as dset:
with assert_arrow_memory_doesnt_increase():
dset.save_to_disk(dataset_path)
with Dataset.load_from_disk(dataset_path) as dset:
self.assertEqual(len(dset), 10)
self.assertDictEqual(
dset.features,
Features({"nested": {"a": Value("int64"), "x": Value("int64"), "c": Value("int64")}}),
)
self.assertDictEqual(dset[0]["nested"], {"a": 1, "c": 100, "x": 10})
self.assertDictEqual(dset["nested"][0], {"a": 1, "c": 100, "x": 10})
with self._create_dummy_dataset(in_memory, tmp_dir).select(range(10)) as dset:
with assert_arrow_memory_doesnt_increase():
dset.save_to_disk(dataset_path, num_shards=4)
with Dataset.load_from_disk(dataset_path) as dset:
self.assertEqual(len(dset), 10)
self.assertDictEqual(dset.features, Features({"filename": Value("string")}))
self.assertDictEqual(dset.to_dict(), expected)
self.assertEqual(len(dset.cache_files), 4)
with self._create_dummy_dataset(in_memory, tmp_dir).select(range(10)) as dset:
with assert_arrow_memory_doesnt_increase():
dset.save_to_disk(dataset_path, num_proc=2)
with Dataset.load_from_disk(dataset_path) as dset:
self.assertEqual(len(dset), 10)
self.assertDictEqual(dset.features, Features({"filename": Value("string")}))
self.assertDictEqual(dset.to_dict(), expected)
self.assertEqual(len(dset.cache_files), 2)
with self._create_dummy_dataset(in_memory, tmp_dir).select(range(10)) as dset:
with assert_arrow_memory_doesnt_increase():
dset.save_to_disk(dataset_path, num_shards=7, num_proc=2)
with Dataset.load_from_disk(dataset_path) as dset:
self.assertEqual(len(dset), 10)
self.assertDictEqual(dset.features, Features({"filename": Value("string")}))
self.assertDictEqual(dset.to_dict(), expected)
self.assertEqual(len(dset.cache_files), 7)
with self._create_dummy_dataset(in_memory, tmp_dir).select(range(10)) as dset:
with assert_arrow_memory_doesnt_increase():
max_shard_size = dset._estimate_nbytes() // 2 + 1
dset.save_to_disk(dataset_path, max_shard_size=max_shard_size)
with Dataset.load_from_disk(dataset_path) as dset:
self.assertEqual(len(dset), 10)
self.assertDictEqual(dset.features, Features({"filename": Value("string")}))
self.assertDictEqual(dset.to_dict(), expected)
self.assertEqual(len(dset.cache_files), 2)
def test_dummy_dataset_load_from_disk(self, in_memory):
with tempfile.TemporaryDirectory() as tmp_dir:
with self._create_dummy_dataset(in_memory, tmp_dir).select(range(10)) as dset:
dataset_path = os.path.join(tmp_dir, "my_dataset")
dset.save_to_disk(dataset_path)
with load_from_disk(dataset_path) as dset:
self.assertEqual(len(dset), 10)
self.assertDictEqual(dset.features, Features({"filename": Value("string")}))
self.assertEqual(dset[0]["filename"], "my_name-train_0")
self.assertEqual(dset["filename"][0], "my_name-train_0")
def test_restore_saved_format(self, in_memory):
with tempfile.TemporaryDirectory() as tmp_dir:
with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset:
dset.set_format(type="numpy", columns=["col_1"], output_all_columns=True)
dataset_path = os.path.join(tmp_dir, "my_dataset")
dset.save_to_disk(dataset_path)
with load_from_disk(dataset_path) as loaded_dset:
self.assertEqual(dset.format, loaded_dset.format)
def test_set_format_numpy_multiple_columns(self, in_memory):
with tempfile.TemporaryDirectory() as tmp_dir:
with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset:
fingerprint = dset._fingerprint
dset.set_format(type="numpy", columns=["col_1"])
self.assertEqual(len(dset[0]), 1)
self.assertIsInstance(dset[0]["col_1"], np.int64)
self.assertEqual(dset[0]["col_1"].item(), 3)
self.assertIsInstance(dset["col_1"], np.ndarray)
self.assertListEqual(list(dset["col_1"].shape), [4])
np.testing.assert_array_equal(dset["col_1"], np.array([3, 2, 1, 0]))
self.assertNotEqual(dset._fingerprint, fingerprint)
dset.reset_format()
with dset.formatted_as(type="numpy", columns=["col_1"]):
self.assertEqual(len(dset[0]), 1)
self.assertIsInstance(dset[0]["col_1"], np.int64)
self.assertEqual(dset[0]["col_1"].item(), 3)
self.assertIsInstance(dset["col_1"], np.ndarray)
self.assertListEqual(list(dset["col_1"].shape), [4])
np.testing.assert_array_equal(dset["col_1"], np.array([3, 2, 1, 0]))
self.assertEqual(dset.format["type"], None)
self.assertEqual(dset.format["format_kwargs"], {})
self.assertEqual(dset.format["columns"], dset.column_names)
self.assertEqual(dset.format["output_all_columns"], False)
dset.set_format(type="numpy", columns=["col_1"], output_all_columns=True)
self.assertEqual(len(dset[0]), 3)
self.assertIsInstance(dset[0]["col_2"], str)
self.assertEqual(dset[0]["col_2"], "a")
dset.set_format(type="numpy", columns=["col_1", "col_2"])
self.assertEqual(len(dset[0]), 2)
self.assertIsInstance(dset[0]["col_2"], np.str_)
self.assertEqual(dset[0]["col_2"].item(), "a")
@require_numpy1_on_windows
@require_torch
def test_set_format_torch(self, in_memory):
import torch
with tempfile.TemporaryDirectory() as tmp_dir:
with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset:
dset.set_format(type="torch", columns=["col_1"])
self.assertEqual(len(dset[0]), 1)
self.assertIsInstance(dset[0]["col_1"], torch.Tensor)
self.assertIsInstance(dset["col_1"], torch.Tensor)
self.assertListEqual(list(dset[0]["col_1"].shape), [])
self.assertEqual(dset[0]["col_1"].item(), 3)
dset.set_format(type="torch", columns=["col_1"], output_all_columns=True)
self.assertEqual(len(dset[0]), 3)
self.assertIsInstance(dset[0]["col_2"], str)
self.assertEqual(dset[0]["col_2"], "a")
dset.set_format(type="torch")
self.assertEqual(len(dset[0]), 3)
self.assertIsInstance(dset[0]["col_1"], torch.Tensor)
self.assertIsInstance(dset["col_1"], torch.Tensor)
self.assertListEqual(list(dset[0]["col_1"].shape), [])
self.assertEqual(dset[0]["col_1"].item(), 3)
self.assertIsInstance(dset[0]["col_2"], str)
self.assertEqual(dset[0]["col_2"], "a")
self.assertIsInstance(dset[0]["col_3"], torch.Tensor)
self.assertIsInstance(dset["col_3"], torch.Tensor)
self.assertListEqual(list(dset[0]["col_3"].shape), [])
@require_tf
def test_set_format_tf(self, in_memory):
import tensorflow as tf
with tempfile.TemporaryDirectory() as tmp_dir:
with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset:
dset.set_format(type="tensorflow", columns=["col_1"])
self.assertEqual(len(dset[0]), 1)
self.assertIsInstance(dset[0]["col_1"], tf.Tensor)
self.assertListEqual(list(dset[0]["col_1"].shape), [])
self.assertEqual(dset[0]["col_1"].numpy().item(), 3)
dset.set_format(type="tensorflow", columns=["col_1"], output_all_columns=True)
self.assertEqual(len(dset[0]), 3)
self.assertIsInstance(dset[0]["col_2"], str)
self.assertEqual(dset[0]["col_2"], "a")
dset.set_format(type="tensorflow", columns=["col_1", "col_2"])
self.assertEqual(len(dset[0]), 2)
self.assertEqual(dset[0]["col_2"].numpy().decode("utf-8"), "a")
def test_set_format_pandas(self, in_memory):
with tempfile.TemporaryDirectory() as tmp_dir:
with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset:
dset.set_format(type="pandas", columns=["col_1"])
self.assertEqual(len(dset[0].columns), 1)
self.assertIsInstance(dset[0], pd.DataFrame)
self.assertListEqual(list(dset[0].shape), [1, 1])
self.assertEqual(dset[0]["col_1"].item(), 3)
dset.set_format(type="pandas", columns=["col_1", "col_2"])
self.assertEqual(len(dset[0].columns), 2)
self.assertEqual(dset[0]["col_2"].item(), "a")
@require_polars
def test_set_format_polars(self, in_memory):
import polars as pl
with tempfile.TemporaryDirectory() as tmp_dir:
with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset:
dset.set_format(type="polars", columns=["col_1"])
self.assertEqual(len(dset[0].columns), 1)
self.assertIsInstance(dset[0], pl.DataFrame)
self.assertListEqual(list(dset[0].shape), [1, 1])
self.assertEqual(dset[0]["col_1"].item(), 3)
dset.set_format(type="polars", columns=["col_1", "col_2"])
self.assertEqual(len(dset[0].columns), 2)
self.assertEqual(dset[0]["col_2"].item(), "a")
def test_set_transform(self, in_memory):
def transform(batch):
return {k: [str(i).upper() for i in v] for k, v in batch.items()}
with tempfile.TemporaryDirectory() as tmp_dir:
with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset:
dset.set_transform(transform=transform, columns=["col_1"])
self.assertEqual(dset.format["type"], "custom")
self.assertEqual(len(dset[0].keys()), 1)
self.assertEqual(dset[0]["col_1"], "3")
self.assertEqual(dset[:2]["col_1"], ["3", "2"])
self.assertEqual(dset["col_1"][:2], ["3", "2"])
prev_format = dset.format
dset.set_format(**dset.format)
self.assertEqual(prev_format, dset.format)
dset.set_transform(transform=transform, columns=["col_1", "col_2"])
self.assertEqual(len(dset[0].keys()), 2)
self.assertEqual(dset[0]["col_2"], "A")
def test_transmit_format(self, in_memory):
with tempfile.TemporaryDirectory() as tmp_dir:
with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset:
transform = datasets.arrow_dataset.transmit_format(lambda x: x)
# make sure identity transform doesn't apply unnecessary format
self.assertEqual(dset._fingerprint, transform(dset)._fingerprint)
dset.set_format(**dset.format)
self.assertEqual(dset._fingerprint, transform(dset)._fingerprint)
# check lists comparisons
dset.set_format(columns=["col_1"])
self.assertEqual(dset._fingerprint, transform(dset)._fingerprint)
dset.set_format(columns=["col_1", "col_2"])
self.assertEqual(dset._fingerprint, transform(dset)._fingerprint)
dset.set_format("numpy", columns=["col_1", "col_2"])
self.assertEqual(dset._fingerprint, transform(dset)._fingerprint)
def test_cast(self, in_memory):
with tempfile.TemporaryDirectory() as tmp_dir:
with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset:
features = dset.features
features["col_1"] = Value("float64")
features = Features({k: features[k] for k in list(features)[::-1]})
fingerprint = dset._fingerprint
# TODO: with assert_arrow_memory_increases() if in_memory else assert_arrow_memory_doesnt_increase():
with dset.cast(features) as casted_dset:
self.assertEqual(casted_dset.num_columns, 3)
self.assertEqual(casted_dset.features["col_1"], Value("float64"))
self.assertIsInstance(casted_dset[0]["col_1"], float)
self.assertNotEqual(casted_dset._fingerprint, fingerprint)
self.assertNotEqual(casted_dset, dset)
assert_arrow_metadata_are_synced_with_dataset_features(casted_dset)
def test_class_encode_column(self, in_memory):
with tempfile.TemporaryDirectory() as tmp_dir:
with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset:
with self.assertRaises(ValueError):
dset.class_encode_column(column="does not exist")
with dset.class_encode_column("col_1") as casted_dset:
self.assertIsInstance(casted_dset.features["col_1"], ClassLabel)
self.assertListEqual(casted_dset.features["col_1"].names, ["0", "1", "2", "3"])
self.assertListEqual(casted_dset["col_1"], [3, 2, 1, 0])
self.assertNotEqual(casted_dset._fingerprint, dset._fingerprint)
self.assertNotEqual(casted_dset, dset)
assert_arrow_metadata_are_synced_with_dataset_features(casted_dset)
with dset.class_encode_column("col_2") as casted_dset:
self.assertIsInstance(casted_dset.features["col_2"], ClassLabel)
self.assertListEqual(casted_dset.features["col_2"].names, ["a", "b", "c", "d"])
self.assertListEqual(casted_dset["col_2"], [0, 1, 2, 3])
self.assertNotEqual(casted_dset._fingerprint, dset._fingerprint)
self.assertNotEqual(casted_dset, dset)
assert_arrow_metadata_are_synced_with_dataset_features(casted_dset)
with dset.class_encode_column("col_3") as casted_dset:
self.assertIsInstance(casted_dset.features["col_3"], ClassLabel)
self.assertListEqual(casted_dset.features["col_3"].names, ["False", "True"])
self.assertListEqual(casted_dset["col_3"], [0, 1, 0, 1])
self.assertNotEqual(casted_dset._fingerprint, dset._fingerprint)
self.assertNotEqual(casted_dset, dset)
assert_arrow_metadata_are_synced_with_dataset_features(casted_dset)
# Test raises if feature is an array / sequence
with self._create_dummy_dataset(in_memory, tmp_dir, array_features=True) as dset:
for column in dset.column_names:
with self.assertRaises(ValueError):
dset.class_encode_column(column)
def test_remove_columns(self, in_memory):
with tempfile.TemporaryDirectory() as tmp_dir:
with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset:
fingerprint = dset._fingerprint
with dset.remove_columns(column_names="col_1") as new_dset:
self.assertEqual(new_dset.num_columns, 2)
self.assertListEqual(list(new_dset.column_names), ["col_2", "col_3"])
self.assertNotEqual(new_dset._fingerprint, fingerprint)
assert_arrow_metadata_are_synced_with_dataset_features(new_dset)
with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset:
with dset.remove_columns(column_names=["col_1", "col_2", "col_3"]) as new_dset:
self.assertEqual(new_dset.num_columns, 0)
self.assertNotEqual(new_dset._fingerprint, fingerprint)
assert_arrow_metadata_are_synced_with_dataset_features(new_dset)
with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset:
dset._format_columns = ["col_1", "col_2", "col_3"]
with dset.remove_columns(column_names=["col_1"]) as new_dset:
self.assertListEqual(new_dset._format_columns, ["col_2", "col_3"])
self.assertEqual(new_dset.num_columns, 2)
self.assertListEqual(list(new_dset.column_names), ["col_2", "col_3"])
self.assertNotEqual(new_dset._fingerprint, fingerprint)
assert_arrow_metadata_are_synced_with_dataset_features(new_dset)
def test_rename_column(self, in_memory):
with tempfile.TemporaryDirectory() as tmp_dir:
with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset:
fingerprint = dset._fingerprint
with dset.rename_column(original_column_name="col_1", new_column_name="new_name") as new_dset:
self.assertEqual(new_dset.num_columns, 3)
self.assertListEqual(list(new_dset.column_names), ["new_name", "col_2", "col_3"])
self.assertListEqual(list(dset.column_names), ["col_1", "col_2", "col_3"])
self.assertNotEqual(new_dset._fingerprint, fingerprint)
assert_arrow_metadata_are_synced_with_dataset_features(new_dset)
def test_rename_columns(self, in_memory):
with tempfile.TemporaryDirectory() as tmp_dir:
with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset:
fingerprint = dset._fingerprint
with dset.rename_columns({"col_1": "new_name"}) as new_dset:
self.assertEqual(new_dset.num_columns, 3)
self.assertListEqual(list(new_dset.column_names), ["new_name", "col_2", "col_3"])
self.assertListEqual(list(dset.column_names), ["col_1", "col_2", "col_3"])
self.assertNotEqual(new_dset._fingerprint, fingerprint)
with dset.rename_columns({"col_1": "new_name", "col_2": "new_name2"}) as new_dset:
self.assertEqual(new_dset.num_columns, 3)
self.assertListEqual(list(new_dset.column_names), ["new_name", "new_name2", "col_3"])
self.assertListEqual(list(dset.column_names), ["col_1", "col_2", "col_3"])
self.assertNotEqual(new_dset._fingerprint, fingerprint)
# Original column not in dataset
with self.assertRaises(ValueError):
dset.rename_columns({"not_there": "new_name"})
# Empty new name
with self.assertRaises(ValueError):
dset.rename_columns({"col_1": ""})
# Duplicates
with self.assertRaises(ValueError):
dset.rename_columns({"col_1": "new_name", "col_2": "new_name"})
def test_select_columns(self, in_memory):
with tempfile.TemporaryDirectory() as tmp_dir:
with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset:
fingerprint = dset._fingerprint
with dset.select_columns(column_names=[]) as new_dset:
self.assertEqual(new_dset.num_columns, 0)
self.assertListEqual(list(new_dset.column_names), [])
self.assertNotEqual(new_dset._fingerprint, fingerprint)
assert_arrow_metadata_are_synced_with_dataset_features(new_dset)
with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset:
fingerprint = dset._fingerprint
with dset.select_columns(column_names="col_1") as new_dset:
self.assertEqual(new_dset.num_columns, 1)
self.assertListEqual(list(new_dset.column_names), ["col_1"])
self.assertNotEqual(new_dset._fingerprint, fingerprint)
assert_arrow_metadata_are_synced_with_dataset_features(new_dset)
with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset:
with dset.select_columns(column_names=["col_1", "col_2", "col_3"]) as new_dset:
self.assertEqual(new_dset.num_columns, 3)
self.assertListEqual(list(new_dset.column_names), ["col_1", "col_2", "col_3"])
self.assertNotEqual(new_dset._fingerprint, fingerprint)
assert_arrow_metadata_are_synced_with_dataset_features(new_dset)
with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset:
with dset.select_columns(column_names=["col_3", "col_2", "col_1"]) as new_dset:
self.assertEqual(new_dset.num_columns, 3)
self.assertListEqual(list(new_dset.column_names), ["col_3", "col_2", "col_1"])
self.assertNotEqual(new_dset._fingerprint, fingerprint)
assert_arrow_metadata_are_synced_with_dataset_features(new_dset)
with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset:
dset._format_columns = ["col_1", "col_2", "col_3"]
with dset.select_columns(column_names=["col_1"]) as new_dset:
self.assertListEqual(new_dset._format_columns, ["col_1"])
self.assertEqual(new_dset.num_columns, 1)
self.assertListEqual(list(new_dset.column_names), ["col_1"])
self.assertNotEqual(new_dset._fingerprint, fingerprint)
assert_arrow_metadata_are_synced_with_dataset_features(new_dset)
def test_concatenate(self, in_memory):
data1, data2, data3 = {"id": [0, 1, 2]}, {"id": [3, 4, 5]}, {"id": [6, 7]}
info1 = DatasetInfo(description="Dataset1")
info2 = DatasetInfo(description="Dataset2")
with tempfile.TemporaryDirectory() as tmp_dir:
dset1, dset2, dset3 = (
Dataset.from_dict(data1, info=info1),
Dataset.from_dict(data2, info=info2),
Dataset.from_dict(data3),
)
dset1, dset2, dset3 = self._to(in_memory, tmp_dir, dset1, dset2, dset3)
with concatenate_datasets([dset1, dset2, dset3]) as dset_concat:
self.assertTupleEqual((len(dset1), len(dset2), len(dset3)), (3, 3, 2))
self.assertEqual(len(dset_concat), len(dset1) + len(dset2) + len(dset3))
self.assertListEqual(dset_concat["id"], [0, 1, 2, 3, 4, 5, 6, 7])
self.assertEqual(len(dset_concat.cache_files), 0 if in_memory else 3)
self.assertEqual(dset_concat.info.description, "Dataset1\n\nDataset2")
del dset1, dset2, dset3
def test_concatenate_formatted(self, in_memory):
data1, data2, data3 = {"id": [0, 1, 2]}, {"id": [3, 4, 5]}, {"id": [6, 7]}
info1 = DatasetInfo(description="Dataset1")
info2 = DatasetInfo(description="Dataset2")
with tempfile.TemporaryDirectory() as tmp_dir:
dset1, dset2, dset3 = (
Dataset.from_dict(data1, info=info1),
Dataset.from_dict(data2, info=info2),
Dataset.from_dict(data3),
)
dset1, dset2, dset3 = self._to(in_memory, tmp_dir, dset1, dset2, dset3)
dset1.set_format("numpy")
with concatenate_datasets([dset1, dset2, dset3]) as dset_concat:
self.assertEqual(dset_concat.format["type"], None)
dset2.set_format("numpy")
dset3.set_format("numpy")
with concatenate_datasets([dset1, dset2, dset3]) as dset_concat:
self.assertEqual(dset_concat.format["type"], "numpy")
del dset1, dset2, dset3
def test_concatenate_with_indices(self, in_memory):
data1, data2, data3 = {"id": [0, 1, 2] * 2}, {"id": [3, 4, 5] * 2}, {"id": [6, 7, 8]}
info1 = DatasetInfo(description="Dataset1")
info2 = DatasetInfo(description="Dataset2")
with tempfile.TemporaryDirectory() as tmp_dir:
dset1, dset2, dset3 = (
Dataset.from_dict(data1, info=info1),
Dataset.from_dict(data2, info=info2),
Dataset.from_dict(data3),
)
dset1, dset2, dset3 = self._to(in_memory, tmp_dir, dset1, dset2, dset3)
dset1, dset2, dset3 = dset1.select([2, 1, 0]), dset2.select([2, 1, 0]), dset3
with concatenate_datasets([dset3, dset2, dset1]) as dset_concat:
self.assertTupleEqual((len(dset1), len(dset2), len(dset3)), (3, 3, 3))
self.assertEqual(len(dset_concat), len(dset1) + len(dset2) + len(dset3))
self.assertListEqual(dset_concat["id"], [6, 7, 8, 5, 4, 3, 2, 1, 0])
# in_memory = False:
# 3 cache files for the dset_concat._data table
# no cache file for the indices because it's in memory
# in_memory = True:
# no cache files since both dset_concat._data and dset_concat._indices are in memory
self.assertEqual(len(dset_concat.cache_files), 0 if in_memory else 3)
self.assertEqual(dset_concat.info.description, "Dataset2\n\nDataset1")
dset1 = dset1.rename_columns({"id": "id1"})
dset2 = dset2.rename_columns({"id": "id2"})
dset3 = dset3.rename_columns({"id": "id3"})
with concatenate_datasets([dset1, dset2, dset3], axis=1) as dset_concat:
self.assertTupleEqual((len(dset1), len(dset2), len(dset3)), (3, 3, 3))
self.assertEqual(len(dset_concat), len(dset1))
self.assertListEqual(dset_concat["id1"], [2, 1, 0])
self.assertListEqual(dset_concat["id2"], [5, 4, 3])
self.assertListEqual(dset_concat["id3"], [6, 7, 8])
# in_memory = False:
# 3 cache files for the dset_concat._data table
# no cache file for the indices because it's None
# in_memory = True:
# no cache files since dset_concat._data is in memory and dset_concat._indices is None
self.assertEqual(len(dset_concat.cache_files), 0 if in_memory else 3)
self.assertIsNone(dset_concat._indices)
self.assertEqual(dset_concat.info.description, "Dataset1\n\nDataset2")
with concatenate_datasets([dset1], axis=1) as dset_concat:
self.assertEqual(len(dset_concat), len(dset1))
self.assertListEqual(dset_concat["id1"], [2, 1, 0])
# in_memory = False:
# 1 cache file for the dset_concat._data table
# no cache file for the indices because it's in memory
# in_memory = True:
# no cache files since both dset_concat._data and dset_concat._indices are in memory
self.assertEqual(len(dset_concat.cache_files), 0 if in_memory else 1)
self.assertTrue(dset_concat._indices == dset1._indices)
self.assertEqual(dset_concat.info.description, "Dataset1")
del dset1, dset2, dset3
def test_concatenate_with_indices_from_disk(self, in_memory):
data1, data2, data3 = {"id": [0, 1, 2] * 2}, {"id": [3, 4, 5] * 2}, {"id": [6, 7]}
info1 = DatasetInfo(description="Dataset1")
info2 = DatasetInfo(description="Dataset2")
with tempfile.TemporaryDirectory() as tmp_dir:
dset1, dset2, dset3 = (
Dataset.from_dict(data1, info=info1),
Dataset.from_dict(data2, info=info2),
Dataset.from_dict(data3),
)
dset1, dset2, dset3 = self._to(in_memory, tmp_dir, dset1, dset2, dset3)
dset1, dset2, dset3 = (
dset1.select([2, 1, 0], indices_cache_file_name=os.path.join(tmp_dir, "i1.arrow")),
dset2.select([2, 1, 0], indices_cache_file_name=os.path.join(tmp_dir, "i2.arrow")),
dset3.select([1, 0], indices_cache_file_name=os.path.join(tmp_dir, "i3.arrow")),
)
with concatenate_datasets([dset3, dset2, dset1]) as dset_concat:
self.assertTupleEqual((len(dset1), len(dset2), len(dset3)), (3, 3, 2))
self.assertEqual(len(dset_concat), len(dset1) + len(dset2) + len(dset3))
self.assertListEqual(dset_concat["id"], [7, 6, 5, 4, 3, 2, 1, 0])
# in_memory = False:
# 3 cache files for the dset_concat._data table, and 1 for the dset_concat._indices_table
# There is only 1 for the indices tables (i1.arrow)
# Indeed, the others are brought to memory since an offset is applied to them.
# in_memory = True:
# 1 cache file for i1.arrow since both dset_concat._data and dset_concat._indices are in memory
self.assertEqual(len(dset_concat.cache_files), 1 if in_memory else 3 + 1)
self.assertEqual(dset_concat.info.description, "Dataset2\n\nDataset1")
del dset1, dset2, dset3
def test_concatenate_pickle(self, in_memory):
data1, data2, data3 = {"id": [0, 1, 2] * 2}, {"id": [3, 4, 5] * 2}, {"id": [6, 7], "foo": ["bar", "bar"]}
info1 = DatasetInfo(description="Dataset1")
info2 = DatasetInfo(description="Dataset2")
with tempfile.TemporaryDirectory() as tmp_dir:
dset1, dset2, dset3 = (
Dataset.from_dict(data1, info=info1),
Dataset.from_dict(data2, info=info2),
Dataset.from_dict(data3),
)
schema = dset1.data.schema
# mix from in-memory and on-disk datasets
dset1, dset2 = self._to(in_memory, tmp_dir, dset1, dset2)
dset3 = self._to(not in_memory, tmp_dir, dset3)
dset1, dset2, dset3 = (
dset1.select(
[2, 1, 0],
keep_in_memory=in_memory,
indices_cache_file_name=os.path.join(tmp_dir, "i1.arrow") if not in_memory else None,
),
dset2.select(
[2, 1, 0],
keep_in_memory=in_memory,
indices_cache_file_name=os.path.join(tmp_dir, "i2.arrow") if not in_memory else None,
),
dset3.select(
[1, 0],
keep_in_memory=in_memory,
indices_cache_file_name=os.path.join(tmp_dir, "i3.arrow") if not in_memory else None,
),
)
dset3 = dset3.rename_column("foo", "new_foo")
dset3 = dset3.remove_columns("new_foo")
if in_memory:
dset3._data.table = Unpicklable(schema=schema)
else:
dset1._data.table, dset2._data.table = Unpicklable(schema=schema), Unpicklable(schema=schema)
dset1, dset2, dset3 = (pickle.loads(pickle.dumps(d)) for d in (dset1, dset2, dset3))
with concatenate_datasets([dset3, dset2, dset1]) as dset_concat:
if not in_memory:
dset_concat._data.table = Unpicklable(schema=schema)
with pickle.loads(pickle.dumps(dset_concat)) as dset_concat:
self.assertTupleEqual((len(dset1), len(dset2), len(dset3)), (3, 3, 2))
self.assertEqual(len(dset_concat), len(dset1) + len(dset2) + len(dset3))
self.assertListEqual(dset_concat["id"], [7, 6, 5, 4, 3, 2, 1, 0])
# in_memory = True: 1 cache file for dset3
# in_memory = False: 2 caches files for dset1 and dset2, and 1 cache file for i1.arrow
self.assertEqual(len(dset_concat.cache_files), 1 if in_memory else 2 + 1)
self.assertEqual(dset_concat.info.description, "Dataset2\n\nDataset1")
del dset1, dset2, dset3
def test_flatten(self, in_memory):
with tempfile.TemporaryDirectory() as tmp_dir:
with Dataset.from_dict(
{"a": [{"b": {"c": ["text"]}}] * 10, "foo": [1] * 10},
features=Features({"a": {"b": Sequence({"c": Value("string")})}, "foo": Value("int64")}),
) as dset:
with self._to(in_memory, tmp_dir, dset) as dset:
fingerprint = dset._fingerprint
with dset.flatten() as dset:
self.assertListEqual(sorted(dset.column_names), ["a.b.c", "foo"])
self.assertListEqual(sorted(dset.features.keys()), ["a.b.c", "foo"])
self.assertDictEqual(
dset.features, Features({"a.b.c": Sequence(Value("string")), "foo": Value("int64")})
)
self.assertNotEqual(dset._fingerprint, fingerprint)
assert_arrow_metadata_are_synced_with_dataset_features(dset)
with tempfile.TemporaryDirectory() as tmp_dir:
with Dataset.from_dict(
{"a": [{"en": "Thank you", "fr": "Merci"}] * 10, "foo": [1] * 10},
features=Features({"a": Translation(languages=["en", "fr"]), "foo": Value("int64")}),
) as dset:
with self._to(in_memory, tmp_dir, dset) as dset:
fingerprint = dset._fingerprint
with dset.flatten() as dset:
self.assertListEqual(sorted(dset.column_names), ["a.en", "a.fr", "foo"])
self.assertListEqual(sorted(dset.features.keys()), ["a.en", "a.fr", "foo"])
self.assertDictEqual(
dset.features,
Features({"a.en": Value("string"), "a.fr": Value("string"), "foo": Value("int64")}),
)
self.assertNotEqual(dset._fingerprint, fingerprint)
assert_arrow_metadata_are_synced_with_dataset_features(dset)
with tempfile.TemporaryDirectory() as tmp_dir:
with Dataset.from_dict(
{"a": [{"en": "the cat", "fr": ["le chat", "la chatte"], "de": "die katze"}] * 10, "foo": [1] * 10},
features=Features(
{
"a": TranslationVariableLanguages(languages=["en", "fr", "de"]),
"foo": Value("int64"),
}
),
) as dset:
with self._to(in_memory, tmp_dir, dset) as dset:
fingerprint = dset._fingerprint
with dset.flatten() as dset:
self.assertListEqual(sorted(dset.column_names), ["a.language", "a.translation", "foo"])
self.assertListEqual(sorted(dset.features.keys()), ["a.language", "a.translation", "foo"])
self.assertDictEqual(
dset.features,
Features(
{
"a.language": Sequence(Value("string")),
"a.translation": Sequence(Value("string")),
"foo": Value("int64"),
}
),
)
self.assertNotEqual(dset._fingerprint, fingerprint)
assert_arrow_metadata_are_synced_with_dataset_features(dset)
@require_pil
def test_flatten_complex_image(self, in_memory):
# decoding turned on
with tempfile.TemporaryDirectory() as tmp_dir:
with Dataset.from_dict(
{"a": [np.arange(4 * 4 * 3, dtype=np.uint8).reshape(4, 4, 3)] * 10, "foo": [1] * 10},
features=Features({"a": Image(), "foo": Value("int64")}),
) as dset:
with self._to(in_memory, tmp_dir, dset) as dset:
fingerprint = dset._fingerprint
with dset.flatten() as dset:
self.assertListEqual(sorted(dset.column_names), ["a", "foo"])
self.assertListEqual(sorted(dset.features.keys()), ["a", "foo"])
self.assertDictEqual(dset.features, Features({"a": Image(), "foo": Value("int64")}))
self.assertNotEqual(dset._fingerprint, fingerprint)
assert_arrow_metadata_are_synced_with_dataset_features(dset)
# decoding turned on + nesting
with tempfile.TemporaryDirectory() as tmp_dir:
with Dataset.from_dict(
{"a": [{"b": np.arange(4 * 4 * 3, dtype=np.uint8).reshape(4, 4, 3)}] * 10, "foo": [1] * 10},
features=Features({"a": {"b": Image()}, "foo": Value("int64")}),
) as dset:
with self._to(in_memory, tmp_dir, dset) as dset:
fingerprint = dset._fingerprint
with dset.flatten() as dset:
self.assertListEqual(sorted(dset.column_names), ["a.b", "foo"])
self.assertListEqual(sorted(dset.features.keys()), ["a.b", "foo"])
self.assertDictEqual(dset.features, Features({"a.b": Image(), "foo": Value("int64")}))
self.assertNotEqual(dset._fingerprint, fingerprint)
assert_arrow_metadata_are_synced_with_dataset_features(dset)
# decoding turned off
with tempfile.TemporaryDirectory() as tmp_dir:
with Dataset.from_dict(
{"a": [np.arange(4 * 4 * 3, dtype=np.uint8).reshape(4, 4, 3)] * 10, "foo": [1] * 10},
features=Features({"a": Image(decode=False), "foo": Value("int64")}),
) as dset:
with self._to(in_memory, tmp_dir, dset) as dset:
fingerprint = dset._fingerprint
with dset.flatten() as dset:
self.assertListEqual(sorted(dset.column_names), ["a.bytes", "a.path", "foo"])
self.assertListEqual(sorted(dset.features.keys()), ["a.bytes", "a.path", "foo"])
self.assertDictEqual(
dset.features,
Features({"a.bytes": Value("binary"), "a.path": Value("string"), "foo": Value("int64")}),
)
self.assertNotEqual(dset._fingerprint, fingerprint)
assert_arrow_metadata_are_synced_with_dataset_features(dset)
# decoding turned off + nesting
with tempfile.TemporaryDirectory() as tmp_dir:
with Dataset.from_dict(
{"a": [{"b": np.arange(4 * 4 * 3, dtype=np.uint8).reshape(4, 4, 3)}] * 10, "foo": [1] * 10},
features=Features({"a": {"b": Image(decode=False)}, "foo": Value("int64")}),
) as dset:
with self._to(in_memory, tmp_dir, dset) as dset:
fingerprint = dset._fingerprint
with dset.flatten() as dset:
self.assertListEqual(sorted(dset.column_names), ["a.b.bytes", "a.b.path", "foo"])
self.assertListEqual(sorted(dset.features.keys()), ["a.b.bytes", "a.b.path", "foo"])
self.assertDictEqual(
dset.features,
Features(
{
"a.b.bytes": Value("binary"),
"a.b.path": Value("string"),