-
Notifications
You must be signed in to change notification settings - Fork 219
/
Copy pathgoogle_translate_model.py
200 lines (164 loc) · 7.5 KB
/
google_translate_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# MIT License
# Copyright (c) 2024 The HuggingFace Team
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import hashlib
import logging
import os
import time
from typing import Optional
import diskcache
import tenacity
from deep_translator import GoogleTranslator
from tqdm import tqdm
from transformers import AutoTokenizer
from lighteval.data import GenerativeTaskDataset
from lighteval.models.abstract_model import LightevalModel, ModelInfo
from lighteval.models.model_output import (
GenerativeResponse,
LoglikelihoodResponse,
LoglikelihoodSingleTokenResponse,
)
from lighteval.tasks.requests import (
GreedyUntilRequest,
LoglikelihoodRequest,
LoglikelihoodRollingRequest,
LoglikelihoodSingleTokenRequest,
)
logger = logging.getLogger(__name__)
class GoogleTranslateClient(LightevalModel):
def __init__(self, config, env_config) -> None:
self.model = config.model
self.model_definition_file_path = config.model_definition_file_path
self.model_info = ModelInfo(
model_name=config.model,
model_sha="",
model_dtype=None,
model_size="",
)
self._tokenizer = AutoTokenizer.from_pretrained("gpt2") # Use a dummy tokenizer for compatibility
# Deep-translator also supports other translators
self.translator = GoogleTranslator()
# Initialize disk cache
cache_dir = os.path.join(os.getcwd(), ".translation_cache")
self.cache = diskcache.Cache(cache_dir)
self.max_retries = 3
self.retry_delay = 1
def _get_cache_key(self, context: str, src_lang: str, tgt_lang: str) -> str:
"""Generate a unique cache key for the translation request."""
# IMPORTANT: In case we want to support other translators, we can add the translator name to the key
key_string = f"{context}|{src_lang}|{tgt_lang}"
return hashlib.md5(key_string.encode()).hexdigest()
@tenacity.retry(
stop=tenacity.stop_after_attempt(3),
wait=tenacity.wait_exponential(multiplier=1, min=4, max=10),
retry=tenacity.retry_if_exception_type((Exception)),
before_sleep=lambda retry_state: time.sleep(1),
)
def _translate_with_cache(self, context: str, src_lang: str, tgt_lang: str) -> str:
"""Translate text using cache if available, otherwise call Google Translate with retry logic."""
cache_key = self._get_cache_key(context, src_lang, tgt_lang)
# Try to get from cache
if cache_key in self.cache:
result = self.cache[cache_key]
if result is not None and result != "":
return result
logger.warning("Translation in cache is empty. Removing from cache and retrying...")
del self.cache[cache_key]
try:
# Updated translation call for deep-translator
self.translator.source = src_lang
self.translator.target = tgt_lang
result = self.translator.translate(context)
if result is None or result == "":
result = ""
self.cache[cache_key] = result
return result
except Exception as e:
logger.warning(f"Translation error: {str(e)}. Retrying...")
raise # Let tenacity handle the retry
def greedy_until(
self,
requests: list[GreedyUntilRequest],
override_bs: Optional[int] = None,
) -> list[GenerativeResponse]:
"""
Generates responses using a greedy decoding strategy until certain ending conditions are met.
Results are cached to disk to avoid repeated translations.
Args:
requests (list[Request]): list of requests containing the context and ending conditions.
override_bs (int, optional): Override the batch size for generation. Defaults to None.
Returns:
list[GenerativeResponse]: list of generated responses.
"""
for request in requests:
request.tokenized_context = self.tok_encode(request.context)
dataset = GenerativeTaskDataset(requests=requests, num_dataset_splits=self.DATASET_SPLITS)
results = []
for _ in tqdm(
dataset.splits_start_end_iterator(),
total=dataset.num_dataset_splits,
desc="Splits",
position=0,
disable=False, # self.disable_tqdm,
):
for r in tqdm(dataset, desc="Batch", position=1, disable=False):
# Extract source and target languages from task name
# Format is like "community|sdst-text_level:de-fr|0"
src_lang, tgt_lang = r.task_name.split("|")[1].split(":")[-1].split("-")
context = r.context.replace(f"{src_lang.upper()}: ", "").replace(f"\n{tgt_lang.upper()}: ", "")
result = self._translate_with_cache(context, src_lang, tgt_lang)
if result is None:
result = "" # Set to empty string to prevent errors in metric computation
cur_response = GenerativeResponse(
result=result,
logits=None,
generated_tokens=[],
input_tokens=[],
)
results.append(cur_response)
return dataset.get_original_order(results)
@property
def tokenizer(self):
return self._tokenizer
def tok_encode(self, text: str):
return text
@property
def add_special_tokens(self) -> bool:
return False
@property
def max_length(self) -> int:
"""Return the maximum sequence length of the model."""
return 4096
def loglikelihood(
self, requests: list[LoglikelihoodRequest], override_bs: Optional[int] = None
) -> list[LoglikelihoodResponse]:
"""Tokenize the context and continuation and compute the log likelihood of those
tokenized sequences.
"""
raise NotImplementedError
def loglikelihood_rolling(
self, requests: list[LoglikelihoodRollingRequest], override_bs: Optional[int] = None
) -> list[LoglikelihoodResponse]:
"""This function is used to compute the log likelihood of the context for perplexity metrics."""
raise NotImplementedError
def loglikelihood_single_token(
self, requests: list[LoglikelihoodSingleTokenRequest], override_bs: Optional[int] = None
) -> list[LoglikelihoodSingleTokenResponse]:
"""Tokenize the context and continuation and compute the log likelihood of those
tokenized sequences.
"""
raise NotImplementedError