Skip to content

Commit

Permalink
Tmp tp transformers (#2942)
Browse files Browse the repository at this point in the history
* Upgrade the version number.

* Remove modifications in Lock.

* Tmp branch to test transformers backend with 2.5.1 and TP>1

* Fixing the transformers backend.

inference_mode forces the use of `aten.matmul` instead of `aten.mm` the
former doesn't have sharding support crashing the transformers TP
support.

`lm_head.forward` also crashes because it skips the hook that
cast/decast the DTensor.

Torch 2.5.1 is required for sharding support.

* Put back the attention impl.

* Revert the flashinfer (this will fails).

* Building AOT.

* Using 2.5 kernels.

* Remove the archlist, it's defined in the docker anyway.
  • Loading branch information
Narsil authored Jan 23, 2025
1 parent 0a89902 commit 29a0893
Show file tree
Hide file tree
Showing 15 changed files with 47 additions and 49 deletions.
6 changes: 3 additions & 3 deletions Dockerfile
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,7 @@ RUN cargo build --profile release-opt --frozen
FROM nvidia/cuda:12.4.1-devel-ubuntu22.04 AS pytorch-install

# NOTE: When updating PyTorch version, beware to remove `pip install nvidia-nccl-cu12==2.22.3` below in the Dockerfile. Context: https://github.com/huggingface/text-generation-inference/pull/2099
ARG PYTORCH_VERSION=2.4.0
ARG PYTORCH_VERSION=2.5.1

ARG PYTHON_VERSION=3.11
# Keep in sync with `server/pyproject.toml
Expand Down Expand Up @@ -235,8 +235,8 @@ RUN cd server && \
make gen-server && \
python -c "from text_generation_server.pb import generate_pb2" && \
pip install -U pip uv && \
uv pip install -e ".[attention, bnb, accelerate, compressed-tensors, marlin, moe, quantize, peft, outlines]" --no-cache-dir && \
uv pip install nvidia-nccl-cu12==2.22.3
uv pip install -e ".[attention, bnb, accelerate, compressed-tensors, marlin, moe, quantize, peft, outlines]" --no-cache-dir # && \
# uv pip install nvidia-nccl-cu12==2.22.3

ENV LD_PRELOAD=/opt/conda/lib/python3.11/site-packages/nvidia/nccl/lib/libnccl.so.2
# Required to find libpython within the rust binaries
Expand Down
6 changes: 3 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -84,7 +84,7 @@ model=HuggingFaceH4/zephyr-7b-beta
volume=$PWD/data

docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data \
ghcr.io/huggingface/text-generation-inference:3.0.0 --model-id $model
ghcr.io/huggingface/text-generation-inference:3.0.2 --model-id $model
```

And then you can make requests like
Expand Down Expand Up @@ -121,7 +121,7 @@ curl localhost:8080/v1/chat/completions \

**Note:** To use NVIDIA GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). We also recommend using NVIDIA drivers with CUDA version 12.2 or higher. For running the Docker container on a machine with no GPUs or CUDA support, it is enough to remove the `--gpus all` flag and add `--disable-custom-kernels`, please note CPU is not the intended platform for this project, so performance might be subpar.

**Note:** TGI supports AMD Instinct MI210 and MI250 GPUs. Details can be found in the [Supported Hardware documentation](https://huggingface.co/docs/text-generation-inference/installation_amd#using-tgi-with-amd-gpus). To use AMD GPUs, please use `docker run --device /dev/kfd --device /dev/dri --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.0.0-rocm --model-id $model` instead of the command above.
**Note:** TGI supports AMD Instinct MI210 and MI250 GPUs. Details can be found in the [Supported Hardware documentation](https://huggingface.co/docs/text-generation-inference/installation_amd#using-tgi-with-amd-gpus). To use AMD GPUs, please use `docker run --device /dev/kfd --device /dev/dri --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.0.2-rocm --model-id $model` instead of the command above.

To see all options to serve your models (in the [code](https://github.com/huggingface/text-generation-inference/blob/main/launcher/src/main.rs) or in the cli):
```
Expand Down Expand Up @@ -152,7 +152,7 @@ volume=$PWD/data # share a volume with the Docker container to avoid downloading
token=<your cli READ token>

docker run --gpus all --shm-size 1g -e HF_TOKEN=$token -p 8080:80 -v $volume:/data \
ghcr.io/huggingface/text-generation-inference:3.0.0 --model-id $model
ghcr.io/huggingface/text-generation-inference:3.0.2 --model-id $model
```

### A note on Shared Memory (shm)
Expand Down
2 changes: 1 addition & 1 deletion docs/source/basic_tutorials/gated_model_access.md
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,6 @@ docker run --gpus all \
--shm-size 1g \
-e HF_TOKEN=$token \
-p 8080:80 \
-v $volume:/data ghcr.io/huggingface/text-generation-inference:3.0.1 \
-v $volume:/data ghcr.io/huggingface/text-generation-inference:3.0.2 \
--model-id $model
```
6 changes: 3 additions & 3 deletions docs/source/conceptual/quantization.md
Original file line number Diff line number Diff line change
Expand Up @@ -19,15 +19,15 @@ bitsandbytes is a library used to apply 8-bit and 4-bit quantization to models.
In TGI, you can use 8-bit quantization by adding `--quantize bitsandbytes` like below 👇

```bash
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.0.1 --model-id $model --quantize bitsandbytes
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.0.2 --model-id $model --quantize bitsandbytes
```

4-bit quantization is also possible with bitsandbytes. You can choose one of the following 4-bit data types: 4-bit float (`fp4`), or 4-bit `NormalFloat` (`nf4`). These data types were introduced in the context of parameter-efficient fine-tuning, but you can apply them for inference by automatically converting the model weights on load.

In TGI, you can use 4-bit quantization by adding `--quantize bitsandbytes-nf4` or `--quantize bitsandbytes-fp4` like below 👇

```bash
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.0.1 --model-id $model --quantize bitsandbytes-nf4
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.0.2 --model-id $model --quantize bitsandbytes-nf4
```

You can get more information about 8-bit quantization by reading this [blog post](https://huggingface.co/blog/hf-bitsandbytes-integration), and 4-bit quantization by reading [this blog post](https://huggingface.co/blog/4bit-transformers-bitsandbytes).
Expand All @@ -48,7 +48,7 @@ $$({\hat{W}_{l}}^{*} = argmin_{\hat{W_{l}}} ||W_{l}X-\hat{W}_{l}X||^{2}_{2})$$
TGI allows you to both run an already GPTQ quantized model (see available models [here](https://huggingface.co/models?search=gptq)) or quantize a model of your choice using quantization script. You can run a quantized model by simply passing --quantize like below 👇

```bash
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.0.1 --model-id $model --quantize gptq
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.0.2 --model-id $model --quantize gptq
```

Note that TGI's GPTQ implementation doesn't use [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) under the hood. However, models quantized using AutoGPTQ or Optimum can still be served by TGI.
Expand Down
2 changes: 1 addition & 1 deletion docs/source/installation_amd.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ volume=$PWD/data # share a volume with the Docker container to avoid downloading
docker run --rm -it --cap-add=SYS_PTRACE --security-opt seccomp=unconfined \
--device=/dev/kfd --device=/dev/dri --group-add video \
--ipc=host --shm-size 256g --net host -v $volume:/data \
ghcr.io/huggingface/text-generation-inference:3.0.1-rocm \
ghcr.io/huggingface/text-generation-inference:3.0.2-rocm \
--model-id $model
```

Expand Down
4 changes: 2 additions & 2 deletions docs/source/installation_intel.md
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ volume=$PWD/data # share a volume with the Docker container to avoid downloading
docker run --rm --privileged --cap-add=sys_nice \
--device=/dev/dri \
--ipc=host --shm-size 1g --net host -v $volume:/data \
ghcr.io/huggingface/text-generation-inference:3.0.1-intel-xpu \
ghcr.io/huggingface/text-generation-inference:3.0.2-intel-xpu \
--model-id $model --cuda-graphs 0
```

Expand All @@ -29,7 +29,7 @@ volume=$PWD/data # share a volume with the Docker container to avoid downloading
docker run --rm --privileged --cap-add=sys_nice \
--device=/dev/dri \
--ipc=host --shm-size 1g --net host -v $volume:/data \
ghcr.io/huggingface/text-generation-inference:3.0.1-intel-cpu \
ghcr.io/huggingface/text-generation-inference:3.0.2-intel-cpu \
--model-id $model --cuda-graphs 0
```

Expand Down
2 changes: 1 addition & 1 deletion docs/source/installation_nvidia.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ model=teknium/OpenHermes-2.5-Mistral-7B
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run

docker run --gpus all --shm-size 64g -p 8080:80 -v $volume:/data \
ghcr.io/huggingface/text-generation-inference:3.0.1 \
ghcr.io/huggingface/text-generation-inference:3.0.2 \
--model-id $model
```

Expand Down
4 changes: 2 additions & 2 deletions docs/source/quicktour.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ model=teknium/OpenHermes-2.5-Mistral-7B
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run

docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data \
ghcr.io/huggingface/text-generation-inference:3.0.1 \
ghcr.io/huggingface/text-generation-inference:3.0.2 \
--model-id $model
```

Expand Down Expand Up @@ -96,7 +96,7 @@ curl 127.0.0.1:8080/generate \
To see all possible deploy flags and options, you can use the `--help` flag. It's possible to configure the number of shards, quantization, generation parameters, and more.

```bash
docker run ghcr.io/huggingface/text-generation-inference:3.0.1 --help
docker run ghcr.io/huggingface/text-generation-inference:3.0.2 --help
```

</Tip>
2 changes: 1 addition & 1 deletion docs/source/reference/api_reference.md
Original file line number Diff line number Diff line change
Expand Up @@ -163,7 +163,7 @@ hub = {

# create Hugging Face Model Class
huggingface_model = HuggingFaceModel(
image_uri=get_huggingface_llm_image_uri("huggingface",version="3.0.1"),
image_uri=get_huggingface_llm_image_uri("huggingface",version="3.0.2"),
env=hub,
role=role,
)
Expand Down
5 changes: 3 additions & 2 deletions server/Makefile-flashinfer
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
install-flashinfer:
# We need fsspec as an additional dependency, but
# `pip install flashinfer` cannot resolve it.
pip install fsspec
pip install flashinfer==0.2.0.post1 -i https://flashinfer.ai/whl/cu124/torch2.4
pip install fsspec sympy==1.13.1 numpy
pip install -U setuptools
FLASHINFER_ENABLE_AOT=1 pip install git+https://github.com/flashinfer-ai/[email protected]#egg=flashinfer --no-build-isolation
24 changes: 12 additions & 12 deletions server/pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -69,22 +69,22 @@ gen = [

[tool.uv.sources]
attention-kernels = [
{ url = "https://github.com/danieldk/attention-kernels/releases/download/v0.1.1/attention_kernels-0.1.1+cu123torch2.4-cp39-cp39-linux_x86_64.whl", marker = "python_version == '3.9'" },
{ url = "https://github.com/danieldk/attention-kernels/releases/download/v0.1.1/attention_kernels-0.1.1+cu123torch2.4-cp310-cp310-linux_x86_64.whl", marker = "python_version == '3.10'" },
{ url = "https://github.com/danieldk/attention-kernels/releases/download/v0.1.1/attention_kernels-0.1.1+cu123torch2.4-cp311-cp311-linux_x86_64.whl", marker = "python_version == '3.11'" },
{ url = "https://github.com/danieldk/attention-kernels/releases/download/v0.1.1/attention_kernels-0.1.1+cu123torch2.4-cp312-cp312-linux_x86_64.whl", marker = "python_version == '3.12'" },
{ url = "https://github.com/danieldk/attention-kernels/releases/download/v0.1.1/attention_kernels-0.1.1+cu123torch2.5-cp39-cp39-linux_x86_64.whl", marker = "python_version == '3.9'" },
{ url = "https://github.com/danieldk/attention-kernels/releases/download/v0.1.1/attention_kernels-0.1.1+cu123torch2.5-cp310-cp310-linux_x86_64.whl", marker = "python_version == '3.10'" },
{ url = "https://github.com/danieldk/attention-kernels/releases/download/v0.1.1/attention_kernels-0.1.1+cu123torch2.5-cp311-cp311-linux_x86_64.whl", marker = "python_version == '3.11'" },
{ url = "https://github.com/danieldk/attention-kernels/releases/download/v0.1.1/attention_kernels-0.1.1+cu123torch2.5-cp312-cp312-linux_x86_64.whl", marker = "python_version == '3.12'" },
]
marlin-kernels = [
{ url = "https://github.com/danieldk/marlin-kernels/releases/download/v0.3.7/marlin_kernels-0.3.7+cu123torch2.4-cp39-cp39-linux_x86_64.whl", marker = "python_version == '3.9'" },
{ url = "https://github.com/danieldk/marlin-kernels/releases/download/v0.3.7/marlin_kernels-0.3.7+cu123torch2.4-cp310-cp310-linux_x86_64.whl", marker = "python_version == '3.10'" },
{ url = "https://github.com/danieldk/marlin-kernels/releases/download/v0.3.7/marlin_kernels-0.3.7+cu123torch2.4-cp311-cp311-linux_x86_64.whl", marker = "python_version == '3.11'" },
{ url = "https://github.com/danieldk/marlin-kernels/releases/download/v0.3.7/marlin_kernels-0.3.7+cu123torch2.4-cp312-cp312-linux_x86_64.whl", marker = "python_version == '3.12'" },
{ url = "https://github.com/danieldk/marlin-kernels/releases/download/v0.3.7/marlin_kernels-0.3.7+cu123torch2.5-cp39-cp39-linux_x86_64.whl", marker = "python_version == '3.9'" },
{ url = "https://github.com/danieldk/marlin-kernels/releases/download/v0.3.7/marlin_kernels-0.3.7+cu123torch2.5-cp310-cp310-linux_x86_64.whl", marker = "python_version == '3.10'" },
{ url = "https://github.com/danieldk/marlin-kernels/releases/download/v0.3.7/marlin_kernels-0.3.7+cu123torch2.5-cp311-cp311-linux_x86_64.whl", marker = "python_version == '3.11'" },
{ url = "https://github.com/danieldk/marlin-kernels/releases/download/v0.3.7/marlin_kernels-0.3.7+cu123torch2.5-cp312-cp312-linux_x86_64.whl", marker = "python_version == '3.12'" },
]
moe-kernels = [
{ url = "https://github.com/danieldk/moe-kernels/releases/download/v0.7.0/moe_kernels-0.7.0+cu123torch2.4-cp39-cp39-linux_x86_64.whl", marker = "python_version == '3.9'" },
{ url = "https://github.com/danieldk/moe-kernels/releases/download/v0.7.0/moe_kernels-0.7.0+cu123torch2.4-cp310-cp310-linux_x86_64.whl", marker = "python_version == '3.10'" },
{ url = "https://github.com/danieldk/moe-kernels/releases/download/v0.7.0/moe_kernels-0.7.0+cu123torch2.4-cp311-cp311-linux_x86_64.whl", marker = "python_version == '3.11'" },
{ url = "https://github.com/danieldk/moe-kernels/releases/download/v0.7.0/moe_kernels-0.7.0+cu123torch2.4-cp312-cp312-linux_x86_64.whl", marker = "python_version == '3.12'" },
{ url = "https://github.com/danieldk/moe-kernels/releases/download/v0.7.0/moe_kernels-0.7.0+cu123torch2.5-cp39-cp39-linux_x86_64.whl", marker = "python_version == '3.9'" },
{ url = "https://github.com/danieldk/moe-kernels/releases/download/v0.7.0/moe_kernels-0.7.0+cu123torch2.5-cp310-cp310-linux_x86_64.whl", marker = "python_version == '3.10'" },
{ url = "https://github.com/danieldk/moe-kernels/releases/download/v0.7.0/moe_kernels-0.7.0+cu123torch2.5-cp311-cp311-linux_x86_64.whl", marker = "python_version == '3.11'" },
{ url = "https://github.com/danieldk/moe-kernels/releases/download/v0.7.0/moe_kernels-0.7.0+cu123torch2.5-cp312-cp312-linux_x86_64.whl", marker = "python_version == '3.12'" },
]

[tool.pytest.ini_options]
Expand Down
8 changes: 4 additions & 4 deletions server/text_generation_server/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -931,10 +931,10 @@ def get_model(
trust_remote_code=trust_remote_code,
lora_adapter_ids=lora_adapter_ids,
)
elif sharded:
raise NotImplementedError(
FLASH_ATT_ERROR_MESSAGE.format(f"Sharded {model_type}")
)
# elif sharded:
# raise NotImplementedError(
# FLASH_ATT_ERROR_MESSAGE.format(f"Sharded {model_type}")
# )
else:
return transformers_causal_lm_class.fallback(
model_id,
Expand Down
2 changes: 1 addition & 1 deletion server/text_generation_server/models/flash_causal_lm.py
Original file line number Diff line number Diff line change
Expand Up @@ -1571,7 +1571,7 @@ def warmup(
real_free_memory = get_free_memory(self.device, MEMORY_FRACTION)
log_master(
logger.debug,
f"Free memory {free_memory/1e9:.2f}GB , (real: {real_free_memory/1e9:.2f}GB",
f"Free memory {free_memory / 1e9:.2f}GB , (real: {real_free_memory / 1e9:.2f}GB",
)

_, _batch, _ = self.generate_token(batch)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@

import torch
from opentelemetry import trace
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers.modeling_utils

from text_generation_server.models.flash_causal_lm import FlashCausalLM
Expand Down Expand Up @@ -36,9 +36,7 @@ def tgi_flash_attention_forward(
softcap: Optional[float] = None,
**kwargs, # This is needed to "absorb" other args passed by Transformers modeling
):

kv_cache = kv_cache[module.layer_idx]

query_states = query_states.transpose(1, 2).squeeze(dim=0)
key_states = key_states.transpose(1, 2).squeeze(dim=0)
value_states = value_states.transpose(1, 2).squeeze(dim=0)
Expand Down Expand Up @@ -95,7 +93,6 @@ def __init__(
default_dtype=torch.float16,
trust_remote_code: bool = False,
tokenizer_class=AutoTokenizer,
config_class=AutoConfig,
kv_cache_dtype: Optional[torch.dtype] = None,
):
self.quantize = quantize
Expand All @@ -105,17 +102,17 @@ def __init__(
raise RuntimeError("Speculator decoding is not enabled for AutoModel")

if torch.cuda.is_available():
device = torch.device("cuda:0")
dtype = torch.float16 if dtype is None else dtype
device = torch.device(f"cuda:{rank}")
dtype = default_dtype if dtype is None else dtype
elif hasattr(torch, "xpu") and torch.xpu.is_available():
device = torch.device("xpu")
dtype = torch.float16 if dtype is None else dtype
dtype = default_dtype if dtype is None else dtype
else:
raise ValueError(
"Flash `Transformers` modeling backend is not available on cpu."
)

tokenizer = AutoTokenizer.from_pretrained(
tokenizer = tokenizer_class.from_pretrained(
model_id,
revision=revision,
padding_side="left",
Expand All @@ -126,10 +123,10 @@ def __init__(
model_id,
revision=revision,
torch_dtype=dtype,
device_map="auto",
load_in_8bit=quantize == "bitsandbytes",
trust_remote_code=trust_remote_code,
attn_implementation="tgi",
device_map=device if world_size == 1 else None,
tp_plan="auto" if world_size > 1 else None,
)

Expand Down Expand Up @@ -261,6 +258,6 @@ def _model_forward(
# To update with full Transformers support asap
if lm_head_indices is not None:
hidden_states = hidden_states[lm_head_indices]
logits = self.model.lm_head.forward(hidden_states)
logits = self.model.lm_head(hidden_states)

return logits, None
6 changes: 3 additions & 3 deletions server/text_generation_server/server.py
Original file line number Diff line number Diff line change
Expand Up @@ -68,9 +68,9 @@ def __init__(
self.quantize = model.quantize
self.server_urls = server_urls
# For some reason, inference_mode does not work well with GLOO which we use on CPU
if model.device.type == "cuda":
# Force inference mode for the lifetime of TextGenerationService
self._inference_mode_raii_guard = torch._C._InferenceMode(True)
# if model.device.type == "cuda":
# # Force inference mode for the lifetime of TextGenerationService
# self._inference_mode_raii_guard = torch._C._InferenceMode(True)

async def Info(self, request, context):
return self.model.info
Expand Down

0 comments on commit 29a0893

Please sign in to comment.