You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+3-3Lines changed: 3 additions & 3 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -62,7 +62,7 @@ For a detailed starting guide, please see the [Quick Tour](https://huggingface.c
62
62
model=HuggingFaceH4/zephyr-7b-beta
63
63
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
64
64
65
-
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.2 --model-id $model
65
+
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.3 --model-id $model
66
66
```
67
67
68
68
And then you can make requests like
@@ -76,7 +76,7 @@ curl 127.0.0.1:8080/generate \
76
76
77
77
**Note:** To use NVIDIA GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). We also recommend using NVIDIA drivers with CUDA version 11.8 or higher. For running the Docker container on a machine with no GPUs or CUDA support, it is enough to remove the `--gpus all` flag and add `--disable-custom-kernels`, please note CPU is not the intended platform for this project, so performance might be subpar.
78
78
79
-
**Note:** TGI supports AMD Instinct MI210 and MI250 GPUs. Details can be found in the [Supported Hardware documentation](https://huggingface.co/docs/text-generation-inference/supported_models#supported-hardware). To use AMD GPUs, please use `docker run --device /dev/kfd --device /dev/dri --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.2-rocm --model-id $model` instead of the command above.
79
+
**Note:** TGI supports AMD Instinct MI210 and MI250 GPUs. Details can be found in the [Supported Hardware documentation](https://huggingface.co/docs/text-generation-inference/supported_models#supported-hardware). To use AMD GPUs, please use `docker run --device /dev/kfd --device /dev/dri --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.3-rocm --model-id $model` instead of the command above.
80
80
81
81
To see all options to serve your models (in the [code](https://github.com/huggingface/text-generation-inference/blob/main/launcher/src/main.rs) or in the cli):
Copy file name to clipboardExpand all lines: docs/source/quicktour.md
+3-3Lines changed: 3 additions & 3 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -8,7 +8,7 @@ Let's say you want to deploy [Falcon-7B Instruct](https://huggingface.co/tiiuae/
8
8
model=tiiuae/falcon-7b-instruct
9
9
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
10
10
11
-
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.2 --model-id $model
11
+
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.3 --model-id $model
12
12
```
13
13
14
14
<Tipwarning={true}>
@@ -20,7 +20,7 @@ To use NVIDIA GPUs, you need to install the [NVIDIA Container Toolkit](https://d
20
20
TGI also supports ROCm-enabled AMD GPUs (only MI210 and MI250 are tested), details are available in the [Supported Hardware section](./supported_models#supported-hardware) and [AMD documentation](https://rocm.docs.amd.com/en/latest/deploy/docker.html). To launch TGI on ROCm GPUs, please use instead:
21
21
22
22
```bash
23
-
docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --device=/dev/kfd --device=/dev/dri --group-add video --ipc=host --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.2-rocm --model-id $model
23
+
docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --device=/dev/kfd --device=/dev/dri --group-add video --ipc=host --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.3-rocm --model-id $model
24
24
```
25
25
26
26
Once TGI is running, you can use the `generate` endpoint by doing requests. To learn more about how to query the endpoints, check the [Consuming TGI](./basic_tutorials/consuming_tgi) section, where we show examples with utility libraries and UIs. Below you can see a simple snippet to query the endpoint.
@@ -91,7 +91,7 @@ curl 127.0.0.1:8080/generate \
91
91
To see all possible deploy flags and options, you can use the `--help` flag. It's possible to configure the number of shards, quantization, generation parameters, and more.
92
92
93
93
```bash
94
-
docker run ghcr.io/huggingface/text-generation-inference:1.2 --help
94
+
docker run ghcr.io/huggingface/text-generation-inference:1.3 --help
0 commit comments