Skip to content

Commit d0841cc

Browse files
v1.3.0
1 parent 72ee382 commit d0841cc

File tree

8 files changed

+78
-78
lines changed

8 files changed

+78
-78
lines changed

Cargo.lock

Lines changed: 67 additions & 67 deletions
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.

Cargo.toml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@ members = [
88
]
99

1010
[workspace.package]
11-
version = "1.2.0"
11+
version = "1.3.0"
1212
edition = "2021"
1313
authors = ["Olivier Dehaene"]
1414
homepage = "https://github.com/huggingface/text-generation-inference"

README.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -62,7 +62,7 @@ For a detailed starting guide, please see the [Quick Tour](https://huggingface.c
6262
model=HuggingFaceH4/zephyr-7b-beta
6363
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
6464

65-
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.2 --model-id $model
65+
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.3 --model-id $model
6666
```
6767

6868
And then you can make requests like
@@ -76,7 +76,7 @@ curl 127.0.0.1:8080/generate \
7676

7777
**Note:** To use NVIDIA GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). We also recommend using NVIDIA drivers with CUDA version 11.8 or higher. For running the Docker container on a machine with no GPUs or CUDA support, it is enough to remove the `--gpus all` flag and add `--disable-custom-kernels`, please note CPU is not the intended platform for this project, so performance might be subpar.
7878

79-
**Note:** TGI supports AMD Instinct MI210 and MI250 GPUs. Details can be found in the [Supported Hardware documentation](https://huggingface.co/docs/text-generation-inference/supported_models#supported-hardware). To use AMD GPUs, please use `docker run --device /dev/kfd --device /dev/dri --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.2-rocm --model-id $model` instead of the command above.
79+
**Note:** TGI supports AMD Instinct MI210 and MI250 GPUs. Details can be found in the [Supported Hardware documentation](https://huggingface.co/docs/text-generation-inference/supported_models#supported-hardware). To use AMD GPUs, please use `docker run --device /dev/kfd --device /dev/dri --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.3-rocm --model-id $model` instead of the command above.
8080

8181
To see all options to serve your models (in the [code](https://github.com/huggingface/text-generation-inference/blob/main/launcher/src/main.rs) or in the cli):
8282
```
@@ -106,7 +106,7 @@ model=meta-llama/Llama-2-7b-chat-hf
106106
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
107107
token=<your cli READ token>
108108

109-
docker run --gpus all --shm-size 1g -e HUGGING_FACE_HUB_TOKEN=$token -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.2 --model-id $model
109+
docker run --gpus all --shm-size 1g -e HUGGING_FACE_HUB_TOKEN=$token -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.3 --model-id $model
110110
```
111111

112112
### A note on Shared Memory (shm)

docs/openapi.json

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@
1010
"name": "Apache 2.0",
1111
"url": "https://www.apache.org/licenses/LICENSE-2.0"
1212
},
13-
"version": "1.2.0"
13+
"version": "1.3.0"
1414
},
1515
"paths": {
1616
"/": {

docs/source/basic_tutorials/gated_model_access.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -19,6 +19,6 @@ docker run --gpus all \
1919
--shm-size 1g \
2020
-e HUGGING_FACE_HUB_TOKEN=$token \
2121
-p 8080:80 \
22-
-v $volume:/data ghcr.io/huggingface/text-generation-inference:1.2 \
22+
-v $volume:/data ghcr.io/huggingface/text-generation-inference:1.3 \
2323
--model-id $model
2424
```

docs/source/quicktour.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@ Let's say you want to deploy [Falcon-7B Instruct](https://huggingface.co/tiiuae/
88
model=tiiuae/falcon-7b-instruct
99
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
1010

11-
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.2 --model-id $model
11+
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.3 --model-id $model
1212
```
1313

1414
<Tip warning={true}>
@@ -20,7 +20,7 @@ To use NVIDIA GPUs, you need to install the [NVIDIA Container Toolkit](https://d
2020
TGI also supports ROCm-enabled AMD GPUs (only MI210 and MI250 are tested), details are available in the [Supported Hardware section](./supported_models#supported-hardware) and [AMD documentation](https://rocm.docs.amd.com/en/latest/deploy/docker.html). To launch TGI on ROCm GPUs, please use instead:
2121

2222
```bash
23-
docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --device=/dev/kfd --device=/dev/dri --group-add video --ipc=host --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.2-rocm --model-id $model
23+
docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --device=/dev/kfd --device=/dev/dri --group-add video --ipc=host --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.3-rocm --model-id $model
2424
```
2525

2626
Once TGI is running, you can use the `generate` endpoint by doing requests. To learn more about how to query the endpoints, check the [Consuming TGI](./basic_tutorials/consuming_tgi) section, where we show examples with utility libraries and UIs. Below you can see a simple snippet to query the endpoint.
@@ -91,7 +91,7 @@ curl 127.0.0.1:8080/generate \
9191
To see all possible deploy flags and options, you can use the `--help` flag. It's possible to configure the number of shards, quantization, generation parameters, and more.
9292

9393
```bash
94-
docker run ghcr.io/huggingface/text-generation-inference:1.2 --help
94+
docker run ghcr.io/huggingface/text-generation-inference:1.3 --help
9595
```
9696

9797
</Tip>

integration-tests/pyproject.toml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
[tool.poetry]
22
name = "text-generation-integration-tests"
3-
version = "1.2.0"
3+
version = "1.3.0"
44
description = "Text Generation Inference integration tests"
55
authors = ["Nicolas Patry <[email protected]>"]
66

server/pyproject.toml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
[tool.poetry]
22
name = "text-generation-server"
3-
version = "1.2.0"
3+
version = "1.3.0"
44
description = "Text Generation Inference Python gRPC Server"
55
authors = ["Olivier Dehaene <[email protected]>"]
66

0 commit comments

Comments
 (0)