@@ -78,7 +78,7 @@ def from_pretrained(
78
78
- a path to a *directory* containing a processor saved using the [`~BarkProcessor.save_pretrained`]
79
79
method, e.g., `./my_model_directory/`.
80
80
speaker_embeddings_dict_path (`str`, *optional*, defaults to `"speaker_embeddings_path.json"`):
81
- The name of the `.json` file containing the speaker_embeddings dictionnary located in
81
+ The name of the `.json` file containing the speaker_embeddings dictionary located in
82
82
`pretrained_model_name_or_path`. If `None`, no speaker_embeddings is loaded.
83
83
**kwargs
84
84
Additional keyword arguments passed along to both
@@ -105,7 +105,7 @@ def from_pretrained(
105
105
logger .warning (
106
106
f"""`{ os .path .join (pretrained_processor_name_or_path , speaker_embeddings_dict_path )} ` does not exists
107
107
, no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json
108
- dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`."""
108
+ dictionary if wanted, otherwise set `speaker_embeddings_dict_path=None`."""
109
109
)
110
110
speaker_embeddings = None
111
111
else :
@@ -135,7 +135,7 @@ def save_pretrained(
135
135
Directory where the tokenizer files and the speaker embeddings will be saved (directory will be created
136
136
if it does not exist).
137
137
speaker_embeddings_dict_path (`str`, *optional*, defaults to `"speaker_embeddings_path.json"`):
138
- The name of the `.json` file that will contains the speaker_embeddings nested path dictionnary , if it
138
+ The name of the `.json` file that will contains the speaker_embeddings nested path dictionary , if it
139
139
exists, and that will be located in `pretrained_model_name_or_path/speaker_embeddings_directory`.
140
140
speaker_embeddings_directory (`str`, *optional*, defaults to `"speaker_embeddings/"`):
141
141
The name of the folder in which the speaker_embeddings arrays will be saved.
@@ -246,7 +246,7 @@ def __call__(
246
246
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
247
247
voice_preset (`str`, `Dict[np.ndarray]`):
248
248
The voice preset, i.e the speaker embeddings. It can either be a valid voice_preset name, e.g
249
- `"en_speaker_1"`, or directly a dictionnary of `np.ndarray` embeddings for each submodel of `Bark`. Or
249
+ `"en_speaker_1"`, or directly a dictionary of `np.ndarray` embeddings for each submodel of `Bark`. Or
250
250
it can be a valid file name of a local `.npz` single voice preset.
251
251
return_tensors (`str` or [`~utils.TensorType`], *optional*):
252
252
If set, will return tensors of a particular framework. Acceptable values are:
0 commit comments