-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathmain.py
127 lines (99 loc) · 3.94 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import argparse
import yaml
import torch
import numpy as np
from collections import defaultdict, OrderedDict
from core.model_handler import ModelHandler
################################################################################
# Main #
################################################################################
def set_random_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
def main(config):
print_config(config)
set_random_seed(config['random_seed'])
model = ModelHandler(config)
model.train()
model.test()
def multi_run_main(config):
print_config(config)
set_random_seed(config['random_seed'])
hyperparams = []
for k, v in config.items():
if isinstance(v, list):
hyperparams.append(k)
scores = []
configs = grid(config)
for cnf in configs:
print('\n')
for k in hyperparams:
cnf['out_dir'] += '_{}_{}'.format(k, cnf[k])
print(cnf['out_dir'])
model = ModelHandler(cnf)
dev_metrics = model.train()
test_metrics = model.test()
scores.append(test_metrics[model.model.metric_name])
print('Average score: {}'.format(np.mean(scores)))
print('Std score: {}'.format(np.std(scores)))
################################################################################
# ArgParse and Helper Functions #
################################################################################
def get_config(config_path="config.yml"):
with open(config_path, "r") as setting:
config = yaml.load(setting)
return config
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('-config', '--config', required=True, type=str, help='path to the config file')
parser.add_argument('--multi_run', action='store_true', help='flag: multi run')
args = vars(parser.parse_args())
return args
def print_config(config):
print("**************** MODEL CONFIGURATION ****************")
for key in sorted(config.keys()):
val = config[key]
keystr = "{}".format(key) + (" " * (24 - len(key)))
print("{} --> {}".format(keystr, val))
print("**************** MODEL CONFIGURATION ****************")
def grid(kwargs):
"""Builds a mesh grid with given keyword arguments for this Config class.
If the value is not a list, then it is considered fixed"""
class MncDc:
"""This is because np.meshgrid does not always work properly..."""
def __init__(self, a):
self.a = a # tuple!
def __call__(self):
return self.a
def merge_dicts(*dicts):
"""
Merges dictionaries recursively. Accepts also `None` and returns always a (possibly empty) dictionary
"""
from functools import reduce
def merge_two_dicts(x, y):
z = x.copy() # start with x's keys and values
z.update(y) # modifies z with y's keys and values & returns None
return z
return reduce(lambda a, nd: merge_two_dicts(a, nd if nd else {}), dicts, {})
sin = OrderedDict({k: v for k, v in kwargs.items() if isinstance(v, list)})
for k, v in sin.items():
copy_v = []
for e in v:
copy_v.append(MncDc(e) if isinstance(e, tuple) else e)
sin[k] = copy_v
grd = np.array(np.meshgrid(*sin.values()), dtype=object).T.reshape(-1, len(sin.values()))
return [merge_dicts(
{k: v for k, v in kwargs.items() if not isinstance(v, list)},
{k: vv[i]() if isinstance(vv[i], MncDc) else vv[i] for i, k in enumerate(sin)}
) for vv in grd]
################################################################################
# Module Command-line Behavior #
################################################################################
if __name__ == '__main__':
cfg = get_args()
config = get_config(cfg['config'])
if cfg['multi_run']:
multi_run_main(config)
else:
main(config)