-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
94 lines (70 loc) · 3.96 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import torch
from torch import nn
from transformers import AutoTokenizer, AdamW, HfArgumentParser, TrainingArguments, get_linear_schedule_with_warmup
from src.dataloader import get_dataloader
from src.model import SlotFillingModel
from config import DataTrainingArguments, ModelArguments
from trainer import train, eval
from src.utils import log_params
import sys
import os
import time
import json
def main():
# parse arguments
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# For logging
current_time = time.localtime()
current_time = f"{current_time.tm_year}_{current_time.tm_mon}_{current_time.tm_mday}_{current_time.tm_hour}_{current_time.tm_min}_{current_time.tm_sec}"
save_path = f'{training_args.output_dir}/{data_args.target_domain}/Sample{data_args.n_samples}/'
# log_path = f'{training_args.output_dir}/{data_args.target_domain}/Sample{data_args.n_samples}/'
# model_path = f'{training_args.output_dir}/model/{data_args.target_domain}/Sample{data_args.n_samples}/'
log_dict = {}
log_params(log_dict, [model_args, data_args, training_args])
# load pretrained BERT and define model
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased', use_fast=True)
model = nn.DataParallel(SlotFillingModel(model_args).cuda()) if torch.cuda.is_available() else SlotFillingModel(model_args)
# get dataloader
dataloader_train, dataloader_val, dataloader_test = get_dataloader(
data_args.target_domain,
training_args.per_device_train_batch_size,
data_args.n_samples,
data_args.dataset_path,
tokenizer,)
if data_args.run_mode == 'train':
print("Training mode...")
# loss function, optimizer, ...
optim = AdamW(model.parameters(), lr=training_args.learning_rate, correct_bias=True)
scheduler = get_linear_schedule_with_warmup(optim, num_warmup_steps=training_args.warmup_steps, num_training_steps=training_args.max_steps)
os.makedirs(save_path, exist_ok=True)
print(f'Target Domain: {data_args.target_domain}\tN Samples: {data_args.n_samples}')
best_step, best_f1 = train(model=model,
dataloader_train=dataloader_train,
dataloader_val=dataloader_val,
optim=optim,
scheduler=scheduler,
eval_steps=training_args.eval_steps,
total_steps=training_args.max_steps,
early_stopping_patience=data_args.early_stopping_patience,
model_save_path=save_path,
log_dict=log_dict)
print("Training finished.")
print(f"Best validation f1 score {best_f1: .2f} at training step {best_step}")
with open(save_path + 'log.json', 'w') as json_out:
json.dump(log_dict, json_out, indent=4)
elif data_args.run_mode == 'test':
print("Test mode...")
# Prediction / Test
model.load_state_dict(torch.load(save_path+f"best-model-parameters.pt"))
results = eval(model, dataloader_test, data_args.target_domain, tokenizer, save_path+"test_output.json")
print(f"F1 Score at prediction: {results['fb1']}")
log_dict['test_result'] = results['fb1']
else:
print("Invalid input: option \"run_mode\" got wrong value.")
return
if __name__=="__main__":
main()