-
Notifications
You must be signed in to change notification settings - Fork 103
/
Copy pathvisualization.py
911 lines (810 loc) · 41.8 KB
/
visualization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
import sys
sys.path.append('')
import os
import argparse
import os.path as osp
from PIL import Image
from tqdm import tqdm
from typing import List, Dict
import cv2
import mmcv
import torch
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import rcParams
from pyquaternion import Quaternion
from nuscenes.nuscenes import NuScenes
from mmdet.datasets.pipelines import to_tensor
from matplotlib.collections import LineCollection
from nuscenes.utils.data_classes import LidarPointCloud, Box
from nuscenes.eval.common.data_classes import EvalBoxes, EvalBox
from nuscenes.eval.detection.utils import category_to_detection_name
from nuscenes.utils.geometry_utils import view_points, box_in_image, BoxVisibility
from projects.mmdet3d_plugin.core.bbox.structures.nuscenes_box import CustomNuscenesBox, CustomDetectionBox, color_map
from projects.mmdet3d_plugin.datasets.nuscenes_vad_dataset import VectorizedLocalMap, LiDARInstanceLines
cams = ['CAM_FRONT',
'CAM_FRONT_RIGHT',
'CAM_BACK_RIGHT',
'CAM_BACK',
'CAM_BACK_LEFT',
'CAM_FRONT_LEFT']
def render_annotation(
anntoken: str,
margin: float = 10,
view: np.ndarray = np.eye(4),
box_vis_level: BoxVisibility = BoxVisibility.ANY,
out_path: str = 'render.png',
extra_info: bool = False) -> None:
"""
Render selected annotation.
:param anntoken: Sample_annotation token.
:param margin: How many meters in each direction to include in LIDAR view.
:param view: LIDAR view point.
:param box_vis_level: If sample_data is an image, this sets required visibility for boxes.
:param out_path: Optional path to save the rendered figure to disk.
:param extra_info: Whether to render extra information below camera view.
"""
ann_record = nusc.get('sample_annotation', anntoken)
sample_record = nusc.get('sample', ann_record['sample_token'])
assert 'LIDAR_TOP' in sample_record['data'].keys(), 'Error: No LIDAR_TOP in data, unable to render.'
# Figure out which camera the object is fully visible in (this may return nothing).
boxes, cam = [], []
cams = [key for key in sample_record['data'].keys() if 'CAM' in key]
all_bboxes = []
select_cams = []
for cam in cams:
_, boxes, _ = nusc.get_sample_data(sample_record['data'][cam], box_vis_level=box_vis_level,
selected_anntokens=[anntoken])
if len(boxes) > 0:
all_bboxes.append(boxes)
select_cams.append(cam)
# We found an image that matches. Let's abort.
# assert len(boxes) > 0, 'Error: Could not find image where annotation is visible. ' \
# 'Try using e.g. BoxVisibility.ANY.'
# assert len(boxes) < 2, 'Error: Found multiple annotations. Something is wrong!'
num_cam = len(all_bboxes)
fig, axes = plt.subplots(1, num_cam + 1, figsize=(18, 9))
select_cams = [sample_record['data'][cam] for cam in select_cams]
print('bbox in cams:', select_cams)
# Plot LIDAR view.
lidar = sample_record['data']['LIDAR_TOP']
data_path, boxes, camera_intrinsic = nusc.get_sample_data(lidar, selected_anntokens=[anntoken])
LidarPointCloud.from_file(data_path).render_height(axes[0], view=view)
for box in boxes:
c = np.array(get_color(box.name)) / 255.0
box.render(axes[0], view=view, colors=(c, c, c))
corners = view_points(boxes[0].corners(), view, False)[:2, :]
axes[0].set_xlim([np.min(corners[0, :]) - margin, np.max(corners[0, :]) + margin])
axes[0].set_ylim([np.min(corners[1, :]) - margin, np.max(corners[1, :]) + margin])
axes[0].axis('off')
axes[0].set_aspect('equal')
# Plot CAMERA view.
for i in range(1, num_cam + 1):
cam = select_cams[i - 1]
data_path, boxes, camera_intrinsic = nusc.get_sample_data(cam, selected_anntokens=[anntoken])
im = Image.open(data_path)
axes[i].imshow(im)
axes[i].set_title(nusc.get('sample_data', cam)['channel'])
axes[i].axis('off')
axes[i].set_aspect('equal')
for box in boxes:
c = np.array(get_color(box.name)) / 255.0
box.render(axes[i], view=camera_intrinsic, normalize=True, colors=(c, c, c))
# Print extra information about the annotation below the camera view.
axes[i].set_xlim(0, im.size[0])
axes[i].set_ylim(im.size[1], 0)
if extra_info:
rcParams['font.family'] = 'monospace'
w, l, h = ann_record['size']
category = ann_record['category_name']
lidar_points = ann_record['num_lidar_pts']
radar_points = ann_record['num_radar_pts']
sample_data_record = nusc.get('sample_data', sample_record['data']['LIDAR_TOP'])
pose_record = nusc.get('ego_pose', sample_data_record['ego_pose_token'])
dist = np.linalg.norm(np.array(pose_record['translation']) - np.array(ann_record['translation']))
information = ' \n'.join(['category: {}'.format(category),
'',
'# lidar points: {0:>4}'.format(lidar_points),
'# radar points: {0:>4}'.format(radar_points),
'',
'distance: {:>7.3f}m'.format(dist),
'',
'width: {:>7.3f}m'.format(w),
'length: {:>7.3f}m'.format(l),
'height: {:>7.3f}m'.format(h)])
plt.annotate(information, (0, 0), (0, -20), xycoords='axes fraction', textcoords='offset points', va='top')
if out_path is not None:
plt.savefig(out_path)
def get_sample_data(sample_data_token: str,
box_vis_level: BoxVisibility = BoxVisibility.ANY,
selected_anntokens=None,
use_flat_vehicle_coordinates: bool = False):
"""
Returns the data path as well as all annotations related to that sample_data.
Note that the boxes are transformed into the current sensor's coordinate frame.
:param sample_data_token: Sample_data token.
:param box_vis_level: If sample_data is an image, this sets required visibility for boxes.
:param selected_anntokens: If provided only return the selected annotation.
:param use_flat_vehicle_coordinates: Instead of the current sensor's coordinate frame, use ego frame which is
aligned to z-plane in the world.
:return: (data_path, boxes, camera_intrinsic <np.array: 3, 3>)
"""
# Retrieve sensor & pose records
sd_record = nusc.get('sample_data', sample_data_token)
cs_record = nusc.get('calibrated_sensor', sd_record['calibrated_sensor_token'])
sensor_record = nusc.get('sensor', cs_record['sensor_token'])
pose_record = nusc.get('ego_pose', sd_record['ego_pose_token'])
data_path = nusc.get_sample_data_path(sample_data_token)
if sensor_record['modality'] == 'camera':
cam_intrinsic = np.array(cs_record['camera_intrinsic'])
imsize = (sd_record['width'], sd_record['height'])
else:
cam_intrinsic = None
imsize = None
# Retrieve all sample annotations and map to sensor coordinate system.
if selected_anntokens is not None:
boxes = list(map(nusc.get_box, selected_anntokens))
else:
boxes = nusc.get_boxes(sample_data_token)
# Make list of Box objects including coord system transforms.
box_list = []
for box in boxes:
if use_flat_vehicle_coordinates:
# Move box to ego vehicle coord system parallel to world z plane.
yaw = Quaternion(pose_record['rotation']).yaw_pitch_roll[0]
box.translate(-np.array(pose_record['translation']))
box.rotate(Quaternion(scalar=np.cos(yaw / 2), vector=[0, 0, np.sin(yaw / 2)]).inverse)
else:
# Move box to ego vehicle coord system.
box.translate(-np.array(pose_record['translation']))
box.rotate(Quaternion(pose_record['rotation']).inverse)
# Move box to sensor coord system.
box.translate(-np.array(cs_record['translation']))
box.rotate(Quaternion(cs_record['rotation']).inverse)
if sensor_record['modality'] == 'camera' and not \
box_in_image(box, cam_intrinsic, imsize, vis_level=box_vis_level):
continue
box_list.append(box)
return data_path, box_list, cam_intrinsic
def get_predicted_data(sample_data_token: str,
box_vis_level: BoxVisibility = BoxVisibility.ANY,
selected_anntokens=None,
use_flat_vehicle_coordinates: bool = False,
pred_anns=None
):
"""
Returns the data path as well as all annotations related to that sample_data.
Note that the boxes are transformed into the current sensor's coordinate frame.
:param sample_data_token: Sample_data token.
:param box_vis_level: If sample_data is an image, this sets required visibility for boxes.
:param selected_anntokens: If provided only return the selected annotation.
:param use_flat_vehicle_coordinates: Instead of the current sensor's coordinate frame, use ego frame which is
aligned to z-plane in the world.
:return: (data_path, boxes, camera_intrinsic <np.array: 3, 3>)
"""
# Retrieve sensor & pose records
sd_record = nusc.get('sample_data', sample_data_token)
cs_record = nusc.get('calibrated_sensor', sd_record['calibrated_sensor_token'])
sensor_record = nusc.get('sensor', cs_record['sensor_token'])
pose_record = nusc.get('ego_pose', sd_record['ego_pose_token'])
data_path = nusc.get_sample_data_path(sample_data_token)
if sensor_record['modality'] == 'camera':
cam_intrinsic = np.array(cs_record['camera_intrinsic'])
imsize = (sd_record['width'], sd_record['height'])
else:
cam_intrinsic = None
imsize = None
# Retrieve all sample annotations and map to sensor coordinate system.
# if selected_anntokens is not None:
# boxes = list(map(nusc.get_box, selected_anntokens))
# else:
# boxes = nusc.get_boxes(sample_data_token)
boxes = pred_anns
# Make list of Box objects including coord system transforms.
box_list = []
for box in boxes:
if use_flat_vehicle_coordinates:
# Move box to ego vehicle coord system parallel to world z plane.
yaw = Quaternion(pose_record['rotation']).yaw_pitch_roll[0]
box.translate(-np.array(pose_record['translation']))
box.rotate(Quaternion(scalar=np.cos(yaw / 2), vector=[0, 0, np.sin(yaw / 2)]).inverse)
else:
# Move box to ego vehicle coord system.
box.translate(-np.array(pose_record['translation']))
box.rotate(Quaternion(pose_record['rotation']).inverse)
# Move box to sensor coord system.
box.translate(-np.array(cs_record['translation']))
box.rotate(Quaternion(cs_record['rotation']).inverse)
if sensor_record['modality'] == 'camera' and not \
box_in_image(box, cam_intrinsic, imsize, vis_level=box_vis_level):
continue
box_list.append(box)
return data_path, box_list, cam_intrinsic
def lidiar_render(sample_token, data, out_path=None, out_name=None, traj_use_perstep_offset=True):
bbox_gt_list = []
bbox_pred_list = []
sample_rec = nusc.get('sample', sample_token)
anns = sample_rec['anns']
sd_record = nusc.get('sample_data', sample_rec['data']['LIDAR_TOP'])
cs_record = nusc.get('calibrated_sensor', sd_record['calibrated_sensor_token'])
pose_record = nusc.get('ego_pose', sd_record['ego_pose_token'])
for ann in anns:
content = nusc.get('sample_annotation', ann)
gt_fut_trajs, gt_fut_masks = get_gt_fut_trajs(
nusc=nusc, anno=content, cs_record=cs_record,
pose_record=pose_record, fut_ts=6
)
try:
bbox_gt_list.append(CustomDetectionBox(
sample_token=content['sample_token'],
translation=tuple(content['translation']),
size=tuple(content['size']),
rotation=tuple(content['rotation']),
velocity=nusc.box_velocity(content['token'])[:2],
fut_trajs=tuple(gt_fut_trajs),
ego_translation=(0.0, 0.0, 0.0) if 'ego_translation' not in content
else tuple(content['ego_translation']),
num_pts=-1 if 'num_pts' not in content else int(content['num_pts']),
detection_name=category_to_detection_name(content['category_name']),
detection_score=-1.0 if 'detection_score' not in content else float(content['detection_score']),
attribute_name=''))
except:
pass
bbox_anns = data['results'][sample_token]
for content in bbox_anns:
bbox_pred_list.append(CustomDetectionBox(
sample_token=content['sample_token'],
translation=tuple(content['translation']),
size=tuple(content['size']),
rotation=tuple(content['rotation']),
velocity=tuple(content['velocity']),
fut_trajs=tuple(content['fut_traj']),
ego_translation=(0.0, 0.0, 0.0) if 'ego_translation' not in content
else tuple(content['ego_translation']),
num_pts=-1 if 'num_pts' not in content else int(content['num_pts']),
detection_name=content['detection_name'],
detection_score=-1.0 if 'detection_score' not in content else float(content['detection_score']),
attribute_name=content['attribute_name']))
gt_annotations = EvalBoxes()
pred_annotations = EvalBoxes()
gt_annotations.add_boxes(sample_token, bbox_gt_list)
pred_annotations.add_boxes(sample_token, bbox_pred_list)
# print('green is ground truth')
# print('blue is the predited result')
visualize_sample(nusc, sample_token, gt_annotations, pred_annotations,
savepath=out_path, traj_use_perstep_offset=traj_use_perstep_offset, pred_data=data)
def get_color(category_name: str):
"""
Provides the default colors based on the category names.
This method works for the general nuScenes categories, as well as the nuScenes detection categories.
"""
a = ['noise', 'animal', 'human.pedestrian.adult', 'human.pedestrian.child', 'human.pedestrian.construction_worker',
'human.pedestrian.personal_mobility', 'human.pedestrian.police_officer', 'human.pedestrian.stroller',
'human.pedestrian.wheelchair', 'movable_object.barrier', 'movable_object.debris',
'movable_object.pushable_pullable', 'movable_object.trafficcone', 'static_object.bicycle_rack', 'vehicle.bicycle',
'vehicle.bus.bendy', 'vehicle.bus.rigid', 'vehicle.car', 'vehicle.construction', 'vehicle.emergency.ambulance',
'vehicle.emergency.police', 'vehicle.motorcycle', 'vehicle.trailer', 'vehicle.truck', 'flat.driveable_surface',
'flat.other', 'flat.sidewalk', 'flat.terrain', 'static.manmade', 'static.other', 'static.vegetation',
'vehicle.ego']
class_names = [
'car', 'truck', 'construction_vehicle', 'bus', 'trailer', 'barrier',
'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone'
]
#print(category_name)
if category_name == 'bicycle':
return nusc.colormap['vehicle.bicycle']
elif category_name == 'construction_vehicle':
return nusc.colormap['vehicle.construction']
elif category_name == 'traffic_cone':
return nusc.colormap['movable_object.trafficcone']
for key in nusc.colormap.keys():
if category_name in key:
return nusc.colormap[key]
return [0, 0, 0]
# TODO: whether to rotate traj
def boxes_to_sensor(boxes: List[EvalBox], pose_record: Dict, cs_record: Dict):
"""
Map boxes from global coordinates to the vehicle's sensor coordinate system.
:param boxes: The boxes in global coordinates.
:param pose_record: The pose record of the vehicle at the current timestamp.
:param cs_record: The calibrated sensor record of the sensor.
:return: The transformed boxes.
"""
boxes_out = []
for box in boxes:
# Create Box instance.
box = CustomNuscenesBox(
box.translation, box.size, Quaternion(box.rotation), box.fut_trajs, name=box.detection_name
)
# Move box to ego vehicle coord system.
box.translate(-np.array(pose_record['translation']))
box.rotate(Quaternion(pose_record['rotation']).inverse)
# Move box to sensor coord system.
box.translate(-np.array(cs_record['translation']))
box.rotate(Quaternion(cs_record['rotation']).inverse)
boxes_out.append(box)
return boxes_out
def get_gt_fut_trajs(nusc: NuScenes,
anno,
cs_record,
pose_record,
fut_ts) -> None:
"""
Visualizes a sample from BEV with annotations and detection results.
:param nusc: NuScenes object.
"""
box = Box(anno['translation'], anno['size'], Quaternion(anno['rotation']))
# Move box to ego vehicle coord system.
box.translate(-np.array(pose_record['translation']))
box.rotate(Quaternion(pose_record['rotation']).inverse)
# Move box to sensor coord system.
box.translate(-np.array(cs_record['translation']))
box.rotate(Quaternion(cs_record['rotation']).inverse)
# get future trajectory coords for each box
gt_fut_trajs = np.zeros((fut_ts, 2)) # [fut_ts*2]
gt_fut_masks = np.zeros((fut_ts)) # [fut_ts]
gt_fut_trajs[:] = box.center[:2]
cur_box = box
cur_anno = anno
for i in range(fut_ts):
if cur_anno['next'] != '':
anno_next = nusc.get('sample_annotation', cur_anno['next'])
box_next = Box(
anno_next['translation'], anno_next['size'], Quaternion(anno_next['rotation'])
)
# Move box to ego vehicle coord system.
box_next.translate(-np.array(pose_record['translation']))
box_next.rotate(Quaternion(pose_record['rotation']).inverse)
# Move box to sensor coord system.
box_next.translate(-np.array(cs_record['translation']))
box_next.rotate(Quaternion(cs_record['rotation']).inverse)
# gt_fut_trajs[i] = box_next.center[:2]
gt_fut_trajs[i] = box_next.center[:2] - cur_box.center[:2]
gt_fut_masks[i] = 1
cur_anno = anno_next
cur_box = box_next
else:
# gt_fut_trajs[i:] = gt_fut_trajs[i-1]
gt_fut_trajs[i:] = 0
break
return gt_fut_trajs.reshape(-1).tolist(), gt_fut_masks.reshape(-1).tolist()
def get_gt_vec_maps(
sample_token,
data_root='data/nuscenes/',
pc_range=[-15.0, -30.0, -4.0, 15.0, 30.0, 4.0],
padding_value=-10000,
map_classes=['divider', 'ped_crossing', 'boundary'],
map_fixed_ptsnum_per_line=20
) -> None:
"""
Get gt vec map for a given sample.
"""
sample_rec = nusc.get('sample', sample_token)
sd_record = nusc.get('sample_data', sample_rec['data']['LIDAR_TOP'])
cs_record = nusc.get('calibrated_sensor', sd_record['calibrated_sensor_token'])
pose_record = nusc.get('ego_pose', sd_record['ego_pose_token'])
lidar2ego_translation = cs_record['translation'],
lidar2ego_rotation = cs_record['rotation'],
ego2global_translation = pose_record['translation'],
ego2global_rotation = pose_record['rotation'],
map_location = nusc.get('log', nusc.get('scene', sample_rec['scene_token'])['log_token'])['location']
lidar2ego = np.eye(4)
lidar2ego[:3,:3] = Quaternion(cs_record['rotation']).rotation_matrix
lidar2ego[:3, 3] = cs_record['translation']
ego2global = np.eye(4)
ego2global[:3,:3] = Quaternion(pose_record['rotation']).rotation_matrix
ego2global[:3, 3] = pose_record['translation']
lidar2global = ego2global @ lidar2ego
lidar2global_translation = list(lidar2global[:3,3])
lidar2global_rotation = list(Quaternion(matrix=lidar2global).q)
patch_h = pc_range[4]-pc_range[1]
patch_w = pc_range[3]-pc_range[0]
patch_size = (patch_h, patch_w)
vector_map = VectorizedLocalMap(data_root, patch_size=patch_size,
map_classes=map_classes,
fixed_ptsnum_per_line=map_fixed_ptsnum_per_line,
padding_value=padding_value)
anns_results = vector_map.gen_vectorized_samples(
map_location, lidar2global_translation, lidar2global_rotation
)
'''
anns_results, type: dict
'gt_vecs_pts_loc': list[num_vecs], vec with num_points*2 coordinates
'gt_vecs_pts_num': list[num_vecs], vec with num_points
'gt_vecs_label': list[num_vecs], vec with cls index
'''
gt_vecs_label = to_tensor(anns_results['gt_vecs_label'])
if isinstance(anns_results['gt_vecs_pts_loc'], LiDARInstanceLines):
gt_vecs_pts_loc = anns_results['gt_vecs_pts_loc']
else:
gt_vecs_pts_loc = to_tensor(anns_results['gt_vecs_pts_loc'])
try:
gt_vecs_pts_loc = gt_vecs_pts_loc.flatten(1).to(dtype=torch.float32)
except:
gt_vecs_pts_loc = gt_vecs_pts_loc
return gt_vecs_pts_loc, gt_vecs_label
def visualize_sample(nusc: NuScenes,
sample_token: str,
gt_boxes: EvalBoxes,
pred_boxes: EvalBoxes,
nsweeps: int = 1,
conf_th: float = 0.4,
pc_range: list = [-30.0, -30.0, -4.0, 30.0, 30.0, 4.0],
verbose: bool = True,
savepath: str = None,
traj_use_perstep_offset: bool = True,
data_root='data/nuscenes/',
map_pc_range: list = [-15.0, -30.0, -4.0, 15.0, 30.0, 4.0],
padding_value=-10000,
map_classes=['divider', 'ped_crossing', 'boundary'],
map_fixed_ptsnum_per_line=20,
gt_format=['fixed_num_pts'],
colors_plt = ['cornflowerblue', 'royalblue', 'slategrey'],
pred_data = None) -> None:
"""
Visualizes a sample from BEV with annotations and detection results.
:param nusc: NuScenes object.
:param sample_token: The nuScenes sample token.
:param gt_boxes: Ground truth boxes grouped by sample.
:param pred_boxes: Prediction grouped by sample.
:param nsweeps: Number of sweeps used for lidar visualization.
:param conf_th: The confidence threshold used to filter negatives.
:param eval_range: Range in meters beyond which boxes are ignored.
:param verbose: Whether to print to stdout.
:param savepath: If given, saves the the rendering here instead of displaying.
"""
# Retrieve sensor & pose records.
sample_rec = nusc.get('sample', sample_token)
sd_record = nusc.get('sample_data', sample_rec['data']['LIDAR_TOP'])
cs_record = nusc.get('calibrated_sensor', sd_record['calibrated_sensor_token'])
pose_record = nusc.get('ego_pose', sd_record['ego_pose_token'])
# Get boxes.
boxes_gt_global = gt_boxes[sample_token]
boxes_est_global = pred_boxes[sample_token]
# Map GT boxes to lidar.
boxes_gt = boxes_to_sensor(boxes_gt_global, pose_record, cs_record)
# Map EST boxes to lidar.
boxes_est = boxes_to_sensor(boxes_est_global, pose_record, cs_record)
# Add scores to EST boxes.
for box_est, box_est_global in zip(boxes_est, boxes_est_global):
box_est.score = box_est_global.detection_score
# Init axes.
fig, axes = plt.subplots(1, 1, figsize=(4, 4))
plt.xlim(xmin=-30, xmax=30)
plt.ylim(ymin=-30, ymax=30)
# Show Pred Map
result_dic = pred_data['map_results'][sample_token]['vectors']
for vector in result_dic:
if vector['confidence_level'] < 0.6:
continue
pred_pts_3d = vector['pts']
pred_label_3d = vector['type']
pts_x = np.array([pt[0] for pt in pred_pts_3d])
pts_y = np.array([pt[1] for pt in pred_pts_3d])
axes.plot(pts_x, pts_y, color=colors_plt[pred_label_3d],linewidth=1,alpha=0.8,zorder=-1)
axes.scatter(pts_x, pts_y, color=colors_plt[pred_label_3d],s=1,alpha=0.8,zorder=-1)
# ignore_list = ['barrier', 'motorcycle', 'bicycle', 'traffic_cone']
ignore_list = ['barrier', 'bicycle', 'traffic_cone']
# Show Pred boxes.
for i, box in enumerate(boxes_est):
if box.name in ignore_list:
continue
# Show only predictions with a high score.
assert not np.isnan(box.score), 'Error: Box score cannot be NaN!'
if box.score < conf_th or abs(box.center[0]) > 15 or abs(box.center[1]) > 30:
continue
box.render(axes, view=np.eye(4), colors=('tomato', 'tomato', 'tomato'), linewidth=1, box_idx=None)
# if box.name in ['pedestrian']:
# continue
if traj_use_perstep_offset:
mode_idx = [0, 1, 2, 3, 4, 5]
box.render_fut_trajs_grad_color(axes, linewidth=1, mode_idx=mode_idx, fut_ts=6, cmap='autumn')
else:
box.render_fut_trajs_coords(axes, color='tomato', linewidth=1)
# Show Planning.
axes.plot([-0.9, -0.9], [-2, 2], color='mediumseagreen', linewidth=1, alpha=0.8)
axes.plot([-0.9, 0.9], [2, 2], color='mediumseagreen', linewidth=1, alpha=0.8)
axes.plot([0.9, 0.9], [2, -2], color='mediumseagreen', linewidth=1, alpha=0.8)
axes.plot([0.9, -0.9], [-2, -2], color='mediumseagreen', linewidth=1, alpha=0.8)
axes.plot([0.0, 0.0], [0.0, 2], color='mediumseagreen', linewidth=1, alpha=0.8)
plan_cmd = np.argmax(pred_data['plan_results'][sample_token][1][0,0,0])
plan_traj = pred_data['plan_results'][sample_token][0][plan_cmd]
plan_traj[abs(plan_traj) < 0.01] = 0.0
plan_traj = plan_traj.cumsum(axis=0)
plan_traj = np.concatenate((np.zeros((1, plan_traj.shape[1])), plan_traj), axis=0)
plan_traj = np.stack((plan_traj[:-1], plan_traj[1:]), axis=1)
plan_vecs = None
for i in range(plan_traj.shape[0]):
plan_vec_i = plan_traj[i]
x_linspace = np.linspace(plan_vec_i[0, 0], plan_vec_i[1, 0], 51)
y_linspace = np.linspace(plan_vec_i[0, 1], plan_vec_i[1, 1], 51)
xy = np.stack((x_linspace, y_linspace), axis=1)
xy = np.stack((xy[:-1], xy[1:]), axis=1)
if plan_vecs is None:
plan_vecs = xy
else:
plan_vecs = np.concatenate((plan_vecs, xy), axis=0)
cmap = 'winter'
y = np.sin(np.linspace(1/2*np.pi, 3/2*np.pi, 301))
colors = color_map(y[:-1], cmap)
line_segments = LineCollection(plan_vecs, colors=colors, linewidths=1, linestyles='solid', cmap=cmap)
axes.add_collection(line_segments)
axes.axes.xaxis.set_ticks([])
axes.axes.yaxis.set_ticks([])
axes.axis('off')
fig.set_tight_layout(True)
fig.canvas.draw()
plt.savefig(savepath+'/bev_pred.png', bbox_inches='tight', dpi=200)
plt.close()
def obtain_sensor2top(nusc,
sensor_token,
l2e_t,
l2e_r_mat,
e2g_t,
e2g_r_mat,
sensor_type='lidar'):
"""Obtain the info with RT matric from general sensor to Top LiDAR.
Args:
nusc (class): Dataset class in the nuScenes dataset.
sensor_token (str): Sample data token corresponding to the
specific sensor type.
l2e_t (np.ndarray): Translation from lidar to ego in shape (1, 3).
l2e_r_mat (np.ndarray): Rotation matrix from lidar to ego
in shape (3, 3).
e2g_t (np.ndarray): Translation from ego to global in shape (1, 3).
e2g_r_mat (np.ndarray): Rotation matrix from ego to global
in shape (3, 3).
sensor_type (str): Sensor to calibrate. Default: 'lidar'.
Returns:
sweep (dict): Sweep information after transformation.
"""
sd_rec = nusc.get('sample_data', sensor_token)
cs_record = nusc.get('calibrated_sensor',
sd_rec['calibrated_sensor_token'])
pose_record = nusc.get('ego_pose', sd_rec['ego_pose_token'])
data_path = str(nusc.get_sample_data_path(sd_rec['token']))
if os.getcwd() in data_path: # path from lyftdataset is absolute path
data_path = data_path.split(f'{os.getcwd()}/')[-1] # relative path
sweep = {
'data_path': data_path,
'type': sensor_type,
'sample_data_token': sd_rec['token'],
'sensor2ego_translation': cs_record['translation'],
'sensor2ego_rotation': cs_record['rotation'],
'ego2global_translation': pose_record['translation'],
'ego2global_rotation': pose_record['rotation'],
'timestamp': sd_rec['timestamp']
}
l2e_r_s = sweep['sensor2ego_rotation']
l2e_t_s = sweep['sensor2ego_translation']
e2g_r_s = sweep['ego2global_rotation']
e2g_t_s = sweep['ego2global_translation']
# obtain the RT from sensor to Top LiDAR
# sweep->ego->global->ego'->lidar
l2e_r_s_mat = Quaternion(l2e_r_s).rotation_matrix
e2g_r_s_mat = Quaternion(e2g_r_s).rotation_matrix
R = (l2e_r_s_mat.T @ e2g_r_s_mat.T) @ (
np.linalg.inv(e2g_r_mat).T @ np.linalg.inv(l2e_r_mat).T)
T = (l2e_t_s @ e2g_r_s_mat.T + e2g_t_s) @ (
np.linalg.inv(e2g_r_mat).T @ np.linalg.inv(l2e_r_mat).T)
T -= e2g_t @ (np.linalg.inv(e2g_r_mat).T @ np.linalg.inv(l2e_r_mat).T
) + l2e_t @ np.linalg.inv(l2e_r_mat).T
sensor2lidar_rotation = R.T # points @ R.T + T
sensor2lidar_translation = T
return sensor2lidar_rotation, sensor2lidar_translation
def render_sample_data(
sample_toekn: str,
with_anns: bool = True,
box_vis_level: BoxVisibility = BoxVisibility.ANY,
axes_limit: float = 40,
ax=None,
nsweeps: int = 1,
out_path: str = None,
out_name: str = None,
underlay_map: bool = True,
use_flat_vehicle_coordinates: bool = True,
show_lidarseg: bool = False,
show_lidarseg_legend: bool = False,
filter_lidarseg_labels=None,
lidarseg_preds_bin_path: str = None,
verbose: bool = True,
show_panoptic: bool = False,
pred_data=None,
traj_use_perstep_offset: bool = True
) -> None:
"""
Render sample data onto axis.
:param sample_data_token: Sample_data token.
:param with_anns: Whether to draw box annotations.
:param box_vis_level: If sample_data is an image, this sets required visibility for boxes.
:param axes_limit: Axes limit for lidar and radar (measured in meters).
:param ax: Axes onto which to render.
:param nsweeps: Number of sweeps for lidar and radar.
:param out_path: Optional path to save the rendered figure to disk.
:param underlay_map: When set to true, lidar data is plotted onto the map. This can be slow.
:param use_flat_vehicle_coordinates: Instead of the current sensor's coordinate frame, use ego frame which is
aligned to z-plane in the world. Note: Previously this method did not use flat vehicle coordinates, which
can lead to small errors when the vertical axis of the global frame and lidar are not aligned. The new
setting is more correct and rotates the plot by ~90 degrees.
:param show_lidarseg: When set to True, the lidar data is colored with the segmentation labels. When set
to False, the colors of the lidar data represent the distance from the center of the ego vehicle.
:param show_lidarseg_legend: Whether to display the legend for the lidarseg labels in the frame.
:param filter_lidarseg_labels: Only show lidar points which belong to the given list of classes. If None
or the list is empty, all classes will be displayed.
:param lidarseg_preds_bin_path: A path to the .bin file which contains the user's lidar segmentation
predictions for the sample.
:param verbose: Whether to display the image after it is rendered.
:param show_panoptic: When set to True, the lidar data is colored with the panoptic labels. When set
to False, the colors of the lidar data represent the distance from the center of the ego vehicle.
If show_lidarseg is True, show_panoptic will be set to False.
"""
lidiar_render(sample_toekn, pred_data, out_path=out_path,
out_name=out_name, traj_use_perstep_offset=traj_use_perstep_offset)
def parse_args():
parser = argparse.ArgumentParser(description='Visualize VAD predictions')
parser.add_argument('--result-path', help='inference result file path')
parser.add_argument('--save-path', help='the dir to save visualization results')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
inference_result_path = args.result_path
out_path = args.save_path
bevformer_results = mmcv.load(inference_result_path)
sample_token_list = list(bevformer_results['results'].keys())
nusc = NuScenes(version='v1.0-trainval', dataroot='./data/nuscenes', verbose=True)
imgs = []
fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
video_path = osp.join(out_path, 'vis.mp4')
video = cv2.VideoWriter(video_path, fourcc, 10, (2933, 800), True)
for id in tqdm(range(len(sample_token_list))):
mmcv.mkdir_or_exist(out_path)
render_sample_data(sample_token_list[id],
pred_data=bevformer_results,
out_path=out_path)
pred_path = osp.join(out_path, 'bev_pred.png')
pred_img = cv2.imread(pred_path)
os.remove(pred_path)
sample_token = sample_token_list[id]
sample = nusc.get('sample', sample_token)
# sample = data['results'][sample_token_list[0]][0]
cams = [
'CAM_FRONT_LEFT',
'CAM_FRONT',
'CAM_FRONT_RIGHT',
'CAM_BACK_LEFT',
'CAM_BACK',
'CAM_BACK_RIGHT',
]
cam_imgs = []
for cam in cams:
sample_data_token = sample['data'][cam]
sd_record = nusc.get('sample_data', sample_data_token)
sensor_modality = sd_record['sensor_modality']
if sensor_modality in ['lidar', 'radar']:
assert False
elif sensor_modality == 'camera':
boxes = [Box(record['translation'], record['size'], Quaternion(record['rotation']),
name=record['detection_name'], token='predicted') for record in
bevformer_results['results'][sample_token]]
data_path, boxes_pred, camera_intrinsic = get_predicted_data(sample_data_token,
box_vis_level=BoxVisibility.ANY,
pred_anns=boxes)
_, boxes_gt, _ = nusc.get_sample_data(sample_data_token, box_vis_level=BoxVisibility.ANY)
data = Image.open(data_path)
# Show image.
_, ax = plt.subplots(1, 1, figsize=(6, 12))
ax.imshow(data)
if cam == 'CAM_FRONT':
lidar_sd_record = nusc.get('sample_data', sample['data']['LIDAR_TOP'])
lidar_cs_record = nusc.get('calibrated_sensor', lidar_sd_record['calibrated_sensor_token'])
lidar_pose_record = nusc.get('ego_pose', lidar_sd_record['ego_pose_token'])
# get plan traj [x,y,z,w] quaternion, w=1
# we set z=-1 to get points near the ground in lidar coord system
plan_cmd = np.argmax(bevformer_results['plan_results'][sample_token][1][0,0,0])
plan_traj = bevformer_results['plan_results'][sample_token][0][plan_cmd]
plan_traj[abs(plan_traj) < 0.01] = 0.0
plan_traj = plan_traj.cumsum(axis=0)
plan_traj = np.concatenate((
plan_traj[:, [0]],
plan_traj[:, [1]],
-1.0*np.ones((plan_traj.shape[0], 1)),
np.ones((plan_traj.shape[0], 1)),
), axis=1)
# add the start point in lcf
plan_traj = np.concatenate((np.zeros((1, plan_traj.shape[1])), plan_traj), axis=0)
# plan_traj[0, :2] = 2*plan_traj[1, :2] - plan_traj[2, :2]
plan_traj[0, 0] = 0.3
plan_traj[0, 2] = -1.0
plan_traj[0, 3] = 1.0
l2e_r = lidar_cs_record['rotation']
l2e_t = lidar_cs_record['translation']
e2g_r = lidar_pose_record['rotation']
e2g_t = lidar_pose_record['translation']
l2e_r_mat = Quaternion(l2e_r).rotation_matrix
e2g_r_mat = Quaternion(e2g_r).rotation_matrix
s2l_r, s2l_t = obtain_sensor2top(nusc, sample_data_token, l2e_t, l2e_r_mat, e2g_t, e2g_r_mat, cam)
# obtain lidar to image transformation matrix
lidar2cam_r = np.linalg.inv(s2l_r)
lidar2cam_t = s2l_t @ lidar2cam_r.T
lidar2cam_rt = np.eye(4)
lidar2cam_rt[:3, :3] = lidar2cam_r.T
lidar2cam_rt[3, :3] = -lidar2cam_t
viewpad = np.eye(4)
viewpad[:camera_intrinsic.shape[0], :camera_intrinsic.shape[1]] = camera_intrinsic
lidar2img_rt = (viewpad @ lidar2cam_rt.T)
plan_traj = lidar2img_rt @ plan_traj.T
plan_traj = plan_traj[0:2, ...] / np.maximum(
plan_traj[2:3, ...], np.ones_like(plan_traj[2:3, ...]) * 1e-5)
plan_traj = plan_traj.T
plan_traj = np.stack((plan_traj[:-1], plan_traj[1:]), axis=1)
plan_vecs = None
for i in range(plan_traj.shape[0]):
plan_vec_i = plan_traj[i]
x_linspace = np.linspace(plan_vec_i[0, 0], plan_vec_i[1, 0], 51)
y_linspace = np.linspace(plan_vec_i[0, 1], plan_vec_i[1, 1], 51)
xy = np.stack((x_linspace, y_linspace), axis=1)
xy = np.stack((xy[:-1], xy[1:]), axis=1)
if plan_vecs is None:
plan_vecs = xy
else:
plan_vecs = np.concatenate((plan_vecs, xy), axis=0)
cmap = 'winter'
y = np.sin(np.linspace(1/2*np.pi, 3/2*np.pi, 301))
colors = color_map(y[:-1], cmap)
line_segments = LineCollection(plan_vecs, colors=colors, linewidths=2, linestyles='solid', cmap=cmap)
ax.add_collection(line_segments)
ax.set_xlim(0, data.size[0])
ax.set_ylim(data.size[1], 0)
ax.axis('off')
if out_path is not None:
savepath = osp.join(out_path, f'{cam}_PRED')
plt.savefig(savepath, bbox_inches='tight', dpi=200, pad_inches=0.0)
plt.close()
# Load boxes and image.
data_path = osp.join(out_path, f'{cam}_PRED.png')
cam_img = cv2.imread(data_path)
lw = 6
tf = max(lw - 3, 1)
w, h = cv2.getTextSize(cam, 0, fontScale=lw / 6, thickness=tf)[0] # text width, height
# color=(0, 0, 0)
txt_color=(255, 255, 255)
cv2.putText(cam_img,
cam, (10, h + 10),
0,
lw / 6,
txt_color,
thickness=tf,
lineType=cv2.LINE_AA)
cam_imgs.append(cam_img)
else:
raise ValueError("Error: Unknown sensor modality!")
plan_cmd = np.argmax(bevformer_results['plan_results'][sample_token][1][0,0,0])
cmd_list = ['Turn Right', 'Turn Left', 'Go Straight']
plan_cmd_str = cmd_list[plan_cmd]
pred_img = cv2.copyMakeBorder(pred_img, 10, 10, 10, 10, cv2.BORDER_CONSTANT, None, value = 0)
# font
font = cv2.FONT_HERSHEY_SIMPLEX
# fontScale
fontScale = 1
# Line thickness of 2 px
thickness = 3
# org
org = (20, 40)
# Blue color in BGR
color = (0, 0, 0)
# Using cv2.putText() method
pred_img = cv2.putText(pred_img, 'BEV', org, font,
fontScale, color, thickness, cv2.LINE_AA)
pred_img = cv2.putText(pred_img, plan_cmd_str, (20, 770), font,
fontScale, color, thickness, cv2.LINE_AA)
sample_img = pred_img
cam_img_top = cv2.hconcat([cam_imgs[0], cam_imgs[1], cam_imgs[2]])
cam_img_down = cv2.hconcat([cam_imgs[3], cam_imgs[4], cam_imgs[5]])
cam_img = cv2.vconcat([cam_img_top, cam_img_down])
size = (2133, 800)
cam_img = cv2.resize(cam_img, size)
vis_img = cv2.hconcat([cam_img, sample_img])
video.write(vis_img)
video.release()
cv2.destroyAllWindows()