Ref:
Statement
Given a target find minimum (maximum) cost / path / sum to reach the target.
Approach
Choose minimum (maximum) path among all possible paths before the current state, then add value for the current state.
routes[i] = min(routes[i-1], routes[i-2], ... , routes[i-k]) + cost[i]
Generate optimal solutions for all values in the target and return the value for the target.
Top-Down
for (int j = 0; j < ways.size(); ++j) {
result = min(result, topDown(target - ways[j]) + cost/ path / sum);
}
return memo[/*state parameters*/] = result;
Bottom-Up
for (int i = 1; i <= target; ++i) {
for (int j = 0; j < ways.size(); ++j) {
if (ways[j] <= i) {
dp[i] = min(dp[i], dp[i - ways[j]] + cost / path / sum) ;
}
}
}
return dp[target]
Statement
Given a target find a number of distinct ways to reach the target.
Approach
Sum all possible ways to reach the current state.
routes[i] = routes[i-1] + routes[i-2], ... , + routes[i-k]
Generate sum for all values in the target and return the value for the target.
Top-Down
for (int j = 0; j < ways.size(); ++j) {
result += topDown(target - ways[j]);
}
return memo[/*state parameters*/] = result;
Bottom-Up
for (int i = 1; i <= target; ++i) {
for (int j = 0; j < ways.size(); ++j) {
if (ways[j] <= i) {
dp[i] += dp[i - ways[j]];
}
}
}
return dp[target]
Statement
Given a set of numbers find an optimal solution for a problem considering the current number and the best you can get from the left and right sides.
Approach
Find all optimal solutions for every interval and return the best possible answer.
// from i to j
dp[i][j] = dp[i][k] + result[k] + dp[k + 1][j];
Get the best from the left and right sides and add a solution for the current position.
Top-Down
for (int k = i; k <= j; ++k) {
result = max(result, topDown(nums, i, k-1) + result[k] + topDown(nums, k+1, j));
}
return memo[/*state parameters*/] = result;
Bottom-Up
for(int l = 1; l<n; l++) {
for(int i = 0; i<n-l; i++) {
int j = i+l;
for(int k = i; k<j; k++) {
dp[i][j] = max(dp[i][j], dp[i][k] + result[k] + dp[k+1][j]);
}
}
}
return dp[0][n-1];
Statement
Given two strings s1 and s2, return some result.
Approach
Most of the problems on this pattern requires a solution that can be accepted in
O(N^2)
complexity.
// i - indexing string s1
// j - indexing string s2
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
if (s1[i-1] == s2[j-1]) {
dp[i][j] = /*code*/;
} else {
dp[i][j] = /*code*/;
}
}
}
If you are given one string s the approach may little vary
for (int l = 1; l < n; ++l) {
for (int i = 0; i < n-l; ++i) {
int j = i + l;
if (s[i] == s[j]) {
dp[i][j] = /*code*/;
} else {
dp[i][j] = /*code*/;
}
}
}
Statement
Given a set of values find an answer with an option to choose or ignore the current value.
Approach
If you decide to choose the current value use the previous result where the value was ignored; vice-versa, if you decide to ignore the current value use previous result where value was used.
// i - indexing a set of values
// j - options to ignore j values
for (int i = 1; i < n; ++i) {
for (int j = 1; j <= k; ++j) {
dp[i][j] = max({dp[i][j], dp[i-1][j] + arr[i], dp[i-1][j-1]});
dp[i][j-1] = max({dp[i][j-1], dp[i-1][j-1] + arr[i], arr[i]});
}
}