Testing a model and Evaluation
1. Test and evaluate the pretrained pytorch
models
Test with a pretrained model:
python test.py --cfg_file ${CONFIG_FILE} --batch_size ${BATCH_SIZE} --ckpt ${CKPT}
To test all the saved checkpoints of a specific training setting and draw the performance curve on the Tensorboard, add the --eval_all
argument:
python test.py --cfg_file ${CONFIG_FILE} --batch_size ${BATCH_SIZE} --eval_all
To test with multiple GPUs:
sh scripts/dist_test.sh ${NUM_GPUS} \
--cfg_file ${CONFIG_FILE} --batch_size ${BATCH_SIZE}
# or
sh scripts/slurm_test_mgpu.sh ${PARTITION} ${NUM_GPUS} \
--cfg_file ${CONFIG_FILE} --batch_size ${BATCH_SIZE}
2. Evaluation with a pytorch model
docker exec -it centerpoint bash
cd ~ /OpenPCDet/tools/
python test.py --cfg_file cfgs/waymo_models/centerpoint_pillar_inference.yaml --ckpt ../ckpt/checkpoint_epoch_24.pth
2024-07-08 07:59:21,802 INFO
OBJECT_TYPE_TYPE_VEHICLE_LEVEL_1/AP: 0.6204
OBJECT_TYPE_TYPE_VEHICLE_LEVEL_1/APH: 0.6137
OBJECT_TYPE_TYPE_VEHICLE_LEVEL_1/APL: 0.6204
OBJECT_TYPE_TYPE_VEHICLE_LEVEL_2/AP: 0.5417
OBJECT_TYPE_TYPE_VEHICLE_LEVEL_2/APH: 0.5358
OBJECT_TYPE_TYPE_VEHICLE_LEVEL_2/APL: 0.5417
OBJECT_TYPE_TYPE_PEDESTRIAN_LEVEL_1/AP: 0.5329
OBJECT_TYPE_TYPE_PEDESTRIAN_LEVEL_1/APH: 0.2887
OBJECT_TYPE_TYPE_PEDESTRIAN_LEVEL_1/APL: 0.5329
OBJECT_TYPE_TYPE_PEDESTRIAN_LEVEL_2/AP: 0.4553
OBJECT_TYPE_TYPE_PEDESTRIAN_LEVEL_2/APH: 0.2468
OBJECT_TYPE_TYPE_PEDESTRIAN_LEVEL_2/APL: 0.4553
OBJECT_TYPE_TYPE_SIGN_LEVEL_1/AP: 0.0000
OBJECT_TYPE_TYPE_SIGN_LEVEL_1/APH: 0.0000
OBJECT_TYPE_TYPE_SIGN_LEVEL_1/APL: 0.0000
OBJECT_TYPE_TYPE_SIGN_LEVEL_2/AP: 0.0000
OBJECT_TYPE_TYPE_SIGN_LEVEL_2/APH: 0.0000
OBJECT_TYPE_TYPE_SIGN_LEVEL_2/APL: 0.0000
OBJECT_TYPE_TYPE_CYCLIST_LEVEL_1/AP: 0.3267
OBJECT_TYPE_TYPE_CYCLIST_LEVEL_1/APH: 0.2730
OBJECT_TYPE_TYPE_CYCLIST_LEVEL_1/APL: 0.3267
OBJECT_TYPE_TYPE_CYCLIST_LEVEL_2/AP: 0.3141
OBJECT_TYPE_TYPE_CYCLIST_LEVEL_2/APH: 0.2625
OBJECT_TYPE_TYPE_CYCLIST_LEVEL_2/APL: 0.3141
If you set test: 25000
of MAX_NUMBER_OF_VOXELS
at the cfgs/waymo_models/centerpoint_pillar_inference.yaml
like TensorRT (centerpoint/config.yaml
),
You can get more similar results as shown:
2024-07-08 09:57:04,120 INFO
OBJECT_TYPE_TYPE_VEHICLE_LEVEL_1/AP: 0.6199
OBJECT_TYPE_TYPE_VEHICLE_LEVEL_1/APH: 0.6132
OBJECT_TYPE_TYPE_VEHICLE_LEVEL_1/APL: 0.6199
OBJECT_TYPE_TYPE_VEHICLE_LEVEL_2/AP: 0.5413
OBJECT_TYPE_TYPE_VEHICLE_LEVEL_2/APH: 0.5353
OBJECT_TYPE_TYPE_VEHICLE_LEVEL_2/APL: 0.5413
OBJECT_TYPE_TYPE_PEDESTRIAN_LEVEL_1/AP: 0.5327
OBJECT_TYPE_TYPE_PEDESTRIAN_LEVEL_1/APH: 0.2885
OBJECT_TYPE_TYPE_PEDESTRIAN_LEVEL_1/APL: 0.5327
OBJECT_TYPE_TYPE_PEDESTRIAN_LEVEL_2/AP: 0.4552
OBJECT_TYPE_TYPE_PEDESTRIAN_LEVEL_2/APH: 0.2466
OBJECT_TYPE_TYPE_PEDESTRIAN_LEVEL_2/APL: 0.4552
OBJECT_TYPE_TYPE_SIGN_LEVEL_1/AP: 0.0000
OBJECT_TYPE_TYPE_SIGN_LEVEL_1/APH: 0.0000
OBJECT_TYPE_TYPE_SIGN_LEVEL_1/APL: 0.0000
OBJECT_TYPE_TYPE_SIGN_LEVEL_2/AP: 0.0000
OBJECT_TYPE_TYPE_SIGN_LEVEL_2/APH: 0.0000
OBJECT_TYPE_TYPE_SIGN_LEVEL_2/APL: 0.0000
OBJECT_TYPE_TYPE_CYCLIST_LEVEL_1/AP: 0.3262
OBJECT_TYPE_TYPE_CYCLIST_LEVEL_1/APH: 0.2729
OBJECT_TYPE_TYPE_CYCLIST_LEVEL_1/APL: 0.3262
OBJECT_TYPE_TYPE_CYCLIST_LEVEL_2/AP: 0.3137
OBJECT_TYPE_TYPE_CYCLIST_LEVEL_2/APH: 0.2625
OBJECT_TYPE_TYPE_CYCLIST_LEVEL_2/APL: 0.3137