-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
145 lines (131 loc) · 5.49 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# python main.py --video_path video \
# --result_path results --dataset ucf101 --n_classes 400 --n_finetune_classes 5 \
# --pretrain_path pretrained/resnet-34-kinetics.pth --ft_begin_index 4 \
# --model resnet --model_depth 34 --resnet_shortcut A --batch_size 128 --n_threads 4 --checkpoint 5
import os
import sys
import json
import numpy as np
import torch
from torch import nn
from torch import optim
from torch.optim import lr_scheduler
from opts import parse_opts
from model import generate_model
from mean import get_mean, get_std
from spatial_transforms import (
Compose, Normalize, Scale, CenterCrop, CornerCrop, MultiScaleCornerCrop,
MultiScaleRandomCrop, RandomHorizontalFlip, ToTensor)
from temporal_transforms import LoopPadding, TemporalRandomCrop
from target_transforms import ClassLabel, VideoID
from target_transforms import Compose as TargetCompose
from dataset import get_training_set, get_validation_set
from utils import Logger
from train import train_epoch
from validation import val_epoch
if __name__ == '__main__':
opt = parse_opts()
os.makedirs(opt.result_path, exist_ok=True)
if opt.root_path != '':
opt.video_path = os.path.join(opt.root_path, opt.video_path)
opt.annotation_path = os.path.join(opt.root_path, opt.annotation_path)
opt.result_path = os.path.join(opt.root_path, opt.result_path)
if opt.resume_path:
opt.resume_path = os.path.join(opt.root_path, opt.resume_path)
if opt.pretrain_path:
opt.pretrain_path = os.path.join(opt.root_path, opt.pretrain_path)
opt.scales = [opt.initial_scale]
for i in range(1, opt.n_scales):
opt.scales.append(opt.scales[-1] * opt.scale_step)
opt.arch = '{}-{}'.format(opt.model, opt.model_depth)
opt.mean = get_mean(opt.norm_value, dataset=opt.mean_dataset)
opt.std = get_std(opt.norm_value)
print(opt)
torch.manual_seed(opt.manual_seed)
model, parameters = generate_model(opt)
print(model)
criterion = nn.MSELoss()
if not opt.no_cuda:
criterion = criterion.cuda()
if opt.no_mean_norm and not opt.std_norm:
norm_method = Normalize([0, 0, 0], [1, 1, 1])
elif not opt.std_norm:
norm_method = Normalize(opt.mean, [1, 1, 1])
else:
norm_method = Normalize(opt.mean, opt.std)
if not opt.no_train:
assert opt.train_crop in ['random', 'corner', 'center']
if opt.train_crop == 'random':
crop_method = MultiScaleRandomCrop(opt.scales, opt.sample_size)
elif opt.train_crop == 'corner':
crop_method = MultiScaleCornerCrop(opt.scales, opt.sample_size)
elif opt.train_crop == 'center':
crop_method = MultiScaleCornerCrop(
opt.scales, opt.sample_size, crop_positions=['c'])
spatial_transform = Compose([
crop_method,
RandomHorizontalFlip(),
ToTensor(opt.norm_value), norm_method
])
temporal_transform = TemporalRandomCrop(opt.sample_duration)
target_transform = ClassLabel()
training_data = get_training_set(opt)
# train_loader = torch.utils.data.DataLoader(
# training_data,
# batch_size=opt.batch_size,
# shuffle=False,
# num_workers=opt.n_threads,
# pin_memory=True)
train_logger = Logger(
os.path.join(opt.result_path, 'train.log'),
['epoch', 'loss', 'acc', 'lr'])
train_batch_logger = Logger(
os.path.join(opt.result_path, 'train_batch.log'),
['epoch', 'batch', 'iter', 'loss', 'acc', 'lr'])
if opt.nesterov:
dampening = 0
else:
dampening = opt.dampening
optimizer = optim.SGD(
parameters,
lr=opt.learning_rate,
momentum=opt.momentum,
dampening=dampening,
weight_decay=opt.weight_decay,
nesterov=opt.nesterov)
scheduler = lr_scheduler.ReduceLROnPlateau(
optimizer, 'min', patience=opt.lr_patience)
if not opt.no_val:
spatial_transform = Compose([
Scale(opt.sample_size),
CenterCrop(opt.sample_size),
ToTensor(opt.norm_value), norm_method
])
temporal_transform = LoopPadding(opt.sample_duration)
target_transform = ClassLabel()
validation_data = get_validation_set(opt)
# val_loader = torch.utils.data.DataLoader(
# validation_data,
# batch_size=opt.batch_size,
# shuffle=False,
# num_workers=opt.n_threads,
# pin_memory=True)
val_logger = Logger(
os.path.join(opt.result_path, 'val.log'), ['epoch', 'loss', 'acc'])
if opt.resume_path:
print('loading checkpoint {}'.format(opt.resume_path))
checkpoint = torch.load(opt.resume_path)
assert opt.arch == checkpoint['arch']
opt.begin_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
if not opt.no_train:
optimizer.load_state_dict(checkpoint['optimizer'])
for i in range(opt.begin_epoch, opt.n_epochs + 1):
if not opt.no_train:
train_epoch(i, training_data, model, criterion, optimizer, opt,
train_logger, train_batch_logger)
if not opt.no_val:
validation_loss = val_epoch(i, validation_data, model, criterion, opt,
val_logger)
if not opt.no_train and not opt.no_val:
scheduler.step(validation_loss)