This repository has been archived by the owner on Jun 28, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathevaluate.py
142 lines (109 loc) · 4.44 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import argparse
import os
import torch
import torchvision.transforms as transforms
import yaml
import data_loaders
import modules.network
from modules import angular_loss, BinghamFixedDispersionLoss, \
BinghamHybridLoss, BinghamLoss, BinghamMixtureLoss, \
CosineLoss, MSELoss, VonMisesLoss, VonMisesFixedKappaLoss
from utils.evaluation import run_evaluation
DEFAULT_CONFIG = os.path.dirname(__file__) + "configs/upna_train.yaml"
LOSS_FUNCTIONS = {'mse': MSELoss,
'bingham': BinghamLoss,
'bingham_mdn': BinghamMixtureLoss,
'von_mises': VonMisesLoss,
'cosine': CosineLoss}
def get_dataset(config):
"""Returns the test data using the provided configuration"""
data_loader = config["data_loader"]
size = data_loader["input_size"]
data_transforms = transforms.Compose([transforms.CenterCrop(600),
transforms.Resize((size, size)),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])])
data_transforms_idiap = transforms.Compose([
transforms.Resize((size, size)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
if data_loader["name"] == "UPNAHeadPose":
dataset = data_loaders.UpnaHeadPoseTrainTest(
data_loader["config"], data_transforms)
test_dataset = dataset.test
elif data_loader["name"] == "T_Less":
dataset = data_loaders.TLessTrainTest(data_loader["config"],
data_transforms_idiap)
test_dataset = dataset.test
else:
dataset = data_loaders.IDIAPTrainTest(
data_loader["config"], data_transforms_idiap)
test_dataset = dataset.test
return test_dataset
def get_data_loader(dataset, batch_size):
"""Return a data loader"""
dataset = get_dataset(dataset)
test_loader = torch.utils.data.DataLoader(
dataset, batch_size=batch_size, shuffle=False)
return test_loader
def main():
"""Loads arguments and starts testing."""
parser = argparse.ArgumentParser(
description="Deep Orientation Estimation")
parser.add_argument('-c', '--config', default=DEFAULT_CONFIG, type=str)
args = parser.parse_args()
config_file = args.config
# Load config
assert os.path.exists(args.config), "Config file {} does not exist".format(
args.config)
with open(config_file) as fp:
config = yaml.load(fp)
if "loss_parameters" in config["test"]:
loss_parameters = config["test"]["loss_parameters"]
else:
loss_parameters = None
device = torch.device(config["test"][
"device"] if torch.cuda.is_available() else "cpu")
print("Using device: {}".format(device))
num_classes = config["test"]["num_outputs"]
# Build model architecture
num_channels = config["test"]["num_channels"]
model_name = config["test"]["model"]
model = modules.network.get_model(name=model_name,
pretrained=True,
num_channels=num_channels,
num_classes=num_classes)
model.to(device)
print("Model name: {}".format(model_name))
model_path = config["test"]["model_path"]
if os.path.isfile(model_path):
print("Loading model {}".format(model_path))
checkpoint = torch.load(model_path)
model.load_state_dict(checkpoint["state_dict"])
else:
assert "model not found"
# Get data loader
batch_size = 32
test_loader = get_data_loader(config, batch_size)
loss_function_name = config["test"]["loss_function"]
dataset_name = config["data_loader"]["name"]
if loss_parameters:
criterion = LOSS_FUNCTIONS[loss_function_name](**loss_parameters)
else:
criterion = LOSS_FUNCTIONS[loss_function_name]()
if "floating_point_type" in config["test"]:
floating_point_type = config["test"]["floating_point_type"]
else:
floating_point_type = "float"
if floating_point_type == "double":
model.double()
run_evaluation(
model, test_loader, criterion,
device, floating_point_type
)
if __name__ == '__main__':
main()