forked from google/XNNPACK
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdynamic-fully-connected-operator-tester.h
395 lines (340 loc) · 14.3 KB
/
dynamic-fully-connected-operator-tester.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
// Copyright 2023 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#pragma once
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <limits>
#include <memory>
#include <random>
#include <vector>
#include <gtest/gtest.h>
#include "xnnpack.h"
#include "xnnpack/aligned-allocator.h"
#include "xnnpack/common.h"
#include "xnnpack/math.h"
#include "replicable_random_device.h"
class DynamicFullyConnectedOperatorTester {
public:
DynamicFullyConnectedOperatorTester& input_channels(size_t input_channels) {
assert(input_channels >= 1);
this->input_channels_ = input_channels;
return *this;
}
size_t input_channels() const {
return this->input_channels_;
}
DynamicFullyConnectedOperatorTester& output_channels(size_t output_channels) {
assert(output_channels >= 1);
this->output_channels_ = output_channels;
return *this;
}
size_t output_channels() const {
return this->output_channels_;
}
DynamicFullyConnectedOperatorTester& batch_size(size_t batch_size) {
assert(batch_size >= 1);
this->batch_size_ = batch_size;
return *this;
}
size_t batch_size() const {
return this->batch_size_;
}
DynamicFullyConnectedOperatorTester& input_stride(size_t input_stride) {
assert(input_stride >= 1);
this->input_stride_ = input_stride;
return *this;
}
size_t input_stride() const {
if (this->input_stride_ == 0) {
return input_channels();
} else {
assert(this->input_stride_ >= input_channels());
return this->input_stride_;
}
}
DynamicFullyConnectedOperatorTester& output_stride(size_t output_stride) {
assert(output_stride >= 1);
this->output_stride_ = output_stride;
return *this;
}
size_t output_stride() const {
if (this->output_stride_ == 0) {
return output_channels();
} else {
assert(this->output_stride_ >= output_channels());
return this->output_stride_;
}
}
DynamicFullyConnectedOperatorTester& qmin(uint8_t qmin) {
this->qmin_ = qmin;
return *this;
}
uint8_t qmin() const {
return this->qmin_;
}
DynamicFullyConnectedOperatorTester& qmax(uint8_t qmax) {
this->qmax_ = qmax;
return *this;
}
uint8_t qmax() const {
return this->qmax_;
}
DynamicFullyConnectedOperatorTester& transpose_weights(bool transpose_weights) {
this->transpose_weights_ = transpose_weights;
return *this;
}
bool transpose_weights() const {
return this->transpose_weights_;
}
DynamicFullyConnectedOperatorTester& has_bias(bool has_bias) {
this->has_bias_ = has_bias;
return *this;
}
bool has_bias() const {
return this->has_bias_;
}
DynamicFullyConnectedOperatorTester& iterations(size_t iterations) {
this->iterations_ = iterations;
return *this;
}
size_t iterations() const {
return this->iterations_;
}
uint32_t flags() const {
uint32_t flags = 0;
if (transpose_weights()) {
flags |= XNN_FLAG_TRANSPOSE_WEIGHTS;
}
return flags;
};
void TestF16() const {
xnnpack::ReplicableRandomDevice rng;
std::uniform_real_distribution<float> f32dist(0.1f, 1.0f);
std::vector<xnn_float16> input(XNN_EXTRA_BYTES / sizeof(xnn_float16) +
(batch_size() - 1) * input_stride() + input_channels());
std::vector<xnn_float16> kernel(output_channels() * input_channels());
std::vector<float> kernel_as_float(kernel.size());
std::vector<xnn_float16> bias(output_channels());
std::vector<float> bias_as_float(bias.size());
std::vector<xnn_float16> output((batch_size() - 1) * output_stride() + output_channels());
std::vector<float> output_ref(batch_size() * output_channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
std::generate(kernel.begin(), kernel.end(), [&]() { return f32dist(rng); });
std::copy(kernel.cbegin(), kernel.cend(), kernel_as_float.begin());
std::generate(bias.begin(), bias.end(), [&]() { return f32dist(rng); });
std::copy(bias.cbegin(), bias.cend(), bias_as_float.begin());
std::fill(output.begin(), output.end(), std::nanf(""));
// Compute reference results.
if (has_bias()) {
for (size_t i = 0; i < batch_size(); i++) {
for (size_t oc = 0; oc < output_channels(); oc++) {
output_ref[i * output_channels() + oc] = bias[oc];
}
}
} else {
std::fill(output_ref.begin(), output_ref.end(), 0.0f);
}
if (transpose_weights()) {
for (size_t i = 0; i < batch_size(); i++) {
for (size_t oc = 0; oc < output_channels(); oc++) {
for (size_t ic = 0; ic < input_channels(); ic++) {
output_ref[i * output_channels() + oc] +=
input[i * input_stride() + ic] *
kernel[ic * output_channels() + oc];
}
}
}
} else {
for (size_t i = 0; i < batch_size(); i++) {
for (size_t oc = 0; oc < output_channels(); oc++) {
for (size_t ic = 0; ic < input_channels(); ic++) {
output_ref[i * output_channels() + oc] +=
input[i * input_stride() + ic] *
kernel[oc * input_channels() + ic];
}
}
}
}
// Compute clamping parameters.
const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
const float accumulated_range = accumulated_max - accumulated_min;
const float scaled_min = xnn_float16(accumulated_min + accumulated_range / 255.0f * float(qmin()));
const float scaled_max = xnn_float16(accumulated_max - accumulated_range / 255.0f * float(255 - qmax()));
const float output_min = scaled_min == scaled_max ? -std::numeric_limits<float>::infinity() : scaled_min;
const float output_max = scaled_min == scaled_max ? +std::numeric_limits<float>::infinity() : scaled_max;
// Clamp reference results.
for (float& value : output_ref) {
value = std::max(std::min(value, output_max), output_min);
}
// Create, setup, run, and destroy Dynamic Fully Connected operator.
ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
xnn_operator_t dynamic_fully_connected_op = nullptr;
const xnn_status status = xnn_create_dynamic_fully_connected_nc_f16(
output_min, output_max, flags(), &dynamic_fully_connected_op);
if (status == xnn_status_unsupported_hardware) {
GTEST_SKIP();
}
ASSERT_EQ(xnn_status_success, status);
ASSERT_NE(nullptr, dynamic_fully_connected_op);
// Smart pointer to automatically delete dynamic_fully_connected_op.
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_dynamic_fully_connected_op(
dynamic_fully_connected_op, xnn_delete_operator);
size_t workspace_size = 0;
size_t workspace_alignment = 0;
ASSERT_EQ(
xnn_status_success,
xnn_reshape_dynamic_fully_connected_nc_f16(
dynamic_fully_connected_op, batch_size(), input_channels(), output_channels(), input_stride(),
output_stride(), &workspace_size, &workspace_alignment, /*threadpool=*/nullptr));
ASSERT_NE(workspace_size, 0);
ASSERT_LE(workspace_alignment, XNN_ALLOCATION_ALIGNMENT);
std::vector<char, AlignedAllocator<char, XNN_ALLOCATION_ALIGNMENT>> workspace(workspace_size);
ASSERT_EQ(
xnn_status_success, xnn_setup_dynamic_fully_connected_nc_f16(
dynamic_fully_connected_op, workspace.data(), input.data(), kernel.data(),
has_bias() ? bias.data() : nullptr, output.data()));
ASSERT_EQ(xnn_status_success, xnn_run_operator(dynamic_fully_connected_op, /*threadpool=*/nullptr));
VerifyF16(output, output_ref, output_max, output_min);
}
}
void VerifyF16(const std::vector<xnn_float16>& output,
const std::vector<float>& output_ref,
const float output_max,
const float output_min) const {
for (size_t i = 0; i < batch_size(); i++) {
for (size_t c = 0; c < output_channels(); c++) {
ASSERT_LE(output[i * output_stride() + c], output_max)
<< "batch index = " << i << ", channel = " << c;
ASSERT_GE(output[i * output_stride() + c], output_min)
<< "batch index = " << i << ", channel = " << c;
EXPECT_NEAR(
output_ref[i * output_channels() + c],
output[i * output_stride() + c],
1.0e-2f * std::abs(output_ref[i * output_channels() + c]))
<< "batch index = " << i << ", channel = " << c;
}
}
}
void TestF32() const {
xnnpack::ReplicableRandomDevice rng;
std::uniform_real_distribution<float> f32dist(0.1f, 1.0f);
std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) +
(batch_size() - 1) * input_stride() + input_channels());
std::vector<float> kernel(output_channels() * input_channels());
std::vector<float> bias(output_channels());
std::vector<float> output((batch_size() - 1) * output_stride() + output_channels());
std::vector<float> output_ref(batch_size() * output_channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
std::generate(kernel.begin(), kernel.end(), [&]() { return f32dist(rng); });
std::generate(bias.begin(), bias.end(), [&]() { return f32dist(rng); });
// Compute reference results.
if (has_bias()) {
for (size_t i = 0; i < batch_size(); i++) {
for (size_t oc = 0; oc < output_channels(); oc++) {
output_ref[i * output_channels() + oc] = bias[oc];
}
}
} else {
std::fill(output_ref.begin(), output_ref.end(), 0.0f);
}
if (transpose_weights()) {
for (size_t i = 0; i < batch_size(); i++) {
for (size_t oc = 0; oc < output_channels(); oc++) {
for (size_t ic = 0; ic < input_channels(); ic++) {
output_ref[i * output_channels() + oc] +=
input[i * input_stride() + ic] * kernel[ic * output_channels() + oc];
}
}
}
} else {
for (size_t i = 0; i < batch_size(); i++) {
for (size_t oc = 0; oc < output_channels(); oc++) {
for (size_t ic = 0; ic < input_channels(); ic++) {
output_ref[i * output_channels() + oc] +=
input[i * input_stride() + ic] * kernel[oc * input_channels() + ic];
}
}
}
}
// Compute clamping parameters.
const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
const float output_min = qmin() == 0 ? -std::numeric_limits<float>::infinity() :
accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin());
const float output_max = qmax() == 255 ? std::numeric_limits<float>::infinity() :
accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax());
// Clamp reference results.
for (float& value : output_ref) {
value = std::max(std::min(value, output_max), output_min);
}
// Create, setup, run, and destroy Fully Connected operator.
ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
xnn_operator_t dynamic_fully_connected_op = nullptr;
const xnn_status status = xnn_create_dynamic_fully_connected_nc_f32(
output_min, output_max, flags(), &dynamic_fully_connected_op);
if (status == xnn_status_unsupported_hardware) {
GTEST_SKIP();
}
ASSERT_EQ(xnn_status_success, status);
ASSERT_NE(nullptr, dynamic_fully_connected_op);
// Smart pointer to automatically delete dynamic_fully_connected_op.
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_dynamic_fully_connected_op(
dynamic_fully_connected_op, xnn_delete_operator);
size_t workspace_size = 0;
size_t workspace_alignment = 0;
ASSERT_EQ(
xnn_status_success,
xnn_reshape_dynamic_fully_connected_nc_f32(
dynamic_fully_connected_op, batch_size(), input_channels(), output_channels(), input_stride(),
output_stride(), &workspace_size, &workspace_alignment, /*threadpool=*/nullptr));
ASSERT_NE(workspace_size, 0);
ASSERT_LE(workspace_alignment, XNN_ALLOCATION_ALIGNMENT);
std::vector<char, AlignedAllocator<char, XNN_ALLOCATION_ALIGNMENT>> workspace(workspace_size);
ASSERT_EQ(
xnn_status_success, xnn_setup_dynamic_fully_connected_nc_f32(
dynamic_fully_connected_op, workspace.data(), input.data(), kernel.data(),
has_bias() ? bias.data() : nullptr, output.data()));
ASSERT_EQ(xnn_status_success, xnn_run_operator(dynamic_fully_connected_op, /*threadpool=*/nullptr));
VerifyF32(output, output_ref, output_max, output_min);
}
}
void VerifyF32(const std::vector<float>& output,
const std::vector<float>& output_ref,
float output_max,
float output_min) const
{
// Verify results.
for (size_t i = 0; i < batch_size(); i++) {
for (size_t c = 0; c < output_channels(); c++) {
ASSERT_LE(output[i * output_stride() + c], output_max)
<< "batch index = " << i << ", channel = " << c;
ASSERT_GE(output[i * output_stride() + c], output_min)
<< "batch index = " << i << ", channel = " << c;
EXPECT_NEAR(output_ref[i * output_channels() + c],
output[i * output_stride() + c],
1.0e-4f * std::abs(output_ref[i * output_channels() + c]))
<< "batch index = " << i << ", channel = " << c;
}
}
}
private:
size_t input_channels_{1};
size_t input_stride_{0};
size_t output_channels_{1};
size_t output_stride_{0};
size_t batch_size_{1};
uint8_t qmin_{0};
uint8_t qmax_{255};
bool transpose_weights_{false};
bool has_bias_{true};
size_t iterations_{1};
};