forked from google/XNNPACK
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathreduce-normalization-tester.h
86 lines (70 loc) · 2.28 KB
/
reduce-normalization-tester.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
// Copyright 2023 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#pragma once
#include <cassert>
#include <cstddef>
#include <vector>
#include <gtest/gtest.h>
#include "xnnpack.h"
#include "xnnpack/normalization.h"
class ReduceNormalizationTester {
public:
ReduceNormalizationTester& axes(const std::vector<size_t>& axes) {
assert(axes.size() <= XNN_MAX_TENSOR_DIMS);
this->axes_ = axes;
return *this;
}
const std::vector<size_t>& axes() const {
return this->axes_;
}
ReduceNormalizationTester& shape(const std::vector<size_t>& shape) {
assert(shape.size() <= XNN_MAX_TENSOR_DIMS);
this->shape_ = shape;
return *this;
}
const std::vector<size_t>& shape() const {
return this->shape_;
}
ReduceNormalizationTester& expected_axes(const std::vector<size_t>& expected_axes) {
assert(expected_axes.size() <= XNN_MAX_TENSOR_DIMS);
this->expected_axes_ = expected_axes;
return *this;
}
const std::vector<size_t>& expected_axes() const {
return this->expected_axes_;
}
ReduceNormalizationTester& expected_shape(const std::vector<size_t>& expected_shape) {
assert(expected_shape.size() <= XNN_MAX_TENSOR_DIMS);
this->expected_shape_ = expected_shape;
return *this;
}
const std::vector<size_t>& expected_shape() const {
return this->expected_shape_;
}
void Test() const {
std::vector<size_t> input_dims{shape()};
size_t num_input_dims = input_dims.size();
std::vector<size_t> reduction_axes{axes()};
size_t num_reduction_axes = reduction_axes.size();
xnn_normalize_reduction(
&num_reduction_axes,
reduction_axes.data(),
&num_input_dims,
input_dims.data());
ASSERT_EQ(num_reduction_axes, expected_axes().size());
for (size_t i = 0; i < num_reduction_axes; i++) {
ASSERT_EQ(expected_axes()[i], reduction_axes[i]) << " at index " << i;
}
ASSERT_EQ(num_input_dims, expected_shape().size());
for (size_t i = 0; i < num_input_dims; i++) {
ASSERT_EQ(expected_shape()[i], input_dims[i]) << " at index " << i;
}
}
private:
std::vector<size_t> axes_;
std::vector<size_t> shape_;
std::vector<size_t> expected_axes_;
std::vector<size_t> expected_shape_;
};