forked from google/XNNPACK
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrsum-microkernel-tester.h
273 lines (223 loc) · 8.13 KB
/
rsum-microkernel-tester.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
// Copyright 2023 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#pragma once
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <limits>
#include <numeric>
#include <random>
#include <vector>
#include <gtest/gtest.h>
#include <fp16/fp16.h>
#include "xnnpack.h"
#include "xnnpack/microfnptr.h"
#include "xnnpack/microparams.h"
#include "xnnpack/requantization.h"
#include "replicable_random_device.h"
class RSumMicrokernelTester {
public:
RSumMicrokernelTester& batch_size(size_t batch_size) {
assert(batch_size != 0);
this->batch_size_ = batch_size;
return *this;
}
size_t batch_size() const {
return this->batch_size_;
}
RSumMicrokernelTester& scale(float scale) {
this->scale_ = scale;
return *this;
}
float scale() const {
return this->scale_;
}
RSumMicrokernelTester& iterations(size_t iterations) {
this->iterations_ = iterations;
return *this;
}
size_t iterations() const {
return this->iterations_;
}
RSumMicrokernelTester& input_scale(float input_scale) {
assert(input_scale > 0.0f);
assert(std::isnormal(input_scale));
this->input_scale_ = input_scale;
return *this;
}
float input_scale() const {
return this->input_scale_;
}
RSumMicrokernelTester& output_scale(float output_scale) {
assert(output_scale > 0.0f);
assert(std::isnormal(output_scale));
this->output_scale_ = output_scale;
return *this;
}
float output_scale() const {
return this->output_scale_;
}
RSumMicrokernelTester& input_zero_point(uint8_t input_zero_point) {
this->input_zero_point_ = input_zero_point;
return *this;
}
uint8_t input_zero_point() const {
return this->input_zero_point_;
}
RSumMicrokernelTester& output_zero_point(uint8_t output_zero_point) {
this->output_zero_point_ = output_zero_point;
return *this;
}
uint8_t output_zero_point() const {
return this->output_zero_point_;
}
uint8_t qmin() const {
return this->qmin_;
}
uint8_t qmax() const {
return this->qmax_;
}
void Test(xnn_qs8_rsum_ukernel_fn rsum,
xnn_init_qs8_rsum_params_fn init_params = nullptr) const {
xnnpack::ReplicableRandomDevice rng;
std::uniform_int_distribution<int32_t> i8dist(
std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max());
std::vector<int8_t> input(batch_size() + XNN_EXTRA_BYTES / sizeof(int8_t));
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), [&]() { return i8dist(rng); });
// Compute reference results.
int32_t output_init = i8dist(rng);
int32_t output_ref = output_init;
for (size_t i = 0; i < batch_size(); i++) {
output_ref += int32_t(input[i]);
}
// Prepare parameters
struct xnn_qs8_rsum_params params;
if (init_params) {
init_params(¶ms);
}
// Call optimized micro-kernel.
int32_t output = output_init;
rsum(batch_size() * sizeof(int8_t), input.data(), &output, ¶ms);
// Verify results.
EXPECT_EQ(output_ref, output);
}
}
void Test(xnn_qu8_rsum_ukernel_fn rsum,
xnn_init_qs8_rsum_params_fn init_params = nullptr) const {
xnnpack::ReplicableRandomDevice rng;
std::uniform_int_distribution<uint32_t> u8dist(
std::numeric_limits<uint8_t>::min(), std::numeric_limits<uint8_t>::max());
std::vector<uint8_t> input(batch_size() + XNN_EXTRA_BYTES / sizeof(uint8_t));
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), [&]() { return u8dist(rng); });
// Compute reference results.
// The accumulator is not initialized to zero to verify that the
// microkernel doesn't overwrite the output.
uint32_t output_init = u8dist(rng);
uint32_t output_ref = output_init;
for (size_t i = 0; i < batch_size(); i++) {
output_ref += uint32_t(input[i]);
}
// Prepare parameters
struct xnn_qs8_rsum_params params;
if (init_params) {
init_params(¶ms);
}
// Call optimized micro-kernel.
uint32_t output = output_init;
rsum(batch_size() * sizeof(uint8_t), input.data(), &output, ¶ms);
// Verify results.
EXPECT_EQ(output_ref, output);
}
}
void Test(xnn_f16_rsum_ukernel_fn rsum, xnn_init_f16_scale_params_fn init_params) const {
xnnpack::ReplicableRandomDevice rng;
std::uniform_real_distribution<float> f32dist(0.01f, 1.0f);
std::vector<xnn_float16> input(batch_size() + XNN_EXTRA_BYTES / sizeof(xnn_float16));
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
// Compute reference results.
float output_ref = 0.0f;
for (size_t i = 0; i < batch_size(); i++) {
output_ref += input[i];
}
output_ref *= scale();
// Prepare parameters.
xnn_f16_scale_params params;
init_params(¶ms, scale());
// Call optimized micro-kernel.
xnn_float16 output = std::nanf(""); /* NaN */
rsum(batch_size() * sizeof(xnn_float16), input.data(), &output, ¶ms);
// Verify results.
EXPECT_NEAR(output, output_ref, std::abs(output_ref) * 4.0e-3f)
<< "with batch " << batch_size() << ", scale " << scale();
}
}
void Test(xnn_f16_f32acc_rsum_ukernel_fn rsum, xnn_init_f16_f32acc_scale_params_fn init_params) const {
xnnpack::ReplicableRandomDevice rng;
std::uniform_real_distribution<float> f32dist(0.01f, 1.0f);
std::vector<xnn_float16> input(batch_size() + XNN_EXTRA_BYTES / sizeof(xnn_float16));
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
// Compute reference results.
float output_ref = 0.0f;
for (size_t i = 0; i < batch_size(); i++) {
output_ref += input[i];
}
output_ref *= scale();
// Prepare parameters.
xnn_f16_f32acc_scale_params params;
init_params(¶ms, scale());
// Call optimized micro-kernel.
float output = 0.f;
rsum(batch_size() * sizeof(xnn_float16), input.data(), &output, ¶ms);
// Verify results.
EXPECT_NEAR(output, output_ref, std::abs(output_ref) * 1.0e-5f)
<< "with batch " << batch_size() << ", scale " << scale();
}
}
void Test(xnn_f32_rsum_ukernel_fn rsum, xnn_init_f32_scaleminmax_params_fn init_params) const {
xnnpack::ReplicableRandomDevice rng;
std::uniform_real_distribution<float> f32dist(0.01f, 1.0f);
std::vector<float> input(batch_size() + XNN_EXTRA_BYTES / sizeof(float));
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
// Prepare parameters.
xnn_f32_scaleminmax_params params;
auto input_min = std::min_element(input.begin(), input.end());
auto input_max = std::max_element(input.begin(), input.end());
const double mi = *input_min + (*input_max - *input_min) * 0.05;
const double ma = *input_max - (*input_min - *input_max) * 0.05;
init_params(¶ms, scale(), mi, ma);
// Compute reference results.
const double output_ref =
std::max(
std::min(
std::accumulate(input.begin(), input.begin() + batch_size(), 0.0) * double(scale()),
ma),
mi);
// Call optimized micro-kernel.
float output = 0.f;
rsum(batch_size() * sizeof(float), input.data(), &output, ¶ms);
// Verify results.
EXPECT_NEAR(output, output_ref, std::abs(output_ref) * 1.0e-6f)
<< "with batch " << batch_size() << ", scale " << scale();
}
}
private:
size_t batch_size_{1};
float scale_{1.0f};
size_t iterations_{15};
float input_scale_{1.25f};
float output_scale_{0.75f};
uint8_t input_zero_point_{121};
uint8_t output_zero_point_{133};
uint8_t qmin_{0};
uint8_t qmax_{255};
};