forked from google/XNNPACK
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathruntime.cc
62 lines (54 loc) · 2.15 KB
/
runtime.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#include <cstddef>
#include <cstdint>
#include <vector>
#include <gtest/gtest.h>
#include "runtime-tester.h"
TEST(RUNTIME, reshape_runtime) {
xnnpack::RuntimeTester tester(4);
uint32_t input0_id = 0;
uint32_t input1_id = 1;
uint32_t input2_id = 2;
uint32_t output_id = 3;
uint32_t add1_out, add2_out;
size_t dim0 = 3;
size_t new_dim0 = 400;
size_t dummy_internal_dim = 1;
// Set up input and output tensors.
tester.AddInputTensorF32({dim0}, input0_id)
.AddInputTensorF32({dim0}, input1_id)
.AddInputTensorF32({dim0}, input2_id)
.AddOutputTensorF32({dim0}, output_id)
.AddInternalDynamicTensorF32({dummy_internal_dim}, &add1_out)
.AddInternalDynamicTensorF32({dummy_internal_dim}, &add2_out);
// Add ops. Note that we do this in two steps to avoid problems with the
// `cmake-windows-x86` (using Visual C) build which doesn't propagate the
// values for `add1_out` and `add2_out` properly.
tester.AddAddition(input0_id, input1_id, add1_out)
.AddAddition(input0_id, input2_id, add2_out)
.AddMultiply(add1_out, add2_out, output_id);
std::vector<float> expected(dim0);
const float* input0_data = tester.GetExternalTensorDataF32(input0_id);
const float* input1_data = tester.GetExternalTensorDataF32(input1_id);
const float* input2_data = tester.GetExternalTensorDataF32(input2_id);
for (size_t i = 0; i < dim0; ++i) {
expected[i] =
(input0_data[i] + input1_data[i]) * (input0_data[i] + input2_data[i]);
}
auto output = tester.RunWithoutFusion<float>();
ASSERT_EQ(expected, output);
tester.ReshapeInput({new_dim0}, input0_id);
tester.ReshapeInput({new_dim0}, input1_id);
tester.ReshapeInput({new_dim0}, input2_id);
tester.ReshapeRuntime();
tester.SetupRuntimeV2();
output = tester.RepeatRun<float>();
expected.resize(new_dim0);
input0_data = tester.GetExternalTensorDataF32(input0_id);
input1_data = tester.GetExternalTensorDataF32(input1_id);
input2_data = tester.GetExternalTensorDataF32(input2_id);
for (size_t i = 0; i < new_dim0; ++i) {
expected[i] =
(input0_data[i] + input1_data[i]) * (input0_data[i] + input2_data[i]);
}
ASSERT_EQ(expected, output);
}