forked from google/XNNPACK
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsubgraph-binary-tester.h
161 lines (140 loc) · 5.48 KB
/
subgraph-binary-tester.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
// Copyright 2022 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#pragma once
#include <algorithm>
#include <array>
#include <cstddef>
#include <cstdint>
#include <functional>
#include <limits>
#include <numeric>
#include <random>
#include <vector>
#include <gtest/gtest.h>
#include "xnnpack.h"
#include "xnnpack/node-type.h"
#include "xnnpack/operator.h"
#include "xnnpack/requantization.h"
#include "xnnpack/subgraph.h"
#include "replicable_random_device.h"
template <typename T>
class NumericLimits {
public:
static constexpr T min() { return std::numeric_limits<T>::min(); }
static constexpr T max() { return std::numeric_limits<T>::max(); }
};
template <>
class NumericLimits<xnn_float16> {
public:
static xnn_float16 min() {
return -std::numeric_limits<float>::infinity();
}
static xnn_float16 max() {
return +std::numeric_limits<float>::infinity();
}
};
template <typename T> class BinaryTest : public ::testing::Test {
protected:
BinaryTest() {
shape_dist = std::uniform_int_distribution<size_t>(0, XNN_MAX_TENSOR_DIMS);
dim_dist = std::uniform_int_distribution<size_t>(1, 9);
f32dist = std::uniform_real_distribution<float>(0.01f, 1.0f);
i8dist =
std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max());
u8dist =
std::uniform_int_distribution<int32_t>(std::numeric_limits<uint8_t>::min(), std::numeric_limits<uint8_t>::max());
scale_dist = std::uniform_real_distribution<float>(0.1f, 5.0f);
s32dist = std::uniform_int_distribution<int32_t>(std::numeric_limits<int32_t>::min(), std::numeric_limits<int32_t>::max());
}
void SetUp() override
{
std::vector<size_t> input1_shape = RandomShape();
std::vector<size_t> input2_shape;
std::vector<size_t> output_shape;
// Create input dimensions.
// Create input 2 with an equal or larger number of dimensions.
const size_t input2_num_dims = std::uniform_int_distribution<size_t>(input1_shape.size(), XNN_MAX_TENSOR_DIMS)(rng);
input2_shape = RandomShape(input2_num_dims);
// Ensure that the inputs dimensions match.
std::copy_backward(input1_shape.begin(), input1_shape.end(), input2_shape.end());
// Choose a random dimension to broadcast for each input.
const size_t input1_broadcast_dim = std::uniform_int_distribution<size_t>(0, input1_shape.size())(rng);
if (input1_broadcast_dim < input1_shape.size()) {
input1_shape[input1_broadcast_dim] = 1;
}
const size_t input2_broadcast_dim = std::uniform_int_distribution<size_t>(0, input2_shape.size())(rng);
if (input2_broadcast_dim < input2_shape.size()) {
input2_shape[input2_broadcast_dim] = 1;
}
input1_dims.resize(XNN_MAX_TENSOR_DIMS);
input2_dims.resize(XNN_MAX_TENSOR_DIMS);
output_dims.resize(XNN_MAX_TENSOR_DIMS);
// Calculate generalized shapes.
std::fill(input1_dims.begin(), input1_dims.end(), 1);
std::fill(input2_dims.begin(), input2_dims.end(), 1);
std::copy_backward(input1_shape.cbegin(), input1_shape.cend(), input1_dims.end());
std::copy_backward(input2_shape.cbegin(), input2_shape.cend(), input2_dims.end());
for (size_t i = 0; i < XNN_MAX_TENSOR_DIMS; i++) {
if (input1_dims[i] != 1 && input2_dims[i] != 1) {
ASSERT_EQ(input1_dims[i], input2_dims[i]) << "i: " << i;
}
output_dims[i] = std::max(input1_dims[i], input2_dims[i]);
}
if (f32dist(rng) < 0.5f) {
RemoveLeadingOnes(input1_dims);
}
if (f32dist(rng) < 0.5f) {
RemoveLeadingOnes(input2_dims);
}
while (output_dims.size() > std::max(input1_dims.size(), input2_dims.size())) {
output_dims.erase(output_dims.begin());
}
input1 = std::vector<T>(XNN_EXTRA_BYTES / sizeof(T) + NumElements(input1_shape));
input2 = std::vector<T>(XNN_EXTRA_BYTES / sizeof(T) + NumElements(input2_shape));
operator_output = std::vector<T>(NumElements(output_dims));
subgraph_output = std::vector<T>(operator_output.size());
}
std::vector<size_t> RandomShape(size_t num_dims)
{
std::vector<size_t> dims(num_dims);
std::generate(dims.begin(), dims.end(), [&] { return dim_dist(rng); });
return dims;
}
std::vector<size_t> RandomShape() { return RandomShape(shape_dist(rng)); }
size_t NumElements(std::vector<size_t>& dims)
{
return std::accumulate(dims.begin(), dims.end(), size_t(1), std::multiplies<size_t>());
}
size_t NumElements(std::array<size_t, XNN_MAX_TENSOR_DIMS>& dims)
{
return std::accumulate(dims.begin(), dims.end(), size_t(1), std::multiplies<size_t>());
}
void RemoveLeadingOnes(std::vector<size_t>& dims) {
while (!dims.empty()) {
if (dims.front() == 1) {
dims.erase(dims.begin());
} else {
break;
}
}
}
xnnpack::ReplicableRandomDevice rng;
std::uniform_int_distribution<size_t> shape_dist;
std::uniform_int_distribution<size_t> dim_dist;
std::uniform_real_distribution<float> f32dist;
std::uniform_real_distribution<float> scale_dist;
std::uniform_int_distribution<int32_t> i8dist;
std::uniform_int_distribution<int32_t> u8dist;
std::uniform_int_distribution<int32_t> s32dist;
T output_min = NumericLimits<T>::min();
T output_max = NumericLimits<T>::max();
std::vector<size_t> input1_dims;
std::vector<size_t> input2_dims;
std::vector<size_t> output_dims;
std::vector<T> input1;
std::vector<T> input2;
std::vector<T> operator_output;
std::vector<T> subgraph_output;
};