forked from google/XNNPACK
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsubgraph-tester.h
580 lines (489 loc) · 21.4 KB
/
subgraph-tester.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#pragma once
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <functional>
#include <limits>
#include <memory>
#include <numeric>
#include <random>
#include <unordered_map>
#include <vector>
#include <gtest/gtest.h>
#include "xnnpack.h"
#include "xnnpack/subgraph.h"
#include "replicable_random_device.h"
namespace xnnpack {
enum class TensorType {
kDense,
kSparse,
};
struct Padding {
uint32_t top;
uint32_t right;
uint32_t bottom;
uint32_t left;
};
struct HeightWidth {
uint32_t height;
uint32_t width;
};
using Kernel = HeightWidth;
using Subsampling = HeightWidth;
using Dilation = HeightWidth;
using Upsampling = HeightWidth;
using Adjustment = HeightWidth;
struct ConvolutionParams {
Padding padding;
Kernel kernel;
Subsampling subsampling;
Dilation dilation;
uint32_t groups;
uint32_t group_input_channels;
uint32_t group_output_channels;
};
struct DeconvolutionParams {
Padding padding;
Adjustment adjustment;
Kernel kernel;
Upsampling upsampling;
Dilation dilation;
uint32_t groups;
uint32_t group_input_channels;
uint32_t group_output_channels;
};
struct DepthwiseConvolutionParams {
Padding padding;
Kernel kernel;
Subsampling subsampling;
Dilation dilation;
uint32_t depth_multiplier;
uint32_t input_channels;
};
class SubgraphTester {
public:
explicit SubgraphTester(uint32_t external_value_ids) {
xnn_status status = xnn_initialize(nullptr);
EXPECT_EQ(status, xnn_status_success);
xnn_subgraph_t subgraph_ptr = nullptr;
status = xnn_create_subgraph(external_value_ids, 0 /* flags */, &subgraph_ptr);
EXPECT_EQ(status, xnn_status_success);
subgraph_.reset(subgraph_ptr);
}
inline SubgraphTester& AddInternalDynamicTensorF32(const std::vector<size_t>& dims,
uint32_t* id_out,
uint32_t flags = 0) {
const xnn_status status =
xnn_define_tensor_value(subgraph_.get(), xnn_datatype_fp32, dims.size(),
dims.data(), nullptr, XNN_INVALID_VALUE_ID, flags, id_out);
EXPECT_EQ(status, xnn_status_success);
return *this;
}
inline SubgraphTester& AddDynamicTensorF32(const std::vector<size_t>& dims,
uint32_t external_id,
uint32_t flags = 0) {
uint32_t id_out = 0;
const xnn_status status =
xnn_define_tensor_value(subgraph_.get(), xnn_datatype_fp32, dims.size(),
dims.data(), nullptr, external_id, flags, &id_out);
EXPECT_EQ(status, xnn_status_success);
EXPECT_EQ(id_out, external_id);
return *this;
}
inline SubgraphTester& AddDynamicTensorQS8(
int32_t zero_point,
float scale,
const std::vector<size_t>& dims,
uint32_t external_id,
uint32_t flags = 0)
{
uint32_t id_out = 0;
const xnn_status status =
xnn_define_quantized_tensor_value(subgraph_.get(), xnn_datatype_qint8,
zero_point, scale,
dims.size(),
dims.data(), nullptr, external_id, flags, &id_out);
EXPECT_EQ(status, xnn_status_success);
EXPECT_EQ(id_out, external_id);
return *this;
}
inline SubgraphTester& AddDynamicallyQuantizedTensor(
const std::vector<size_t>& dims,
uint32_t external_id,
uint32_t flags = 0)
{
uint32_t id_out = 0;
const xnn_status status =
xnn_define_dynamically_quantized_tensor_value(subgraph_.get(), xnn_datatype_qdint8,
dims.size(), 1,
dims.data(), external_id, flags, &id_out);
EXPECT_EQ(status, xnn_status_success);
EXPECT_EQ(id_out, external_id);
return *this;
}
inline SubgraphTester& AddStaticTensorQS8(const std::vector<size_t>& dims,
TensorType tensor_type,
const float* scale,
uint32_t external_id,
uint32_t flags = 0,
int8_t* data = nullptr) {
if (data == nullptr) {
const size_t num_elements = NumElements(dims);
static_data_.emplace_back(num_elements * sizeof(int8_t));
data = reinterpret_cast<int8_t*>(static_data_.back().data());
if (tensor_type == TensorType::kDense) {
std::generate(data, data + num_elements, [&]() { return w8dist(rng_); });
} else {
// Create tensor with 90% sparsity in two steps:
// 1. Generate non-zero elements in the beginning of the vector
// 2. Randomize positions of non-zero elements
const size_t num_nonzero_elements = num_elements / 10;
std::generate(data, data + num_nonzero_elements, [&]() { return w8dist(rng_); });
std::shuffle(data, data + num_elements, rng_);
}
}
uint32_t id_out;
const xnn_status status =
xnn_define_channelwise_quantized_tensor_value(subgraph_.get(), xnn_datatype_qcint8, scale, dims.size(), 0,
dims.data(), data, external_id, flags, &id_out);
EXPECT_EQ(status, xnn_status_success);
EXPECT_EQ(id_out, external_id);
return *this;
}
inline SubgraphTester& AddStaticTensorF32(const std::vector<size_t>& dims,
TensorType tensor_type,
uint32_t external_id,
uint32_t flags = 0,
float* data = nullptr) {
if (data == nullptr) {
const size_t num_elements = NumElements(dims);
static_data_.emplace_back(num_elements * sizeof(float));
data = reinterpret_cast<float*>(static_data_.back().data());
if (tensor_type == TensorType::kDense) {
std::generate(data, data + num_elements, [&]() { return f32dist(rng_); });
} else {
// Create tensor with 90% sparsity in two steps:
// 1. Generate non-zero elements in the beginning of the vector
// 2. Randomize positions of non-zero elements
const size_t num_nonzero_elements = num_elements / 10;
std::generate(data, data + num_nonzero_elements, [&]() { return f32dist(rng_); });
std::shuffle(data, data + num_elements, rng_);
}
}
uint32_t id_out;
const xnn_status status =
xnn_define_tensor_value(subgraph_.get(), xnn_datatype_fp32, dims.size(),
dims.data(), data, external_id, flags, &id_out);
EXPECT_EQ(status, xnn_status_success);
EXPECT_EQ(id_out, external_id);
return *this;
}
SubgraphTester& AddInputTensorF32(const std::vector<size_t>& dims, uint32_t external_id) {
AddDynamicTensorF32(dims, external_id, XNN_VALUE_FLAG_EXTERNAL_INPUT);
size_t num_elements = NumElements(dims);
auto input = std::vector<char>(num_elements * sizeof(float) + XNN_EXTRA_BYTES * sizeof(char));
float* data = reinterpret_cast<float*>(input.data());
std::generate(data, data + num_elements, [&]() { return f32dist(rng_); });
auto it = external_tensors_.insert({external_id, input});
EXPECT_TRUE(it.second);
return *this;
}
SubgraphTester& AddInputTensorQS8(int32_t zero_point, float scale, const std::vector<size_t>& dims, uint32_t external_id) {
AddDynamicTensorQS8(zero_point, scale, dims, external_id, XNN_VALUE_FLAG_EXTERNAL_INPUT);
size_t num_elements = NumElements(dims);
auto input = std::vector<char>(num_elements * sizeof(float) + XNN_EXTRA_BYTES * sizeof(char));
float* data = reinterpret_cast<float*>(input.data());
std::generate(data, data + num_elements, [&]() { return f32dist(rng_); });
auto it = external_tensors_.insert({external_id, input});
EXPECT_TRUE(it.second);
return *this;
}
SubgraphTester& AddOutputTensorF32(const std::vector<size_t>& dims, uint32_t external_id) {
output_id_ = external_id;
AddDynamicTensorF32(dims, external_id, XNN_VALUE_FLAG_EXTERNAL_OUTPUT);
size_t num_elements = NumElements(dims);
auto output = std::vector<char>(num_elements * sizeof(float));
float* data = reinterpret_cast<float*>(output.data());
std::fill(data, data + num_elements, std::nanf(""));
auto it = external_tensors_.insert({external_id, output});
EXPECT_TRUE(it.second);
return *this;
}
SubgraphTester& AddConcatenate2(size_t axis, uint32_t input1_id, uint32_t input2_id, uint32_t output_id) {
const xnn_status status = xnn_define_concatenate2(
subgraph_.get(), axis, input1_id, input2_id, output_id, 0 /* flags */);
EXPECT_EQ(status, xnn_status_success);
return *this;
}
inline SubgraphTester& AddConstantPad(
const size_t *pre_paddings, const size_t *post_paddings,
float padding_value, uint32_t input_id, uint32_t output_id) {
const xnn_status status = xnn_define_static_constant_pad(
subgraph_.get(), pre_paddings, post_paddings, padding_value, input_id,
output_id, 0 /* flags */);
EXPECT_EQ(status, xnn_status_success);
return *this;
}
inline SubgraphTester& AddConstantPad(
const std::vector<size_t>& pre_paddings,
const std::vector<size_t>& post_paddings,
float padding_value,
uint32_t input_id,
uint32_t output_id)
{
const xnn_status status = xnn_define_static_constant_pad(
subgraph_.get(), pre_paddings.data(), post_paddings.data(), padding_value, input_id,
output_id, /*flags=*/0);
EXPECT_EQ(status, xnn_status_success);
return *this;
}
SubgraphTester& AddConvert(uint32_t input_id, uint32_t output_id) {
const xnn_status status = xnn_define_convert(
subgraph_.get(), input_id, output_id, 0 /* flags */);
EXPECT_EQ(status, xnn_status_success);
return *this;
}
inline SubgraphTester& AddConvolution2D(
ConvolutionParams params,
uint32_t input_id, uint32_t filter_id, uint32_t bias_id,
uint32_t output_id) {
const xnn_status status = xnn_define_convolution_2d(
subgraph_.get(), params.padding.top, params.padding.right,
params.padding.bottom, params.padding.left, params.kernel.height, params.kernel.width,
params.subsampling.height, params.subsampling.width, params.dilation.height, params.dilation.width,
params.groups, params.group_input_channels, params.group_output_channels,
-std::numeric_limits<float>::infinity(),
std::numeric_limits<float>::infinity(), input_id, filter_id, bias_id,
output_id, 0 /* flags */);
EXPECT_EQ(status, xnn_status_success);
return *this;
}
SubgraphTester& AddCopy(uint32_t input_id, uint32_t output_id) {
const xnn_status status = xnn_define_copy(
subgraph_.get(), input_id, output_id, 0 /* flags */);
EXPECT_EQ(status, xnn_status_success);
return *this;
}
inline SubgraphTester& AddDepthwiseConvolution2D(
DepthwiseConvolutionParams params,
uint32_t input_id, uint32_t filter_id, uint32_t bias_id, uint32_t output_id) {
const xnn_status status = xnn_define_depthwise_convolution_2d(
subgraph_.get(), params.padding.top, params.padding.right,
params.padding.bottom, params.padding.left, params.kernel.height, params.kernel.width,
params.subsampling.height, params.subsampling.width, params.dilation.height, params.dilation.width,
params.depth_multiplier, params.input_channels,
-std::numeric_limits<float>::infinity(),
std::numeric_limits<float>::infinity(), input_id, filter_id, bias_id,
output_id, 0 /* flags */);
EXPECT_EQ(status, xnn_status_success);
return *this;
}
SubgraphTester& AddAddition(uint32_t input_id1, uint32_t input_id2, uint32_t output_id) {
const xnn_status status =
xnn_define_add2(subgraph_.get(), -std::numeric_limits<float>::infinity(),
std::numeric_limits<float>::infinity(), input_id1,
input_id2, output_id, 0 /* flags */);
EXPECT_EQ(status, xnn_status_success);
return *this;
}
inline SubgraphTester& AddAveragePooling2D(
uint32_t input_padding_top, uint32_t input_padding_right,
uint32_t input_padding_bottom, uint32_t input_padding_left,
uint32_t pooling_height, uint32_t pooling_width, uint32_t stride_height,
uint32_t stride_width, uint32_t input_id, uint32_t output_id) {
const xnn_status status = xnn_define_average_pooling_2d(
subgraph_.get(), input_padding_top, input_padding_right,
input_padding_bottom, input_padding_left, pooling_height, pooling_width,
stride_height, stride_width, -std::numeric_limits<float>::infinity(),
std::numeric_limits<float>::infinity(), input_id, output_id,
0 /* flags */);
EXPECT_EQ(status, xnn_status_success);
return *this;
}
SubgraphTester& AddClamp(float output_min, float output_max, uint32_t input_id, uint32_t output_id) {
const xnn_status status =
xnn_define_clamp(subgraph_.get(), output_min, output_max, input_id, output_id, 0 /* flags */);
EXPECT_EQ(status, xnn_status_success);
return *this;
}
inline SubgraphTester& AddDeconvolution2D(
uint32_t input_padding_top, uint32_t input_padding_right,
uint32_t input_padding_bottom, uint32_t input_padding_left,
uint32_t adjustment_height, uint32_t adjustment_width,
uint32_t kernel_height, uint32_t kernel_width,
uint32_t upsampling_height, uint32_t upsampling_width,
uint32_t dilation_height, uint32_t dilation_width, uint32_t groups,
size_t group_input_channels, size_t group_output_channels,
uint32_t input_id, uint32_t filter_id, uint32_t bias_id,
uint32_t output_id) {
const xnn_status status = xnn_define_deconvolution_2d(
subgraph_.get(), input_padding_top, input_padding_right,
input_padding_bottom, input_padding_left, adjustment_height,
adjustment_width, kernel_height, kernel_width, upsampling_height,
upsampling_width, dilation_height, dilation_width, groups,
group_input_channels, group_output_channels,
-std::numeric_limits<float>::infinity(),
std::numeric_limits<float>::infinity(), input_id, filter_id, bias_id,
output_id, 0 /* flags */);
EXPECT_EQ(status, xnn_status_success);
return *this;
}
inline SubgraphTester& AddDeconvolution2D(
DeconvolutionParams params,
uint32_t input_id, uint32_t filter_id, uint32_t bias_id,
uint32_t output_id) {
const xnn_status status = xnn_define_deconvolution_2d(
subgraph_.get(), params.padding.top, params.padding.right,
params.padding.bottom, params.padding.left, params.adjustment.height,
params.adjustment.width, params.kernel.height, params.kernel.width, params.upsampling.height,
params.upsampling.width, params.dilation.height, params.dilation.width, params.groups,
params.group_input_channels, params.group_output_channels,
-std::numeric_limits<float>::infinity(),
std::numeric_limits<float>::infinity(), input_id, filter_id, bias_id,
output_id, 0 /* flags */);
EXPECT_EQ(status, xnn_status_success);
return *this;
}
SubgraphTester& AddDivide(uint32_t input_id1, uint32_t input_id2, uint32_t output_id) {
const xnn_status status =
xnn_define_divide(subgraph_.get(), -std::numeric_limits<float>::infinity(),
std::numeric_limits<float>::infinity(), input_id1,
input_id2, output_id, 0 /* flags */);
EXPECT_EQ(status, xnn_status_success);
return *this;
}
SubgraphTester& AddEvenSplit2(size_t split_dim, uint32_t input_id, uint32_t output1_id, uint32_t output2_id) {
const xnn_status status = xnn_define_even_split2(
subgraph_.get(), split_dim, input_id, output1_id, output2_id, 0 /* flags */);
EXPECT_EQ(status, xnn_status_success);
return *this;
}
inline SubgraphTester& AddFullyConnected(
uint32_t input_id, uint32_t filter_id, uint32_t bias_id, uint32_t output_id, uint32_t flags = 0) {
const xnn_status status = xnn_define_fully_connected(
subgraph_.get(),
-std::numeric_limits<float>::infinity(),
std::numeric_limits<float>::infinity(), input_id, filter_id, bias_id,
output_id, flags);
EXPECT_EQ(status, xnn_status_success);
return *this;
}
SubgraphTester& AddGlobalAveragePooling(uint32_t input_id, uint32_t output_id) {
const xnn_status status = xnn_define_global_average_pooling_2d(
subgraph_.get(), -std::numeric_limits<float>::infinity(),
std::numeric_limits<float>::infinity(), input_id, output_id, 0 /* flags */);
EXPECT_EQ(status, xnn_status_success);
return *this;
}
SubgraphTester& AddEvenSplit3(uint32_t input_id, uint32_t output_id0, uint32_t output_id1, uint32_t output_id2) {
const xnn_status status = xnn_define_even_split3(
subgraph_.get(), 0, input_id, output_id0, output_id1, output_id2, 0 /*flags */);
EXPECT_EQ(status, xnn_status_success);
return *this;
}
SubgraphTester& AddHardSwish(uint32_t input_id, uint32_t output_id) {
const xnn_status status =
xnn_define_hardswish(subgraph_.get(), input_id, output_id, 0 /* flags */);
EXPECT_EQ(status, xnn_status_success);
return *this;
}
SubgraphTester& AddLeakyRelu(float negative_slope, uint32_t input_id, uint32_t output_id) {
const xnn_status status =
xnn_define_leaky_relu(subgraph_.get(), negative_slope, input_id, output_id, 0 /* flags */);
EXPECT_EQ(status, xnn_status_success);
return *this;
}
inline SubgraphTester& AddMaxPooling2D(
uint32_t input_padding_top, uint32_t input_padding_right,
uint32_t input_padding_bottom, uint32_t input_padding_left,
uint32_t pooling_height, uint32_t pooling_width, uint32_t stride_height,
uint32_t stride_width, uint32_t dilation_height, uint32_t dilation_width, uint32_t input_id, uint32_t output_id) {
const xnn_status status = xnn_define_max_pooling_2d(
subgraph_.get(), input_padding_top, input_padding_right,
input_padding_bottom, input_padding_left, pooling_height, pooling_width,
stride_height, stride_width, dilation_height, dilation_width, -std::numeric_limits<float>::infinity(),
std::numeric_limits<float>::infinity(), input_id, output_id,
0 /* flags */);
EXPECT_EQ(status, xnn_status_success);
return *this;
}
SubgraphTester& AddMultiply(uint32_t input_id1, uint32_t input_id2, uint32_t output_id) {
const xnn_status status =
xnn_define_multiply2(subgraph_.get(), -std::numeric_limits<float>::infinity(),
std::numeric_limits<float>::infinity(), input_id1,
input_id2, output_id, 0 /* flags */);
EXPECT_EQ(status, xnn_status_success);
return *this;
}
SubgraphTester& AddPrelu(uint32_t input_id, uint32_t slope_id, uint32_t output_id) {
const xnn_status status = xnn_define_prelu(subgraph_.get(), input_id, slope_id, output_id, /*flags=*/0);
EXPECT_EQ(status, xnn_status_success);
return *this;
}
SubgraphTester& AddSubtract(uint32_t input_id1, uint32_t input_id2, uint32_t output_id) {
const xnn_status status =
xnn_define_subtract(subgraph_.get(), -std::numeric_limits<float>::infinity(),
std::numeric_limits<float>::infinity(), input_id1,
input_id2, output_id, 0 /* flags */);
EXPECT_EQ(status, xnn_status_success);
return *this;
}
SubgraphTester& Optimize() {
const xnn_status status = xnn_subgraph_optimize(subgraph_.get(), 0 /* flags */);
EXPECT_EQ(status, xnn_status_success);
return *this;
}
SubgraphTester& RewriteForNchw() {
xnn_subgraph_rewrite_for_nchw(subgraph_.get());
return *this;
}
SubgraphTester& RewriteForFp16() {
EXPECT_TRUE(xnn_subgraph_rewrite_for_fp16(subgraph_.get()));
return *this;
}
SubgraphTester& RewriteForFp16WithFailure() {
EXPECT_FALSE(xnn_subgraph_rewrite_for_fp16(subgraph_.get()));
return *this;
}
xnn_layout_type GetLayout(uint32_t value_id) const {
return subgraph_->values[value_id].layout;
}
const xnn_value* Value(uint32_t value_id) const {
return &subgraph_->values[value_id];
}
const xnn_node* Node(uint32_t node_id) const {
return &subgraph_->nodes[node_id];
}
size_t NumNodes() const {
return subgraph_->num_nodes;
}
size_t NumValues() const {
return subgraph_->num_values;
}
xnn_subgraph* Subgraph() const {
return subgraph_.get();
}
float* GetExternalTensorDataF32(uint32_t external_id) {
return reinterpret_cast<float*>(external_tensors_[external_id].data());
}
static inline size_t NumElements(const std::vector<size_t>& dims) {
return std::accumulate(std::begin(dims), std::end(dims), size_t(1), std::multiplies<size_t>());
}
protected:
std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> subgraph_{nullptr, xnn_delete_subgraph};
std::unordered_map<uint32_t, std::vector<char>> external_tensors_;
uint32_t output_id_;
xnnpack::ReplicableRandomDevice rng_;
std::uniform_real_distribution<float> f32dist = std::uniform_real_distribution<float>(-1.0f, +1.0f);
std::uniform_int_distribution<int32_t> w8dist = std::uniform_int_distribution<int32_t>(-std::numeric_limits<int8_t>::max(), std::numeric_limits<int8_t>::max());
private:
std::vector<std::vector<char>> static_data_;
};
} // namespace xnnpack