forked from google/XNNPACK
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathunpooling-2d.cc
304 lines (256 loc) · 13.3 KB
/
unpooling-2d.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
// Copyright 2022 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <algorithm> // For std::generate, std::min.
#include <array> // For std::array.
#include <cstddef> // For size_t.
#include <cstdint> // For uint32_t.
#include <memory> // For std::unique_ptr.
#include <random> // For std::uniform_real_distribution.
#include <vector> // For std::vector.
#include <gtest/gtest.h>
#include "xnnpack.h"
#include "xnnpack/node-type.h"
#include "xnnpack/operator-utils.h"
#include "xnnpack/operator.h"
#include "xnnpack/subgraph.h"
#include "replicable_random_device.h"
template <class T, class BiasType = T> class Unpooling2DTestBase : public ::testing::Test {
protected:
Unpooling2DTestBase() {
input_size_dist = std::uniform_int_distribution<uint32_t>(10, 15);
kernel_size_dist = std::uniform_int_distribution<uint32_t>(1, 5);
stride_dist = std::uniform_int_distribution<uint32_t>(1, 3);
f32dist = std::uniform_real_distribution<float>(0.1f, 1.0f);
scale_dist = std::uniform_real_distribution<float>(1.0f, 5.0f);
i32dist = std::uniform_int_distribution<int32_t>(-10000, 10000);
u32dist = std::uniform_int_distribution<uint32_t>();
batch_size = input_size_dist(rng);
input_height = input_size_dist(rng);
input_width = input_size_dist(rng);
pooling_height = 2;
pooling_width = 2;
channels = input_size_dist(rng);
output_height = xnn_compute_unpooling_output_dimension(input_height, padding_top + padding_bottom, pooling_height);
output_width = xnn_compute_unpooling_output_dimension(input_width, padding_left + padding_right, pooling_width);
index_dist = std::uniform_int_distribution<uint32_t>(0, pooling_height * pooling_width - 1);
input_value_dims = {{batch_size, input_height, input_width, channels}};
input_index_dims = {{batch_size, input_height, input_width, channels}};
output_dims = {{batch_size, output_height, output_width, channels}};
input = std::vector<T>(XNN_EXTRA_BYTES / sizeof(T) + batch_size * input_height * input_width * channels);
input_index = std::vector<T>(batch_size * input_height * input_width * channels);
operator_output = std::vector<T>(batch_size * output_height * output_width * channels);
subgraph_output = std::vector<T>(batch_size * output_height * output_width * channels);
}
xnnpack::ReplicableRandomDevice rng;
std::uniform_int_distribution<uint32_t> input_size_dist;
std::uniform_int_distribution<uint32_t> kernel_size_dist;
std::uniform_int_distribution<uint32_t> stride_dist;
std::uniform_int_distribution<int32_t> i32dist;
std::uniform_int_distribution<uint32_t> u32dist;
std::uniform_int_distribution<uint32_t> index_dist;
std::uniform_real_distribution<float> f32dist;
std::uniform_real_distribution<float> scale_dist;
const uint32_t padding_top = 0;
const uint32_t padding_right = 0;
const uint32_t padding_bottom = 0;
const uint32_t padding_left = 0;
uint32_t batch_size;
uint32_t input_height;
uint32_t input_width;
uint32_t kernel_height;
uint32_t kernel_width;
uint32_t pooling_height;
uint32_t pooling_width;
uint32_t channels;
uint32_t output_height;
uint32_t output_width;
std::array<size_t, 4> input_value_dims;
std::array<size_t, 4> input_index_dims;
std::array<size_t, 4> output_dims;
std::vector<T> input;
std::vector<T> input_index;
std::vector<T> operator_output;
std::vector<T> subgraph_output;
};
using Unpooling2DTestX32 = Unpooling2DTestBase<uint32_t>;
TEST_F(Unpooling2DTestX32, define)
{
ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr));
xnn_subgraph_t subgraph = nullptr;
ASSERT_EQ(xnn_status_success, xnn_create_subgraph(2, /*flags=*/0, &subgraph));
std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph);
uint32_t input_value_id = XNN_INVALID_NODE_ID;
ASSERT_EQ(
xnn_status_success, xnn_define_tensor_value(
subgraph, xnn_datatype_fp32, input_value_dims.size(), input_value_dims.data(), nullptr,
/*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_value_id));
ASSERT_NE(input_value_id, XNN_INVALID_NODE_ID);
uint32_t input_index_id = XNN_INVALID_NODE_ID;
ASSERT_EQ(
xnn_status_success, xnn_define_tensor_value(
subgraph, xnn_datatype_fp32, input_index_dims.size(), input_index_dims.data(),
input_index.data(), XNN_INVALID_VALUE_ID, /*flags=*/0, &input_index_id));
uint32_t output_id = XNN_INVALID_NODE_ID;
ASSERT_EQ(
xnn_status_success, xnn_define_tensor_value(
subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr,
/*external_id=*/1, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id));
ASSERT_NE(output_id, XNN_INVALID_NODE_ID);
ASSERT_EQ(
xnn_status_success, xnn_define_unpooling_2d(
subgraph, padding_top, padding_right, padding_bottom, padding_left, pooling_height,
pooling_width, input_value_id, input_index_id, output_id,
/*flags=*/0));
ASSERT_EQ(subgraph->num_nodes, 1);
const struct xnn_node* node = &subgraph->nodes[0];
ASSERT_EQ(node->type, xnn_node_type_unpooling_2d);
ASSERT_EQ(node->compute_type, xnn_compute_type_fp32);
ASSERT_EQ(node->params.pooling_2d.padding_top, padding_top);
ASSERT_EQ(node->params.pooling_2d.padding_right, padding_right);
ASSERT_EQ(node->params.pooling_2d.padding_bottom, padding_bottom);
ASSERT_EQ(node->params.pooling_2d.padding_left, padding_left);
ASSERT_EQ(node->params.pooling_2d.pooling_height, pooling_height);
ASSERT_EQ(node->params.pooling_2d.pooling_width, pooling_width);
ASSERT_EQ(node->num_inputs, 2);
ASSERT_EQ(node->inputs[0], input_value_id);
ASSERT_EQ(node->inputs[1], input_index_id);
ASSERT_EQ(node->num_outputs, 1);
ASSERT_EQ(node->outputs[0], output_id);
ASSERT_EQ(node->flags, 0);
}
TEST_F(Unpooling2DTestX32, matches_operator_api)
{
xnn_operator_t op = nullptr;
std::generate(input.begin(), input.end(), [&]() { return u32dist(rng); });
std::generate(input_index.begin(), input_index.end(), [&]() { return index_dist(rng); });
std::generate(operator_output.begin(), operator_output.end(), [&]() { return u32dist(rng); });
std::generate(subgraph_output.begin(), subgraph_output.end(), [&]() { return u32dist(rng); });
ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr));
// Call operator API.
const xnn_status status = xnn_create_unpooling2d_nhwc_x32(
padding_top, padding_right, padding_bottom, padding_left, pooling_height, pooling_width, channels, channels,
channels, /*flags=*/0, &op);
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_op(op, xnn_delete_operator);
if (status == xnn_status_unsupported_hardware) {
GTEST_SKIP();
}
ASSERT_EQ(xnn_status_success, status);
ASSERT_NE(nullptr, op);
ASSERT_EQ(
xnn_status_success, xnn_reshape_unpooling2d_nhwc_x32(
op, batch_size, input_height, input_width, /*output_height_out=*/nullptr,
/*output_width_out=*/nullptr, /*threadpool=*/nullptr));
ASSERT_EQ(
xnn_status_success,
xnn_setup_unpooling2d_nhwc_x32(
op, input.data(), input_index.data(), operator_output.data()));
ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr));
// Call subgraph API.
xnn_subgraph_t subgraph = nullptr;
ASSERT_EQ(xnn_status_success, xnn_create_subgraph(2, /*flags=*/0, &subgraph));
std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph);
uint32_t input_value_id = XNN_INVALID_NODE_ID;
ASSERT_EQ(
xnn_status_success, xnn_define_tensor_value(
subgraph, xnn_datatype_fp32, input_value_dims.size(), input_value_dims.data(), nullptr,
/*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_value_id));
ASSERT_NE(input_value_id, XNN_INVALID_NODE_ID);
uint32_t input_index_id = XNN_INVALID_NODE_ID;
ASSERT_EQ(
xnn_status_success, xnn_define_tensor_value(
subgraph, xnn_datatype_fp32, input_index_dims.size(), input_index_dims.data(),
input_index.data(), XNN_INVALID_VALUE_ID, /*flags=*/0, &input_index_id));
uint32_t output_id = XNN_INVALID_NODE_ID;
ASSERT_EQ(
xnn_status_success, xnn_define_tensor_value(
subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr,
/*external_id=*/1, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id));
ASSERT_NE(output_id, XNN_INVALID_NODE_ID);
ASSERT_EQ(
xnn_status_success, xnn_define_unpooling_2d(
subgraph, padding_top, padding_right, padding_bottom, padding_left, pooling_height,
pooling_width, input_value_id, input_index_id, output_id,
/*flags=*/0));
xnn_runtime_t runtime = nullptr;
ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime));
ASSERT_NE(nullptr, runtime);
std::unique_ptr<xnn_runtime, decltype(&xnn_delete_runtime)> auto_runtime(runtime, xnn_delete_runtime);
std::array<xnn_external_value, 2> external = {
xnn_external_value{input_value_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}};
ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data()));
ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime));
ASSERT_EQ(subgraph_output, operator_output);
}
TEST_F(Unpooling2DTestX32, reshape_output)
{
ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr));
// Call subgraph API.
xnn_subgraph_t subgraph = nullptr;
ASSERT_EQ(xnn_status_success, xnn_create_subgraph(2, /*flags=*/0, &subgraph));
std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph);
uint32_t input_value_id = XNN_INVALID_NODE_ID;
ASSERT_EQ(
xnn_status_success, xnn_define_tensor_value(
subgraph, xnn_datatype_fp32, input_value_dims.size(), input_value_dims.data(), nullptr,
/*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_value_id));
ASSERT_NE(input_value_id, XNN_INVALID_NODE_ID);
uint32_t input_index_id = XNN_INVALID_NODE_ID;
ASSERT_EQ(
xnn_status_success, xnn_define_tensor_value(
subgraph, xnn_datatype_fp32, input_index_dims.size(), input_index_dims.data(),
input_index.data(), XNN_INVALID_VALUE_ID, /*flags=*/0, &input_index_id));
uint32_t output_id = XNN_INVALID_NODE_ID;
ASSERT_EQ(
xnn_status_success, xnn_define_tensor_value(
subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr,
/*external_id=*/1, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id));
ASSERT_NE(output_id, XNN_INVALID_NODE_ID);
ASSERT_EQ(
xnn_status_success, xnn_define_unpooling_2d(
subgraph, padding_top, padding_right, padding_bottom, padding_left, pooling_height,
pooling_width, input_value_id, input_index_id, output_id,
/*flags=*/0));
ASSERT_EQ(subgraph->num_nodes, 1);
struct xnn_node* node = &subgraph->nodes[0];
ASSERT_EQ(node->type, xnn_node_type_unpooling_2d);
ASSERT_EQ(node->compute_type, xnn_compute_type_fp32);
ASSERT_EQ(node->num_inputs, 2);
ASSERT_EQ(node->inputs[0], input_value_id);
ASSERT_EQ(node->inputs[1], input_index_id);
ASSERT_EQ(node->num_outputs, 1);
ASSERT_EQ(node->outputs[0], output_id);
ASSERT_EQ(node->flags, 0);
xnn_runtime_t runtime = nullptr;
ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime));
ASSERT_NE(nullptr, runtime);
std::unique_ptr<xnn_runtime, decltype(&xnn_delete_runtime)> auto_runtime(runtime, xnn_delete_runtime);
ASSERT_EQ(
node->reshape(&runtime->opdata[0], subgraph->values, subgraph->num_values, /*threadpool=*/nullptr),
xnn_status_success);
input_value_dims[0] += 1;
input_value_dims[1] += 1;
input_value_dims[2] += 1;
input_value_dims[3] += 1;
input_index_dims[0] += 1;
input_index_dims[1] += 1;
input_index_dims[2] += 1;
input_index_dims[3] += 1;
ASSERT_EQ(
xnn_status_success, xnn_reshape_external_value(runtime, 0, input_value_dims.size(), input_value_dims.data()));
ASSERT_EQ(
xnn_status_success, xnn_reshape_external_value(runtime, 1, input_index_dims.size(), input_index_dims.data()));
ASSERT_EQ(
node->reshape(&runtime->opdata[0], runtime->values, runtime->num_values, /*threadpool=*/nullptr),
xnn_status_reallocation_required);
const xnn_shape* output_shape = &runtime->values[node->outputs[0]].shape;
const size_t expected_height =
xnn_compute_unpooling_output_dimension(input_value_dims[1], padding_top + padding_bottom, pooling_height);
const size_t expected_width =
xnn_compute_unpooling_output_dimension(input_value_dims[2], padding_left + padding_right, pooling_width);
ASSERT_EQ(output_shape->dim[0], input_value_dims[0]);
ASSERT_EQ(output_shape->dim[1], expected_height);
ASSERT_EQ(output_shape->dim[2], expected_width);
ASSERT_EQ(output_shape->dim[3], input_value_dims[3]);
}