forked from google/XNNPACK
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathunpooling-operator-tester.h
511 lines (436 loc) · 18.5 KB
/
unpooling-operator-tester.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#pragma once
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <functional>
#include <memory>
#include <random>
#include <vector>
#include <gtest/gtest.h>
#include "xnnpack.h"
#include "replicable_random_device.h"
class UnpoolingOperatorTester {
public:
UnpoolingOperatorTester& padding(uint32_t padding) {
this->padding_top_ = padding;
this->padding_right_ = padding;
this->padding_bottom_ = padding;
this->padding_left_ = padding;
return *this;
}
UnpoolingOperatorTester& padding(uint32_t padding_height, uint32_t padding_width) {
this->padding_top_ = padding_height;
this->padding_right_ = padding_width;
this->padding_bottom_ = padding_height;
this->padding_left_ = padding_width;
return *this;
}
UnpoolingOperatorTester& padding_height(uint32_t padding_height) {
this->padding_top_ = padding_height;
this->padding_bottom_ = padding_height;
return *this;
}
UnpoolingOperatorTester& padding_width(uint32_t padding_width) {
this->padding_right_ = padding_width;
this->padding_left_ = padding_width;
return *this;
}
UnpoolingOperatorTester& padding_top(uint32_t padding_top) {
this->padding_top_ = padding_top;
return *this;
}
uint32_t padding_top() const {
return this->padding_top_;
}
UnpoolingOperatorTester& padding_right(uint32_t padding_right) {
this->padding_right_ = padding_right;
return *this;
}
uint32_t padding_right() const {
return this->padding_right_;
}
UnpoolingOperatorTester& padding_bottom(uint32_t padding_bottom) {
this->padding_bottom_ = padding_bottom;
return *this;
}
uint32_t padding_bottom() const {
return this->padding_bottom_;
}
UnpoolingOperatorTester& padding_left(uint32_t padding_left) {
this->padding_left_ = padding_left;
return *this;
}
uint32_t padding_left() const {
return this->padding_left_;
}
UnpoolingOperatorTester& input_size(size_t input_height, size_t input_width) {
assert(input_height >= 1);
assert(input_width >= 1);
this->input_height_ = input_height;
this->input_width_ = input_width;
return *this;
}
UnpoolingOperatorTester& input_height(size_t input_height) {
assert(input_height >= 1);
this->input_height_ = input_height;
return *this;
}
size_t input_height() const {
return this->input_height_;
}
UnpoolingOperatorTester& input_width(size_t input_width) {
assert(input_width >= 1);
this->input_width_ = input_width;
return *this;
}
size_t input_width() const {
return this->input_width_;
}
UnpoolingOperatorTester& channels(size_t channels) {
assert(channels != 0);
this->channels_ = channels;
return *this;
}
size_t channels() const {
return this->channels_;
}
UnpoolingOperatorTester& batch_size(size_t batch_size) {
assert(batch_size != 0);
this->batch_size_ = batch_size;
return *this;
}
size_t batch_size() const {
return this->batch_size_;
}
UnpoolingOperatorTester& pooling_size(uint32_t pooling_size) {
assert(pooling_size >= 1);
this->pooling_height_ = pooling_size;
this->pooling_width_ = pooling_size;
return *this;
}
UnpoolingOperatorTester& pooling_size(uint32_t pooling_height, uint32_t pooling_width) {
assert(pooling_height >= 1);
assert(pooling_width >= 1);
this->pooling_height_ = pooling_height;
this->pooling_width_ = pooling_width;
return *this;
}
UnpoolingOperatorTester& pooling_height(uint32_t pooling_height) {
assert(pooling_height >= 1);
this->pooling_height_ = pooling_height;
return *this;
}
uint32_t pooling_height() const {
return this->pooling_height_;
}
UnpoolingOperatorTester& pooling_width(uint32_t pooling_width) {
assert(pooling_width >= 1);
this->pooling_width_ = pooling_width;
return *this;
}
uint32_t pooling_width() const {
return this->pooling_width_;
}
size_t output_height() const {
const size_t padding_height = padding_top() + padding_bottom();
return std::max<size_t>(input_height() * pooling_height(), padding_height) - padding_height;
}
size_t output_width() const {
const size_t padding_width = padding_left() + padding_right();
return std::max<size_t>(input_width() * pooling_width(), padding_width) - padding_width;
}
UnpoolingOperatorTester& input_pixel_stride(size_t input_pixel_stride) {
assert(input_pixel_stride != 0);
this->input_pixel_stride_ = input_pixel_stride;
return *this;
}
size_t input_pixel_stride() const {
if (this->input_pixel_stride_ == 0) {
return channels();
} else {
assert(this->input_pixel_stride_ >= channels());
return this->input_pixel_stride_;
}
}
UnpoolingOperatorTester& output_pixel_stride(size_t output_pixel_stride) {
assert(output_pixel_stride != 0);
this->output_pixel_stride_ = output_pixel_stride;
return *this;
}
size_t output_pixel_stride() const {
if (this->output_pixel_stride_ == 0) {
return channels();
} else {
assert(this->output_pixel_stride_ >= channels());
return this->output_pixel_stride_;
}
}
UnpoolingOperatorTester& next_input_size(uint32_t next_input_height, uint32_t next_input_width) {
assert(next_input_height >= 1);
assert(next_input_width >= 1);
this->next_input_height_ = next_input_height;
this->next_input_width_ = next_input_width;
return *this;
}
UnpoolingOperatorTester& next_input_height(uint32_t next_input_height) {
assert(next_input_height >= 1);
this->next_input_height_ = next_input_height;
return *this;
}
uint32_t next_input_height() const {
if (this->next_input_height_ == 0) {
return input_height();
} else {
return this->next_input_height_;
}
}
UnpoolingOperatorTester& next_input_width(uint32_t next_input_width) {
assert(next_input_width >= 1);
this->next_input_width_ = next_input_width;
return *this;
}
uint32_t next_input_width() const {
if (this->next_input_width_ == 0) {
return input_width();
} else {
return this->next_input_width_;
}
}
size_t next_output_height() const {
const size_t padding_height = padding_top() + padding_bottom();
return std::max<size_t>(next_input_height() * pooling_height(), padding_height) - padding_height;
}
size_t next_output_width() const {
const size_t padding_width = padding_left() + padding_right();
return std::max<size_t>(next_input_width() * pooling_width(), padding_width) - padding_width;
}
UnpoolingOperatorTester& next_batch_size(size_t next_batch_size) {
assert(next_batch_size >= 1);
this->next_batch_size_ = next_batch_size;
return *this;
}
size_t next_batch_size() const {
if (this->next_batch_size_ == 0) {
return batch_size();
} else {
return this->next_batch_size_;
}
}
UnpoolingOperatorTester& iterations(size_t iterations) {
this->iterations_ = iterations;
return *this;
}
size_t iterations() const {
return this->iterations_;
}
void TestX32() const {
xnnpack::ReplicableRandomDevice rng;
auto u32rng = std::bind(std::uniform_int_distribution<uint32_t>(), std::ref(rng));
auto idx_rng = std::bind(std::uniform_int_distribution<uint32_t>(0, pooling_height() * pooling_width() - 1), std::ref(rng));
std::vector<uint32_t> input((batch_size() * input_height() * input_width() - 1) * input_pixel_stride() + channels());
std::vector<uint32_t> index(batch_size() * input_height() * input_width() * channels());
std::vector<uint32_t> output((batch_size() * output_height() * output_width() - 1) * output_pixel_stride() + channels());
std::vector<uint32_t> output_ref(batch_size() * output_height() * output_width() * channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), std::ref(u32rng));
std::generate(index.begin(), index.end(), std::ref(idx_rng));
std::generate(output.begin(), output.end(), std::ref(u32rng));
// Compute reference results.
std::fill(output_ref.begin(), output_ref.end(), 0);
for (size_t i = 0; i < batch_size(); i++) {
for (size_t iy = 0; iy < input_height(); iy++) {
for (size_t ix = 0; ix < input_width(); ix++) {
for (size_t c = 0; c < channels(); c++) {
const uint32_t pooling_index = index[((i * input_height() + iy) * input_width() + ix) * channels() + c];
const uint32_t py = pooling_index % pooling_height();
const uint32_t px = pooling_index / pooling_height();
const size_t oy = std::min<size_t>(std::max<size_t>(iy * pooling_height() + py, padding_top()) - padding_top(), output_height() - 1);
const size_t ox = std::min<size_t>(std::max<size_t>(ix * pooling_width() + px, padding_left()) - padding_left(), output_width() - 1);
output_ref[((i * output_height() + oy) * output_width() + ox) * channels() + c] =
input[((i * input_height() + iy) * input_width() + ix) * input_pixel_stride() + c];
}
}
}
}
// Create, setup, run, and destroy Unpooling operator.
ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
xnn_operator_t unpooling_op = nullptr;
ASSERT_EQ(xnn_status_success,
xnn_create_unpooling2d_nhwc_x32(
padding_top(), padding_right(), padding_bottom(), padding_left(),
pooling_height(), pooling_width(),
channels(), input_pixel_stride(), output_pixel_stride(),
0, &unpooling_op));
ASSERT_NE(nullptr, unpooling_op);
// Smart pointer to automatically delete unpooling_op.
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_unpooling_op(unpooling_op, xnn_delete_operator);
ASSERT_EQ(xnn_status_success,
xnn_reshape_unpooling2d_nhwc_x32(
unpooling_op,
batch_size(), input_height(), input_width(),
/*output_height_out=*/nullptr, /*output_width_out=*/nullptr,
/*threadpool=*/nullptr));
ASSERT_EQ(xnn_status_success,
xnn_setup_unpooling2d_nhwc_x32(
unpooling_op,
input.data(), index.data(), output.data()));
ASSERT_EQ(xnn_status_success,
xnn_run_operator(unpooling_op, /*threadpool=*/nullptr));
// Verify results.
for (size_t i = 0; i < batch_size(); i++) {
for (size_t c = 0; c < channels(); c++) {
for (size_t y = 0; y < output_height(); y++) {
for (size_t x = 0; x < output_width(); x++) {
EXPECT_EQ(output_ref[((i * output_height() + y) * output_width() + x) * channels() + c],
output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c]) <<
"in batch index " << i << ", pixel (" << y << ", " << x << "), channel " << c;
}
}
}
}
}
}
void TestSetupX32() const {
xnnpack::ReplicableRandomDevice rng;
auto u32rng = std::bind(std::uniform_int_distribution<uint32_t>(), std::ref(rng));
auto idx_rng = std::bind(std::uniform_int_distribution<uint32_t>(0, pooling_height() * pooling_width() - 1), std::ref(rng));
std::vector<uint32_t> input(std::max<size_t>(
(batch_size() * input_height() * input_width() - 1) * input_pixel_stride() + channels(),
(next_batch_size() * next_input_height() * next_input_width() - 1) * input_pixel_stride() + channels()));
std::vector<uint32_t> index(std::max<size_t>(
batch_size() * input_height() * input_width() * channels(),
next_batch_size() * next_input_height() * next_input_width() * channels()));
std::vector<uint32_t> output(std::max<size_t>(
(batch_size() * output_height() * output_width() - 1) * output_pixel_stride() + channels(),
(next_batch_size() * next_output_height() * next_output_width() - 1) * output_pixel_stride() * channels()));
std::vector<uint32_t> output_ref(batch_size() * output_height() * output_width() * channels());
std::vector<uint32_t> next_output_ref(next_batch_size() * next_output_height() * next_output_width() * channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), std::ref(u32rng));
std::generate(index.begin(), index.end(), std::ref(idx_rng));
std::generate(output.begin(), output.end(), std::ref(u32rng));
// Compute reference results.
std::fill(output_ref.begin(), output_ref.end(), 0);
for (size_t i = 0; i < batch_size(); i++) {
for (size_t iy = 0; iy < input_height(); iy++) {
for (size_t ix = 0; ix < input_width(); ix++) {
for (size_t c = 0; c < channels(); c++) {
const uint32_t pooling_index = index[((i * input_height() + iy) * input_width() + ix) * channels() + c];
const uint32_t py = pooling_index % pooling_height();
const uint32_t px = pooling_index / pooling_height();
const size_t oy = std::min<size_t>(std::max<size_t>(iy * pooling_height() + py, padding_top()) - padding_top(), output_height() - 1);
const size_t ox = std::min<size_t>(std::max<size_t>(ix * pooling_width() + px, padding_left()) - padding_left(), output_width() - 1);
output_ref[((i * output_height() + oy) * output_width() + ox) * channels() + c] =
input[((i * input_height() + iy) * input_width() + ix) * input_pixel_stride() + c];
}
}
}
}
// Create, setup, and run Unpooling operator once.
ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
xnn_operator_t unpooling_op = nullptr;
ASSERT_EQ(xnn_status_success,
xnn_create_unpooling2d_nhwc_x32(
padding_top(), padding_right(), padding_bottom(), padding_left(),
pooling_height(), pooling_width(),
channels(), input_pixel_stride(), output_pixel_stride(),
0, &unpooling_op));
ASSERT_NE(nullptr, unpooling_op);
// Smart pointer to automatically delete unpooling_op.
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_unpooling_op(unpooling_op, xnn_delete_operator);
ASSERT_EQ(xnn_status_success,
xnn_reshape_unpooling2d_nhwc_x32(
unpooling_op,
batch_size(), input_height(), input_width(),
/*output_height_out=*/nullptr, /*output_width_out=*/nullptr,
/*threadpool=*/nullptr));
ASSERT_EQ(xnn_status_success,
xnn_setup_unpooling2d_nhwc_x32(
unpooling_op,
input.data(), index.data(), output.data()));
ASSERT_EQ(xnn_status_success,
xnn_run_operator(unpooling_op, /*threadpool=*/nullptr));
// Verify results of the first run.
for (size_t i = 0; i < batch_size(); i++) {
for (size_t c = 0; c < channels(); c++) {
for (size_t y = 0; y < output_height(); y++) {
for (size_t x = 0; x < output_width(); x++) {
EXPECT_EQ(output_ref[((i * output_height() + y) * output_width() + x) * channels() + c],
output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c]) <<
"in batch index " << i << ", pixel (" << y << ", " << x << "), channel " << c;
}
}
}
}
// Re-generate data for the second run.
std::generate(input.begin(), input.end(), std::ref(u32rng));
std::generate(index.begin(), index.end(), std::ref(idx_rng));
std::generate(output.begin(), output.end(), std::ref(u32rng));
// Compute reference results for the second run, including clamping.
std::fill(next_output_ref.begin(), next_output_ref.end(), 0);
for (size_t i = 0; i < next_batch_size(); i++) {
for (size_t iy = 0; iy < next_input_height(); iy++) {
for (size_t ix = 0; ix < next_input_width(); ix++) {
for (size_t c = 0; c < channels(); c++) {
const uint32_t pooling_index = index[((i * next_input_height() + iy) * next_input_width() + ix) * channels() + c];
const uint32_t py = pooling_index % pooling_height();
const uint32_t px = pooling_index / pooling_height();
const size_t oy = std::min<size_t>(std::max<size_t>(iy * pooling_height() + py, padding_top()) - padding_top(), next_output_height() - 1);
const size_t ox = std::min<size_t>(std::max<size_t>(ix * pooling_width() + px, padding_left()) - padding_left(), next_output_width() - 1);
next_output_ref[((i * next_output_height() + oy) * next_output_width() + ox) * channels() + c] =
input[((i * next_input_height() + iy) * next_input_width() + ix) * input_pixel_stride() + c];
}
}
}
}
// Setup and run Max Pooling operator the second time, and destroy the operator.
ASSERT_EQ(xnn_status_success,
xnn_reshape_unpooling2d_nhwc_x32(
unpooling_op,
next_batch_size(), next_input_height(), next_input_width(),
/*output_height_out=*/nullptr, /*output_width_out=*/nullptr,
/*threadpool=*/nullptr));
ASSERT_EQ(xnn_status_success,
xnn_setup_unpooling2d_nhwc_x32(
unpooling_op,
input.data(), index.data(), output.data()));
ASSERT_EQ(xnn_status_success,
xnn_run_operator(unpooling_op, /*threadpool=*/nullptr));
// Verify results of the second run.
for (size_t i = 0; i < next_batch_size(); i++) {
for (size_t c = 0; c < channels(); c++) {
for (size_t y = 0; y < next_output_height(); y++) {
for (size_t x = 0; x < next_output_width(); x++) {
EXPECT_EQ(next_output_ref[((i * next_output_height() + y) * next_output_width() + x) * channels() + c],
output[((i * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + c]) <<
"in batch index " << i << ", pixel (" << y << ", " << x << "), channel " << c;
}
}
}
}
}
}
private:
uint32_t padding_top_{0};
uint32_t padding_right_{0};
uint32_t padding_bottom_{0};
uint32_t padding_left_{0};
size_t input_height_{1};
size_t input_width_{1};
size_t channels_{1};
size_t batch_size_{1};
size_t input_pixel_stride_{0};
size_t output_pixel_stride_{0};
uint32_t pooling_height_{1};
uint32_t pooling_width_{1};
size_t next_input_height_{0};
size_t next_input_width_{0};
size_t next_batch_size_{0};
size_t iterations_{1};
};