-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluator.py
313 lines (248 loc) · 10.2 KB
/
evaluator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
"""eval_factorvae.py"""
import os
import argparse
import numpy as np
from pathlib import Path
from PIL import Image
from tqdm import tqdm
from multiprocessing import Lock
tqdm.set_lock(Lock())
import torch
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.datasets import ImageFolder
import model.model as model
'''
NOTE:
1. Expected Dataset Tree
dset_root
|_______ vote1_[factor_index]_[factor_name]
|_______ 0.jpg
|_______ 1.jpg
|_______ ...
|_______ vote2_[factor_index]_[factor_name]
|_______ 0.jpg
|_______ 1.jpg
|_______ ...
2. when use this code on other networks, make sure that
2-1. input pre-processings are set properly. (search HERE1)
2-2. the network is initialized with proper checkpoint. (search HERE2)
2-3. Encoder class keeps and wraps the inference network.
e.g. enc = Encoder(my_network)
When images are fed into the Encoder instance, it should output corresponding z.
e.g. z = enc(x)
(search HERE3)
'''
def str2bool(v):
# codes from : https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
class Encoder(object):
#### HERE3 ####
def __init__(self, DR, G):
self.DR = DR
self.G = G
def forward(self, x):
z = self.DR(x)
r = self.G(z)
r = r.contiguous().view(r.size(0), r.size(1)).data
return r
def __call__(self, x):
return self.forward(x)
def pil_loader(path):
with open(path, 'rb') as f:
img = Image.open(f)
if img.mode == 'L' or img.mode == 'LA':
return img.convert('L')
else:
return img.convert('RGB')
class CustomImageFolder(ImageFolder):
def __init__(self, root, transform=None, loader=pil_loader):
super(CustomImageFolder, self).__init__(root, transform, loader=loader)
self.nv, self.nk, self.L = self.get_params()
def get_params(self):
dset_table = np.array(self.imgs)
num_votes = len(self.classes)
factors = [vote_info.split('_')[1] for vote_info in self.classes]
factors = list(set(factors))
num_factors = len(factors)
Ls = []
for vote in range(num_votes):
L = (dset_table[:, 1] == str(vote)).sum()
Ls.append(L)
Ls = np.array(Ls)
if Ls.mean() != Ls[0]:
raise('the numbers of samples(L) in each vote are not equal to each other. mean L = {}.'.format(Ls.mean()))
return num_votes, num_factors, Ls[0]
def __getitem__(self, index):
path, _ = self.imgs[index]
k = int(os.path.dirname(path).split('/')[-1].split('_')[1])
k = torch.tensor(k).float()
img = self.loader(path)
if self.transform is not None:
img = self.transform(img)
return img, k
def load_data(args):
#### HERE1 ####
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
# data for calculating empirical standard deviations
dset = ImageFolder(root=args.dset_dir, transform=transform, loader=pil_loader)
dloader = DataLoader(dset,
batch_size=args.batch_size,
shuffle=False,
num_workers=4,
pin_memory=True,
drop_last=False)
# data for training majoirty-vote classifier
train_dset = CustomImageFolder(root=args.dset_dir, transform=transform, loader=pil_loader)
train_loader = DataLoader(train_dset,
batch_size=int(train_dset.L),
shuffle=False,
num_workers=4,
pin_memory=True,
drop_last=False)
return dloader, train_loader
class Evaluator(object):
def __init__(self, args, dloader):
self.use_cuda = args.cuda and torch.cuda.is_available()
self.device = 'cuda' if self.use_cuda else 'cpu'
self.name = args.name
self.ckpt_path = args.ckpt_path
self.dloader, self.train_loader = dloader
self.encoder, self.z_dim, self.global_iter = self.load_model()
self.emp_std, self.emp_var = self.calc_empirical_std()
self.collapsed = self.emp_var < args.cvth
self.fill_collapsed = torch.ones_like(self.emp_var)*1e5
def __call__(self, num_sample):
return self.eval(num_sample)
def load_model(self):
#### HERE2 ####
checkpoint = torch.load(self.ckpt_path.open('rb'))
z_dim = checkpoint['z_dim'] #
r_dim = checkpoint['r_dim'] #
ngf = checkpoint['model_states']['ngf']
ndf = checkpoint['model_states']['ndf']
nc = checkpoint['model_states']['nc']
DR = model.Discriminator(z_dim=z_dim, nc=nc, ndf=ndf, metric='factorvae').to(self.device)
DR.load_state_dict(checkpoint['model_states']['DR']) #
DR.eval()
G = model.Generator(z_dim=z_dim, r_dim=r_dim, nc=nc, ngf=ngf, metric='factorvae').to(self.device)
G.load_state_dict(checkpoint['model_states']['G']) #
G.eval()
E = Encoder(DR, G)
global_iter = checkpoint['iter']
print("=> loaded checkpoint '{} (iter {})'".format(self.ckpt_path, global_iter))
return E, r_dim, global_iter #
def calc_empirical_std(self):
N = len(self.dloader.dataset)
zs = []
loader = iter(self.dloader)
tqdm.write('now extract empirical standard deviation from entire dataset')
for batch_idx in tqdm(range(len(self.dloader))):
imgs, _ = loader.next()
imgs = imgs.to(self.device)
with torch.no_grad():
z = self.encoder(imgs)
zs.append(z)
zs = torch.cat(zs)
return zs.std(0), zs.var(0)
def eval(self):
if (self.collapsed == 1).sum().item() == self.z_dim:
score = 0
k_preds = ['x' for _ in range(self.z_dim)]
return score, k_preds
# make votes
votes = []
loader = iter(self.train_loader)
tqdm.write('now training classifier')
for _ in tqdm(range(len(loader))):
img, k = loader.next()
if k.mean() != k[0]:
raise('data parsing error')
img = img.to(self.device)
k = int(k[0].item())
z = self.encoder(img)
normed_z = z.div(self.emp_std)
var_normed_z = normed_z.var(0)
d = torch.where(self.collapsed, self.fill_collapsed, var_normed_z).min(-1)[-1].item()
vote = [d, k]
votes.append(vote)
votes = np.array(votes)
# train classifier
V = []
nk = self.train_loader.dataset.nk
for z in range(self.z_dim):
V_j = []
for k in range(nk):
V_jk = (votes[np.where(votes[:, 0] == z)][:, 1] == k).sum()
V_j.append(V_jk)
V.append(V_j)
V = np.array(V)
score = V.max(1).sum()/V.sum()
k_preds = []
for k_pred, z_collapsed in zip(V.argmax(1), self.collapsed):
if z_collapsed.item() == 1:
k_pred = 'x'
else:
k_pred = str(k_pred)
k_preds.append(k_pred)
return score, k_preds
def main(args):
results = dict(name=args.name)
scores = dict()
logiter = args.logiter
lastiter = args.lastiter
ckpt_dir = Path(args.ckpt_dir).joinpath(args.name)
ckpts = [ckpt_dir.joinpath(str(it)) for it in range(logiter, lastiter+1, logiter)]
dloader = load_data(args)
out = False
max_score = 0
max_score_iter = 0
count = 0
for ckpt in ckpts:
if not ckpt.is_file():
continue
args.ckpt_name = ckpt.name
args.ckpt_path = ckpt
evaluator = Evaluator(args, dloader)
score, k_preds = evaluator.eval()
if max_score < score:
max_score = score
max_score_iter = evaluator.global_iter
result = dict()
result['score'] = score
result['classifier_decision'] = k_preds
scores[int(evaluator.global_iter)] = result
print('learned classifier')
print(' '.join(str(dim) for dim in range(len(k_preds))))
print(' '.join(k_preds))
print('metric result:{:.4f}, best:{:.4f}(iter:{})'.format(score, max_score, max_score_iter))
print()
count += 1
if count == len(ckpts):
out = True
results['scores'] = scores
torch.save(results, ckpt_dir.joinpath('result.metric').open('wb+'))
return results
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='metric evaluator proposed by KIM et al.')
parser.add_argument('--cuda', default=True, type=str2bool, help='enable cuda')
parser.add_argument('--logiter', default=1000, type=int, help='')
parser.add_argument('--lastiter', default=10000, type=int, help='')
parser.add_argument('--ckpt_dir', default='checkpoint', type=str, help='checkpoint directory')
parser.add_argument('--dset_dir', default='data', type=str, help='dataset directory')
parser.add_argument('--name', default='main', type=str, help='the name of the experiment')
parser.add_argument('-bs', '--batch_size', default=1024, type=int, help='batch size')
#parser.add_argument('-nk', '--num_factors', type=int, help='the number of ground truth generative factors')
#parser.add_argument('-nv', '--num_votes', default=2000, type=int, help='the number of votes')
#parser.add_argument('-ns', '--L', default=200, type=int, help='the number of samples per vote')
parser.add_argument('-c', '--collapse', default=False, action='store_true', help='remove collapsed dimension')
parser.add_argument('-cvth', default=0.05, type=float, help='any dimensions of the empirical variances below this value will be considered collapsed')
args = parser.parse_args()
main(args)