-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathGlobalAnalysis.h
165 lines (130 loc) · 4.69 KB
/
GlobalAnalysis.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
//===- GlobalAnalysis.h - Graph Compiler analysis pass ----------*- C++ -*-===//
//
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef MLIR_ANALYSIS_GLOBALANALYSIS_H
#define MLIR_ANALYSIS_GLOBALANALYSIS_H
#include <numeric>
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Support/LLVM.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/Debug.h"
namespace mlir {
namespace gc {
using namespace mlir;
class TensorLayout {
public:
TensorLayout(ArrayRef<int64_t> outerAxis, ArrayRef<int64_t> innerAxis,
ArrayRef<OpFoldResult> tileSizes)
: outerAxis(outerAxis), innerAxis(innerAxis), tileSizes(tileSizes) {
assert(innerAxis.size() == tileSizes.size());
}
static bool isPlainOuterAxis(ArrayRef<int64_t> outerAxis) {
for (int64_t i = 0; i < static_cast<int64_t>(outerAxis.size()); ++i) {
if (i != outerAxis[i])
return false;
}
return true;
}
bool isPlain() const {
if (isPlainOuterAxis(outerAxis))
return tileSizes.empty() && innerAxis.empty();
return false;
}
bool isBlocking() const { return !tileSizes.empty() && !innerAxis.empty(); }
static TensorLayout createPlainLayout(int64_t rank) {
SmallVector<int64_t> outerAxis(rank, 0);
std::iota(outerAxis.begin(), outerAxis.end(), 0);
return TensorLayout(outerAxis, SmallVector<int64_t>{},
SmallVector<OpFoldResult>{});
}
DenseMap<int64_t, SmallVector<int64_t>> getPlainToPackedAxisMapping() {
DenseMap<int64_t, SmallVector<int64_t>> axisMapping;
int64_t outerAxisSize = outerAxis.size();
for (int64_t i = 0; i < outerAxisSize; ++i) {
axisMapping[outerAxis[i]].push_back(i);
}
for (int64_t i = 0; i < static_cast<int64_t>(innerAxis.size()); ++i) {
axisMapping[innerAxis[i]].push_back(outerAxisSize + i);
}
return axisMapping;
}
int64_t getPlainAxis(int64_t idx) {
int64_t totalRank = outerAxis.size() + innerAxis.size();
assert(idx >= 0 && idx < totalRank && "Provided plain axis out of bound");
if (idx >= static_cast<int64_t>(outerAxis.size())) {
return innerAxis[idx - outerAxis.size()];
} else {
return outerAxis[idx];
}
}
size_t getRank() const { return outerAxis.size(); }
SmallVector<int64_t> getOuterAxis() const { return outerAxis; }
SmallVector<int64_t> getInnerAxis() const { return innerAxis; }
SmallVector<OpFoldResult> getTileSizes() const { return tileSizes; }
friend llvm::raw_ostream &operator<<(llvm::raw_ostream &ss,
const TensorLayout &layout);
bool operator==(const TensorLayout &other) const;
bool operator!=(const TensorLayout &other) const;
private:
SmallVector<int64_t> outerAxis;
SmallVector<int64_t> innerAxis;
SmallVector<OpFoldResult> tileSizes;
};
class OperatorLayout {
public:
OperatorLayout() {}
OperatorLayout(SmallVector<TensorLayout> inputLayouts,
SmallVector<TensorLayout> outputLayouts) {
supportedInputLayouts = inputLayouts;
supportedOutputLayouts = outputLayouts;
}
SmallVector<TensorLayout> getSupportedInputLayouts() const {
return supportedInputLayouts;
}
SmallVector<TensorLayout> getSupportedOutputLayouts() const {
return supportedOutputLayouts;
}
TensorLayout getOutputLayout(int64_t idx) const {
assert(idx < static_cast<int64_t>(supportedOutputLayouts.size()));
return supportedOutputLayouts[idx];
}
bool isPlain() const {
for (const auto &layout : llvm::concat<const TensorLayout>(
supportedInputLayouts, supportedOutputLayouts)) {
if (!layout.isPlain())
return false;
}
return true;
}
friend llvm::raw_ostream &operator<<(llvm::raw_ostream &ss,
const OperatorLayout &opLayout);
private:
SmallVector<TensorLayout> supportedInputLayouts;
SmallVector<TensorLayout> supportedOutputLayouts;
};
class GlobalAnalysis {
public:
explicit GlobalAnalysis(Operation *root);
FailureOr<OperatorLayout> getOpLayout(Operation *op) {
if (layoutCache.find(op) != layoutCache.end())
return layoutCache[op];
else
return failure();
}
private:
DenseMap<Operation *, OperatorLayout> layoutCache;
};
namespace utils {
bool isSupportedContractionNamedOp(const linalg::LinalgOp &linalgOp);
bool isPackableOp(Operation *op);
bool hasAllTensorSemantics(linalg::LinalgOp linalgOp);
} // namespace utils
} // namespace gc
} // namespace mlir
#endif