-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetric.py
70 lines (52 loc) · 1.54 KB
/
metric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import time
import torch
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum().item()
res.append(correct_k*100.0 / batch_size)
if len(res)==1:
return res[0]
else:
return res
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
if n > 0:
self.val = val
self.sum += val * n
self.count += n
self.avg = float(self.sum) / self.count
def update_count(self, multiplier):
self.count = self.count * multiplier
self.avg = float(self.sum) / self.count
class Timer(object):
"""
"""
def __init__(self):
self.reset()
def reset(self):
self.interval = 0
self.time = time.time()
def value(self):
return time.time() - self.time
def tic(self):
self.time = time.time()
def toc(self):
self.interval = time.time() - self.time
self.time = time.time()
return self.interval