-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining.py
148 lines (100 loc) · 4.57 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import tensorflow as tf
from tensorflow import keras
import os
import tempfile
import sklearn
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from models import *
BUFFER_SIZE = 100000
EPOCHS = 100
BATCH_SIZE = 2048
def train_imbalanced_model(make_model, early_stopping, initial_weights):
imbalanced_model = make_model()
imbalanced_model.load_weights(initial_weights)
imbalanced_history = imbalanced_model.fit(
train_features,
train_labels,
batch_size=BATCH_SIZE,
epochs=EPOCHS,
callbacks = [early_stopping],
validation_data=(val_features, val_labels),
verbose=0)
return imbalanced_model, imbalanced_history
def train_weighted_model(make_model, early_stopping, initial_weights):
weighted_model = make_model()
weighted_model.load_weights(initial_weights)
weighted_history = weighted_model.fit(
train_features,
train_labels,
batch_size=BATCH_SIZE,
epochs=EPOCHS,
callbacks = [early_stopping],
validation_data=(val_features, val_labels),
class_weight=class_weight,
verbose=0)
return weighted_model, weighted_history
def train_resampled_model(make_model, early_stopping, initial_weights):
resampled_model = make_model()
resampled_model.load_weights(initial_weights)
output_layer = resampled_model.layers[-1]
output_layer.bias.assign([0])
val_ds = tf.data.Dataset.from_tensor_slices((val_features, val_labels)).cache()
val_ds = val_ds.batch(BATCH_SIZE).prefetch(2)
resampled_history = resampled_model.fit(
resampled_ds,
steps_per_epoch = 20,
epochs=10*EPOCHS,
callbacks = [early_stopping],
validation_data=(val_ds),
verbose=0)
return resampled_model, resampled_history
def run_imbalanced_weigthed_oversampled(make_model, early_stopping):
# inital weights
initial_bias = np.log([pos/neg])
model = make_model(output_bias = initial_bias)
model.predict(train_features[:10])
initial_weights = os.path.join(tempfile.mkdtemp(),'initial_weights')
model.save_weights(initial_weights)
imbalanced_model, _ = train_imbalanced_model(make_model, early_stopping, initial_weights)
weighted_model, _ = train_weighted_model(make_model, early_stopping, initial_weights)
resampled_model, _ = train_resampled_model(make_model, early_stopping, initial_weights)
return imbalanced_model, weighted_model, resampled_model
def __make_ds(features, labels):
ds = tf.data.Dataset.from_tensor_slices((features, labels))#.cache()
ds = ds.shuffle(BUFFER_SIZE).repeat()
return ds
def main(input_data='aggregated_ohlcv_labeled.csv'):
features_labeled_df = pd.read_csv(input_data)
train_df, test_df = train_test_split(features_labeled_df, test_size=0.2)
train_df, val_df = train_test_split(train_df, test_size=0.2)
train_labels = np.array(train_df.pop('Label'))
bool_train_labels = train_labels != 0
val_labels = np.array(val_df.pop('Label'))
test_labels = np.array(test_df.pop('Label'))
train_features = np.array(train_df)
val_features = np.array(val_df)
test_features = np.array(test_df)
scaler = StandardScaler()
train_features = scaler.fit_transform(train_features)
val_features = scaler.transform(val_features)
test_features = scaler.transform(test_features)
train_features = np.clip(train_features, -5, 5)
val_features = np.clip(val_features, -5, 5)
test_features = np.clip(test_features, -5, 5)
pos_features = train_features[bool_train_labels]
neg_features = train_features[~bool_train_labels]
pos_labels = train_labels[bool_train_labels]
neg_labels = train_labels[~bool_train_labels]
pos_ds = __make_ds(pos_features, pos_labels)
neg_ds = __make_ds(neg_features, neg_labels)
resampled_ds = tf.data.experimental.sample_from_datasets([pos_ds, neg_ds], weights=[0.5, 0.5])
resampled_ds = resampled_ds.batch(BATCH_SIZE).prefetch(2)
for features, label in resampled_ds.take(1):
print(label.numpy().mean())
weight_for_0 = (1 / neg)*(total)/2.0
weight_for_1 = (1 / pos)*(total)/2.0
class_weight = {0: weight_for_0, 1: weight_for_1}
print(class_weight)
_ = run_imbalanced_weigthed_oversampled(make_model_baseline)