|
23 | 23 | },
|
24 | 24 | {
|
25 | 25 | "cell_type": "code",
|
26 |
| - "execution_count": 45, |
| 26 | + "execution_count": 1, |
27 | 27 | "metadata": {
|
28 | 28 | "collapsed": false,
|
29 | 29 | "nbgrader": {
|
|
183 | 183 | "Australasia 12 ANZ "
|
184 | 184 | ]
|
185 | 185 | },
|
186 |
| - "execution_count": 45, |
| 186 | + "execution_count": 1, |
187 | 187 | "metadata": {},
|
188 | 188 | "output_type": "execute_result"
|
189 | 189 | }
|
|
225 | 225 | },
|
226 | 226 | {
|
227 | 227 | "cell_type": "code",
|
228 |
| - "execution_count": 46, |
| 228 | + "execution_count": 2, |
229 | 229 | "metadata": {
|
230 | 230 | "collapsed": false
|
231 | 231 | },
|
|
252 | 252 | "Name: Afghanistan, dtype: object"
|
253 | 253 | ]
|
254 | 254 | },
|
255 |
| - "execution_count": 46, |
| 255 | + "execution_count": 2, |
256 | 256 | "metadata": {},
|
257 | 257 | "output_type": "execute_result"
|
258 | 258 | }
|
|
282 | 282 | },
|
283 | 283 | {
|
284 | 284 | "cell_type": "code",
|
285 |
| - "execution_count": 47, |
| 285 | + "execution_count": 3, |
286 | 286 | "metadata": {
|
287 | 287 | "collapsed": false,
|
288 | 288 | "nbgrader": {
|
|
298 | 298 | "'United States'"
|
299 | 299 | ]
|
300 | 300 | },
|
301 |
| - "execution_count": 47, |
| 301 | + "execution_count": 3, |
302 | 302 | "metadata": {},
|
303 | 303 | "output_type": "execute_result"
|
304 | 304 | }
|
|
322 | 322 | },
|
323 | 323 | {
|
324 | 324 | "cell_type": "code",
|
325 |
| - "execution_count": 66, |
| 325 | + "execution_count": 4, |
326 | 326 | "metadata": {
|
327 | 327 | "collapsed": false
|
328 | 328 | },
|
|
333 | 333 | "'United States'"
|
334 | 334 | ]
|
335 | 335 | },
|
336 |
| - "execution_count": 66, |
| 336 | + "execution_count": 4, |
337 | 337 | "metadata": {},
|
338 | 338 | "output_type": "execute_result"
|
339 | 339 | }
|
|
360 | 360 | },
|
361 | 361 | {
|
362 | 362 | "cell_type": "code",
|
363 |
| - "execution_count": 67, |
| 363 | + "execution_count": 5, |
364 | 364 | "metadata": {
|
365 | 365 | "collapsed": false
|
366 | 366 | },
|
|
371 | 371 | "'Bulgaria'"
|
372 | 372 | ]
|
373 | 373 | },
|
374 |
| - "execution_count": 67, |
| 374 | + "execution_count": 5, |
375 | 375 | "metadata": {},
|
376 | 376 | "output_type": "execute_result"
|
377 | 377 | }
|
|
399 | 399 | },
|
400 | 400 | {
|
401 | 401 | "cell_type": "code",
|
402 |
| - "execution_count": 72, |
| 402 | + "execution_count": 6, |
403 | 403 | "metadata": {
|
404 | 404 | "collapsed": false
|
405 | 405 | },
|
|
412 | 412 | "Argentina 130\n",
|
413 | 413 | "Armenia 16\n",
|
414 | 414 | "Australasia 22\n",
|
415 |
| - "Australia 919\n", |
416 |
| - "Austria 488\n", |
| 415 | + "Australia 923\n", |
| 416 | + "Austria 569\n", |
417 | 417 | "Azerbaijan 43\n",
|
418 | 418 | "Bahamas 24\n",
|
419 | 419 | "Bahrain 1\n",
|
420 | 420 | "Barbados 1\n",
|
421 |
| - "Belarus 149\n", |
422 |
| - "Belgium 273\n", |
| 421 | + "Belarus 154\n", |
| 422 | + "Belgium 276\n", |
423 | 423 | "Bermuda 1\n",
|
424 | 424 | "Bohemia 5\n",
|
425 | 425 | "Botswana 2\n",
|
426 | 426 | "Brazil 184\n",
|
427 | 427 | "British West Indies 2\n",
|
428 |
| - "Bulgaria 408\n", |
| 428 | + "Bulgaria 411\n", |
429 | 429 | "Burundi 3\n",
|
430 | 430 | "Cameroon 12\n",
|
431 |
| - "Canada 794\n", |
| 431 | + "Canada 846\n", |
432 | 432 | "Chile 24\n",
|
433 |
| - "China 1101\n", |
| 433 | + "China 1120\n", |
434 | 434 | "Colombia 29\n",
|
435 | 435 | "Costa Rica 7\n",
|
436 | 436 | "Ivory Coast 2\n",
|
437 |
| - "Croatia 66\n", |
| 437 | + "Croatia 67\n", |
438 | 438 | "Cuba 420\n",
|
439 | 439 | "Cyprus 2\n",
|
440 | 440 | " ... \n",
|
441 |
| - "Spain 267\n", |
| 441 | + "Spain 268\n", |
442 | 442 | "Sri Lanka 4\n",
|
443 | 443 | "Sudan 2\n",
|
444 | 444 | "Suriname 4\n",
|
445 |
| - "Sweden 1163\n", |
446 |
| - "Switzerland 582\n", |
| 445 | + "Sweden 1217\n", |
| 446 | + "Switzerland 630\n", |
447 | 447 | "Syria 6\n",
|
448 | 448 | "Chinese Taipei 32\n",
|
449 | 449 | "Tajikistan 4\n",
|
|
455 | 455 | "Tunisia 19\n",
|
456 | 456 | "Turkey 191\n",
|
457 | 457 | "Uganda 14\n",
|
458 |
| - "Ukraine 216\n", |
| 458 | + "Ukraine 220\n", |
459 | 459 | "United Arab Emirates 3\n",
|
460 |
| - "United States 5600\n", |
| 460 | + "United States 5684\n", |
461 | 461 | "Uruguay 16\n",
|
462 | 462 | "Uzbekistan 38\n",
|
463 | 463 | "Venezuela 18\n",
|
464 | 464 | "Vietnam 4\n",
|
465 | 465 | "Virgin Islands 2\n",
|
466 |
| - "Yugoslavia 170\n", |
| 466 | + "Yugoslavia 171\n", |
467 | 467 | "Independent Olympic Participants 4\n",
|
468 | 468 | "Zambia 3\n",
|
469 | 469 | "Zimbabwe 18\n",
|
470 | 470 | "Mixed team 38\n",
|
471 | 471 | "Name: Points, dtype: int64"
|
472 | 472 | ]
|
473 | 473 | },
|
474 |
| - "execution_count": 72, |
| 474 | + "execution_count": 6, |
475 | 475 | "metadata": {},
|
476 | 476 | "output_type": "execute_result"
|
477 | 477 | }
|
478 | 478 | ],
|
479 | 479 | "source": [
|
480 | 480 | "def answer_four():\n",
|
481 |
| - " df['Points'] = df['Gold.2'] * 3 + df['Silver.2'] * 2 + df['Bronze']\n", |
| 481 | + " df['Points'] = df['Gold.2'] * 3 + df['Silver.2'] * 2 + df['Bronze.2'] * 1\n", |
482 | 482 | " return df['Points']\n",
|
483 | 483 | "\n",
|
484 | 484 | "answer_four()"
|
|
501 | 501 | },
|
502 | 502 | {
|
503 | 503 | "cell_type": "code",
|
504 |
| - "execution_count": 148, |
| 504 | + "execution_count": 7, |
505 | 505 | "metadata": {
|
506 | 506 | "collapsed": false
|
507 | 507 | },
|
|
702 | 702 | "[5 rows x 100 columns]"
|
703 | 703 | ]
|
704 | 704 | },
|
705 |
| - "execution_count": 148, |
| 705 | + "execution_count": 7, |
706 | 706 | "metadata": {},
|
707 | 707 | "output_type": "execute_result"
|
708 | 708 | }
|
|
714 | 714 | },
|
715 | 715 | {
|
716 | 716 | "cell_type": "code",
|
717 |
| - "execution_count": 182, |
| 717 | + "execution_count": 8, |
718 | 718 | "metadata": {
|
719 | 719 | "collapsed": false
|
720 | 720 | },
|
|
725 | 725 | "'Texas'"
|
726 | 726 | ]
|
727 | 727 | },
|
728 |
| - "execution_count": 182, |
| 728 | + "execution_count": 8, |
729 | 729 | "metadata": {},
|
730 | 730 | "output_type": "execute_result"
|
731 | 731 | }
|
|
749 | 749 | },
|
750 | 750 | {
|
751 | 751 | "cell_type": "code",
|
752 |
| - "execution_count": 274, |
| 752 | + "execution_count": 9, |
753 | 753 | "metadata": {
|
754 | 754 | "collapsed": false
|
755 | 755 | },
|
756 | 756 | "outputs": [
|
757 | 757 | {
|
758 | 758 | "data": {
|
759 | 759 | "text/plain": [
|
760 |
| - "['California', 'Illinois', 'Texas']" |
| 760 | + "['California', 'Texas', 'Illinois']" |
761 | 761 | ]
|
762 | 762 | },
|
763 |
| - "execution_count": 274, |
| 763 | + "execution_count": 9, |
764 | 764 | "metadata": {},
|
765 | 765 | "output_type": "execute_result"
|
766 | 766 | }
|
767 | 767 | ],
|
768 | 768 | "source": [
|
769 | 769 | "def answer_six():\n",
|
770 |
| - " d = census_df.where(census_df['SUMLEV'] == 50)\n", |
771 |
| - " \n", |
772 |
| - " return d.groupby(['STNAME', 'COUNTY']).POPESTIMATE2015.max().nlargest(3).reset_index()['STNAME'].tolist()\n", |
| 770 | + " df1 = pd.DataFrame(census_df.where(census_df['SUMLEV'] == 50).groupby(['STNAME'])['POPESTIMATE2015'].nlargest(3))\n", |
| 771 | + " df1 = df1.reset_index()\n", |
| 772 | + "\n", |
| 773 | + " return list(df1.groupby(['STNAME']).sum()['POPESTIMATE2015'].nlargest(3).index)\n", |
773 | 774 | "\n",
|
774 | 775 | "answer_six()"
|
775 | 776 | ]
|
|
786 | 787 | },
|
787 | 788 | {
|
788 | 789 | "cell_type": "code",
|
789 |
| - "execution_count": 316, |
| 790 | + "execution_count": 10, |
790 | 791 | "metadata": {
|
791 | 792 | "collapsed": false,
|
792 | 793 | "scrolled": true
|
|
798 | 799 | "'Harris County'"
|
799 | 800 | ]
|
800 | 801 | },
|
801 |
| - "execution_count": 316, |
| 802 | + "execution_count": 10, |
802 | 803 | "metadata": {},
|
803 | 804 | "output_type": "execute_result"
|
804 | 805 | }
|
|
829 | 830 | },
|
830 | 831 | {
|
831 | 832 | "cell_type": "code",
|
832 |
| - "execution_count": 336, |
| 833 | + "execution_count": 13, |
833 | 834 | "metadata": {
|
834 | 835 | "collapsed": false
|
835 | 836 | },
|
|
848 | 849 | " </thead>\n",
|
849 | 850 | " <tbody>\n",
|
850 | 851 | " <tr>\n",
|
851 |
| - " <th>1211</th>\n", |
852 |
| - " <td>Maine</td>\n", |
| 852 | + " <th>896</th>\n", |
| 853 | + " <td>Iowa</td>\n", |
853 | 854 | " <td>Washington County</td>\n",
|
854 | 855 | " </tr>\n",
|
855 | 856 | " <tr>\n",
|
856 |
| - " <th>1918</th>\n", |
857 |
| - " <td>New York</td>\n", |
| 857 | + " <th>1419</th>\n", |
| 858 | + " <td>Minnesota</td>\n", |
858 | 859 | " <td>Washington County</td>\n",
|
859 | 860 | " </tr>\n",
|
860 | 861 | " <tr>\n",
|
|
868 | 869 | " <td>Washington County</td>\n",
|
869 | 870 | " </tr>\n",
|
870 | 871 | " <tr>\n",
|
871 |
| - " <th>2863</th>\n", |
872 |
| - " <td>Vermont</td>\n", |
| 872 | + " <th>3163</th>\n", |
| 873 | + " <td>Wisconsin</td>\n", |
873 | 874 | " <td>Washington County</td>\n",
|
874 | 875 | " </tr>\n",
|
875 | 876 | " </tbody>\n",
|
|
878 | 879 | ],
|
879 | 880 | "text/plain": [
|
880 | 881 | " STNAME CTYNAME\n",
|
881 |
| - "1211 Maine Washington County\n", |
882 |
| - "1918 New York Washington County\n", |
| 882 | + "896 Iowa Washington County\n", |
| 883 | + "1419 Minnesota Washington County\n", |
883 | 884 | "2345 Pennsylvania Washington County\n",
|
884 | 885 | "2355 Rhode Island Washington County\n",
|
885 |
| - "2863 Vermont Washington County" |
| 886 | + "3163 Wisconsin Washington County" |
886 | 887 | ]
|
887 | 888 | },
|
888 |
| - "execution_count": 336, |
| 889 | + "execution_count": 13, |
889 | 890 | "metadata": {},
|
890 | 891 | "output_type": "execute_result"
|
891 | 892 | }
|
892 | 893 | ],
|
893 | 894 | "source": [
|
894 | 895 | "def answer_eight():\n",
|
895 | 896 | "\n",
|
896 |
| - " return census_df[((census_df['REGION'] == 1) | (census_df['REGION'] == 1)) & (census_df['CTYNAME'].str.startswith(\"Washington\"))].loc[:,['STNAME','CTYNAME']]\n", |
| 897 | + " return census_df[((census_df['REGION'] == 1) | (census_df['REGION'] == 2)) & (census_df['CTYNAME'].str.startswith(\"Washington\") & (census_df['POPESTIMATE2015'] > census_df['POPESTIMATE2014']))].loc[:,['STNAME','CTYNAME']]\n", |
897 | 898 | "\n",
|
898 | 899 | "answer_eight()"
|
899 | 900 | ]
|
|
0 commit comments