diff --git a/docs/notebooks/walkthrough-basic.ipynb b/docs/notebooks/walkthrough-basic.ipynb index 9b4285ae..2c8809a8 100644 --- a/docs/notebooks/walkthrough-basic.ipynb +++ b/docs/notebooks/walkthrough-basic.ipynb @@ -1,29 +1,5 @@ { "cells": [ - { - "cell_type": "code", - "execution_count": 2, - "id": "1f5e11b0-fe34-48c8-a022-ffda3ec97b19", - "metadata": {}, - "outputs": [], - "source": [ - "import os\n", - "import subprocess\n", - "from os import fspath\n", - "from pathlib import Path\n", - "\n", - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "\n", - "from osgeo import gdal\n", - "\n", - "\n", - "%load_ext autoreload\n", - "%autoreload 2\n", - "\n", - "%matplotlib inline" - ] - }, { "cell_type": "markdown", "id": "68148d83-cc69-45f8-aa27-31b0e9caf3e9", @@ -34,6 +10,7 @@ "This notebook demonstrates the basic usage of the `dolphin` command line tool to execute the stack-based phase linking workflow.\n", "In this notebook, we will\n", "\n", + "- Download geocoded, co-registered single-look complex (CSLC) radar images from [ASF](https://search.asf.alaska.edu/)\n", "- Prepare a configuration file for a stack of coregistered single-look complex (SLC) radar images with `dolphin config`\n", "- Run this configuration file with `dolphin run` \n", "- Inspect the resulting output interferograms\n", @@ -49,30 +26,34 @@ "## Setup\n", "\n", "We first need to install `dolphin` as outlined in the [Getting Started](https://dolphin-insar.readthedocs.io/en/getting-started) section of the documentation. \n", - "We can check that we have the command line tool correctly installed by running" + "\n", + "If you are running this in Colab, you can install [`dolphin` using `pip`](https://pypi.org/project/dolphin/)\n" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, + "id": "43fa5598", + "metadata": {}, + "outputs": [], + "source": [ + "!pip install dolphin" + ] + }, + { + "cell_type": "markdown", + "id": "efb9c4d2", + "metadata": {}, + "source": [ + "We can check that we have the command line tool correctly installed by running:" + ] + }, + { + "cell_type": "code", + "execution_count": null, "id": "f17e1738", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "usage: dolphin [-h] [--version] {run,config,unwrap} ...\n", - "\n", - "options:\n", - " -h, --help show this help message and exit\n", - " --version show program's version number and exit\n", - "\n", - "subcommands:\n", - " {run,config,unwrap}\n" - ] - } - ], + "outputs": [], "source": [ "!dolphin --help" ] @@ -87,7 +68,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 1, "id": "6fbdc0e5", "metadata": {}, "outputs": [ @@ -95,14 +76,37 @@ "name": "stdout", "output_type": "stream", "text": [ - "0.4.1.post1.dev3+g5ab5346.d20230927\n" + "dolphin version: 0.26.0\n", + "\n", + "Python deps:\n", + " h5py: 3.10.0\n", + " jax: 0.4.25\n", + " numba: 0.57.1\n", + " numpy: 1.24.4\n", + " opera-utils: 0.5.0\n", + " pydantic: 2.8.2\n", + " pyproj: 3.6.1\n", + " rasterio: 1.3.9\n", + " ruamel.yaml: 0.17.21\n", + " scipy: 1.11.1\n", + "threadpoolctl: 3.2.0\n", + " tqdm: 4.66.1\n", + " osgeo.gdal: 3.8.4\n", + "\n", + "System:\n", + " python: 3.11.4 | packaged by conda-forge | (main, Jun 10 2023, 18:08:17) [GCC 12.2.0]\n", + " executable: /u/aurora-r0/staniewi/miniconda3/envs/mapping-311/bin/python\n", + " machine: Linux-3.10.0-1160.118.1.el7.x86_64-x86_64-with-glibc2.17\n", + "optional GPU info:\n", + " jax: 0.4.25\n", + "gpu_is_available: True\n" ] } ], "source": [ "import dolphin\n", "\n", - "print(dolphin.__version__)" + "dolphin.show_versions()" ] }, { @@ -110,8 +114,9 @@ "id": "8c5d63e2", "metadata": {}, "source": [ - "If you have a GPU available to you, you can follow the extra installation set up so that the GPU verion of the workflow run.\n", - "This can be 5-20x faster than the CPU version, depending on the sie of your workstation." + "If you have a GPU available to you, you can follow the [extra installation set up](https://dolphin-insar.readthedocs.io/en/latest/gpu-setup/) so that the GPU verion of the workflow run.\n", + "This can be 5-20x faster than the CPU version, depending on the size of your workstation.\n", + "Here we will be processing a relatively small area, so the CPU will suffice." ] }, { @@ -121,209 +126,178 @@ "source": [ "## Input dataset\n", "\n", - "We will use a stack of Sentinel-1 SLCs from descending track 87. \n", - "These were produced by [COMPASS](https://github.com/opera-adt/COMPASS) and are available for download on Zenodo (TODO).\n", + "To find input data, you can use the [ASF search UI](https://search.asf.alaska.edu/) to explore and get a list of URLs to download; for our purposes, we will use the [OPERA Co-regisred Single-look Complex product](https://www.jpl.nasa.gov/go/opera/products/cslc-product-suite), which `dolphin` can directly process.\n", + "\n", + "The helper functions in the [`opera-utils`](https://github.com/opera-adt/opera-utils) library provide wrappers over the [ASF library](https://github.com/asfadmin/Discovery-asf_search) to make it easy to download OPERA CSLCs over a certain region.\n", "\n", - "A brief walkthrough of how to produce these is included in the Appendix" + "We will use a stack of Sentinel-1 SLCs from track 78 over West Texas, where wastewater injection lead to a huge jump in surface displacement in 2022:" ] }, { "cell_type": "code", - "execution_count": 5, - "id": "0f6e12c0", + "execution_count": null, + "id": "e9faef96", "metadata": {}, "outputs": [], "source": [ - "os.chdir(\"/home/staniewi/dev/beta-delivery/delivery_data_small\")" + "!pip install opera-utils asf_search" ] }, { "cell_type": "markdown", - "id": "b68bd720", + "id": "bd430ecc", "metadata": {}, "source": [ - "In the `input_slcs` directory, we have stored the NetCDF-format SLCs:" + "Since ASF requires a login to download data, you must add your username/password here:" ] }, { "cell_type": "code", - "execution_count": 7, - "id": "460e3d3a", + "execution_count": 4, + "id": "9e93922a", "metadata": {}, "outputs": [ { - "name": "stdout", + "name": "stdin", "output_type": "stream", "text": [ - "t042_088905_iw1_20221107.h5 t042_088906_iw1_20221107.h5\n", - "t042_088905_iw1_20221119.h5 t042_088906_iw1_20221119.h5\n", - "t042_088905_iw1_20221201.h5 t042_088906_iw1_20221201.h5\n", - "t042_088905_iw1_20221213.h5 t042_088906_iw1_20221213.h5\n" + "Enter your ASF username: \n", + "Enter ASF Password: ········\n" ] } ], "source": [ - "!ls input_slcs" + "import getpass\n", + "\n", + "asf_username = input(\"Enter your ASF username: \")\n", + "password = getpass.getpass(\"Enter ASF Password: \")" ] }, { - "cell_type": "markdown", - "id": "8ec7f72a", + "cell_type": "code", + "execution_count": 3, + "id": "9c42f9f4", "metadata": {}, + "outputs": [], "source": [ - "The naming convention comes from COMPASS, where, for example, `t042_088905_iw1_20221119.h5` means\n", - "- `t042` is Sentinel-1 track (relative orbit) 42\n", - "- 088905 the Burst IDs from [ESA's Burst database](https://sentinel.esa.int/web/sentinel/-/publication-of-brust-id-maps-for-copernicus-sentinel-1/1.1).\n", - "- `iw1` indicates these are from the first subswath (since the \"Burst ID\" is repeated for subswaths IW1,2,3.)\n", - "- `20221119` is the acquisition date formatted as `%Y%m%d`\n", + "import subprocess\n", + "from os import chdir\n", + "from pathlib import Path\n", "\n", - "Note that we specified the data we want is in `/data/VV`. This is not necessary for other SLC formats (e.g. binary files from ISCE2).\n", + "import opera_utils.download\n", "\n", - "You can process one single stack, or multiple geocoded stacks. If you have different spatial regions, `dolphin` will form burst-wise interferograms and stitch them before unwrapping." + "aoi = \"POLYGON((-102.8136 31.3039,-102.5927 31.3039,-102.5927 31.532,-102.8136 31.532,-102.8136 31.3039))\"\n", + "results, options = opera_utils.download.search_cslcs(\n", + " aoi_polygon=aoi,\n", + " # We want to have the same set of dates for each Burst ID (spatial footprint)\n", + " check_missing_data=True,\n", + " track=78,\n", + " start=\"2021-06-01\",\n", + " end=\"2022-06-01\",\n", + ")\n", + "best_option = options[0]\n", + "\n", + "slc_dir = Path(\"input_slcs\")\n", + "slc_dir.mkdir(exist_ok=True)\n", + "url_file = slc_dir / \"urls.txt\"\n", + "with open(url_file, \"w\") as f:\n", + " f.write(\"\\n\".join(best_option.inputs))\n", + "\n", + "\n", + "chdir(slc_dir)\n", + "# Download 4in parallel\n", + "subprocess.run(\n", + " f\"wget --user {asf_username} --password {asf_password} $(cat urls.txt | tr '\\n' ' ')\",\n", + " shell=True,\n", + " check=True,\n", + " stdout=subprocess.DEVNULL,\n", + " stderr=subprocess.DEVNULL,\n", + ")\n", + "chdir(\"..\")" ] }, { "cell_type": "markdown", - "id": "d595e716", + "id": "b68bd720", "metadata": {}, "source": [ - "Let's make a configuration file for all of the bursts:" + "In the `input_slcs` directory, we have stored the NetCDF-format SLCs:" ] }, { "cell_type": "code", - "execution_count": 12, - "id": "79f9734d", + "execution_count": 5, + "id": "460e3d3a", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Saving configuration to dolphin_config.yaml\n" + "OPERA_L2_CSLC-S1_T078-165573-IW2_20210606T005130Z_20240726T084639Z_S1B_VV_v1.1.h5\n", + "OPERA_L2_CSLC-S1_T078-165573-IW2_20210618T005131Z_20240726T114540Z_S1B_VV_v1.1.h5\n", + "OPERA_L2_CSLC-S1_T078-165573-IW2_20210630T005131Z_20240726T145129Z_S1B_VV_v1.1.h5\n" ] - } - ], - "source": [ - "!dolphin config --slc-files input_slcs/t*.h5 --subdataset \"/data/VV\"" - ] - }, - { - "cell_type": "markdown", - "id": "20dc4cce", - "metadata": {}, - "source": [ - "If you need more fine-grained control of which SLCs to include, you can list the file locations in a text file separated by new lines and refer to it with an `@` symbol. For example: " - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "id": "8d48bdea", - "metadata": {}, - "outputs": [ + }, { - "name": "stdout", + "name": "stderr", "output_type": "stream", "text": [ - "Saving configuration to new_config.yaml\n" + "/u/aurora-r0/staniewi/miniconda3/envs/mapping-311/lib/python3.11/pty.py:89: RuntimeWarning: os.fork() was called. os.fork() is incompatible with multithreaded code, and JAX is multithreaded, so this will likely lead to a deadlock.\n", + " pid, fd = os.forkpty()\n" ] } ], "source": [ - "# Store the files we want in a text file called slc_list.txt\n", - "# Here we're just using `ls` to all the 185683 SLCs\n", - "!ls input_slcs/t*h5 > slc_list.txt\n", - "\n", - "# We use the same `--slc-files` argument, but now use an @ to say look inside the file\n", - "!dolphin config --slc-files @slc_list.txt -o new_config.yaml --subdataset \"/data/VV\"" + "!ls input_slcs | head -3" ] }, { "cell_type": "markdown", - "id": "cd261ce4", + "id": "8ec7f72a", "metadata": {}, "source": [ - "This is an equivalent way to point to the SLCs you want to process. The configs should be the same (except for the creation time, which is logged):" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "id": "e169f63f", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "162c162\n", - "< creation_time_utc: '2023-10-03T17:14:25.047623'\n", - "---\n", - "> creation_time_utc: '2023-10-03T17:14:17.143600'\n" - ] - } - ], - "source": [ - "!diff new_config.yaml dolphin_config.yaml" + "See the [OPERA CSLC documentation](https://d2pn8kiwq2w21t.cloudfront.net/documents/OPERA_CSLC-S1_ProductSpec_v1.0.0_D-108278_Initial_2023-09-11_URS321269.pdf) for the full filename convention, but the main points are\n", + "\n", + "- `T078` is Sentinel-1 track (relative orbit) 78\n", + "- 165573 the Burst IDs from [ESA's Burst database](https://sentinel.esa.int/web/sentinel/-/publication-of-brust-id-maps-for-copernicus-sentinel-1/1.1).\n", + "- `IW2` indicates these are from the first subswath (since the \"Burst ID\" is repeated for subswaths IW1,2,3.)\n", + "- `20210606T005130Z` is the acquisition datetime\n", + "\n", + "Note that we specified the data we want is in `/data/VV`. This is not necessary for other SLC formats (e.g. binary files from ISCE2) which have only one raster layer.\n", + "\n", + "You can process one single stack, or multiple geocoded stacks. If you have different spatial regions, as is the case with OPERA CSLCs, `dolphin` will form burst-wise interferograms and stitch them before unwrapping." ] }, { "cell_type": "markdown", - "id": "8f4d8024", + "id": "d595e716", "metadata": {}, "source": [ - "This command created a YAML file in our current directory. Most of the contents were filled in by the workflow defaults:" + "Let's make a configuration file for all of the bursts:" ] }, { "cell_type": "code", - "execution_count": 16, - "id": "f856e304", + "execution_count": 6, + "id": "79f9734d", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "input_options:\n", - " # If passing HDF5/NetCDF files, subdataset to use from CSLC files. .\n", - " # Type: string | null.\n", - " subdataset: /data/VV\n", - " # Format of dates contained in CSLC filenames.\n", - " # Type: string.\n", - " cslc_date_fmt: '%Y%m%d'\n", - "# REQUIRED: list of CSLC files, or newline-delimited file containing list of CSLC files.\n", - "# Type: array.\n", - "cslc_file_list:\n", - " - input_slcs/t042_088905_iw1_20221107.h5\n", - " - input_slcs/t042_088906_iw1_20221107.h5\n", - " - input_slcs/t042_088905_iw1_20221119.h5\n", - " - input_slcs/t042_088906_iw1_20221119.h5\n", - " - input_slcs/t042_088905_iw1_20221201.h5\n", - " - input_slcs/t042_088906_iw1_20221201.h5\n", - " - input_slcs/t042_088905_iw1_20221213.h5\n", - " - input_slcs/t042_088906_iw1_20221213.h5\n", - "# Byte mask file used to ignore low correlation/bad data (e.g water mask). Convention is 0\n", - "# for no data/invalid, and 1 for good data. Dtype must be uint8.\n" + "Saving configuration to dolphin_config.yaml\n" ] } ], "source": [ - "!head -20 dolphin_config.yaml" - ] - }, - { - "cell_type": "markdown", - "id": "ee395f49-a08c-4ac9-8c26-2b9b0da6882e", - "metadata": {}, - "source": [ - "You can browse the YAML file for all the configuration options." + "!dolphin config --slc-files input_slcs/*.h5 --subdataset \"/data/VV\"" ] }, { "cell_type": "markdown", - "id": "3a853064-c26b-4a90-ab41-3bc7af2d3682", + "id": "6e0839fd-a3ac-4604-b7be-d72f5002aa0c", "metadata": {}, "source": [ "### Common configuration\n", @@ -336,7 +310,7 @@ "\n", "#### Specify the working directory\n", "\n", - "Use `--working-directory` to save all rasters to a different directory other than the one you call `dolphin run` from.\n", + "Use `--work-directory` to save all rasters to a different directory other than the one you call `dolphin run` from.\n", "\n", "#### Specify how many CPUs to use\n", "\n", @@ -346,25 +320,18 @@ "\n", "By adding the `--n-parallel-bursts`, you can process separate geocoded bursts at the same time (assuming sufficient resources are available).\n", "\n", - "#### Multiscale unwrapping\n", + "#### Phase unwrapping\n", "\n", - "If you have [tophu](https://github.com/isce-framework/tophu) installed, you can also run multiscale unwrapping on the interferograms.\n", - "This is configurable by specifying \n", - "1. How many tiles you want to split each interferogram into with `--ntiles`\n", - "2. How much extra multilooking you'd like to do for the coarse unwrapping with `--downsample-factor`" - ] - }, - { - "cell_type": "markdown", - "id": "985da911-688a-4c2d-ab5d-76be398332be", - "metadata": {}, - "source": [ - "### Full configuration command" + "`dolphin` supports multiple options for phase unwrapping. Here, we will use the [Python wrapper for SNAPHU](https://github.com/isce-framework/snaphu-py), one of the most widely used phase unwrapping algorithms.\n", + "\n", + "#### Bounds subsetting\n", + "\n", + "If you are interested in a smaller subset of the are, you can specify the `--output-bounds` to force the raster boudaries." ] }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 13, "id": "fa206cad-bb7e-4519-b031-bcc7f7bb0fd8", "metadata": {}, "outputs": [ @@ -372,27 +339,20 @@ "name": "stderr", "output_type": "stream", "text": [ - "Saving configuration to dolphin_config.yaml\n" + "/u/aurora-r0/staniewi/miniconda3/envs/mapping-311/lib/python3.11/pty.py:89: RuntimeWarning: os.fork() was called. os.fork() is incompatible with multithreaded code, and JAX is multithreaded, so this will likely lead to a deadlock.\n", + " pid, fd = os.forkpty()\n" ] }, { - "data": { - "text/plain": [ - "CompletedProcess(args='dolphin config --slc-files @slc_list.txt --subdataset \"/data/VV\" --strides 6 3 --n-parallel-bursts 2 --threads-per-worker 16 --ntiles 2 2 --downsample-factor 3 3', returncode=0)" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "Saving configuration to dolphin_config.yaml\n" + ] } ], "source": [ - "cmd = (\n", - " 'dolphin config --slc-files @slc_list.txt --subdataset \"/data/VV\" --strides 6 3 '\n", - " \"--n-parallel-bursts 2 --threads-per-worker 16 \"\n", - " \" --ntiles 2 2 --downsample-factor 3 3\"\n", - ")\n", - "subprocess.run(cmd, shell=True)" + "!dolphin config --slc-files input_slcs/*.h5 --subdataset \"/data/VV\" --threads-per-worker 8 --strides 6 3 --n-parallel-bursts 2 --output-bounds -102.8 31.3 -102.6 31.5 --work-directory work-walkthrough" ] }, { @@ -407,434 +367,50 @@ }, { "cell_type": "code", - "execution_count": 22, - "id": "d2cdb4cc", + "execution_count": null, + "id": "7ac1c6b8-491b-4a6a-bccd-901d465fa0f4", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[2;36m[2023-10-03 10:33:47]\u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Found SLC files from \u001b[1;36m2\u001b[0m bursts \u001b]8;id=381548;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/s1_disp.py\u001b\\\u001b[2ms1_disp.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=436871;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/s1_disp.py#68\u001b\\\u001b[2m68\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Running wrapped phase \u001b]8;id=597451;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/wrapped_phase.py\u001b\\\u001b[2mwrapped_phase.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=995919;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/wrapped_phase.py#39\u001b\\\u001b[2m39\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m estimation in \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m/u/aurora-r0/staniewi/dev/bet\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35ma-delivery/delivery_data_smal\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35ml/\u001b[0m\u001b[95mt042_088906_iw1\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Running wrapped phase \u001b]8;id=227730;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/wrapped_phase.py\u001b\\\u001b[2mwrapped_phase.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=417925;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/wrapped_phase.py#39\u001b\\\u001b[2m39\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m estimation in \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m/u/aurora-r0/staniewi/dev/bet\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35ma-delivery/delivery_data_smal\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35ml/\u001b[0m\u001b[95mt042_088905_iw1\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Overwriting \u001b]8;id=459544;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/stack.py\u001b\\\u001b[2mstack.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=798646;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/stack.py#79\u001b\\\u001b[2m79\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m \u001b[35m/u/aurora-r0/staniewi/dev/beta-delive\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35mry/delivery_data_small/t042_088905_iw\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m1/\u001b[0m\u001b[95mslc_stack.vrt\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Skipping making existing PS \u001b]8;id=576995;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/wrapped_phase.py\u001b\\\u001b[2mwrapped_phase.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=343786;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/wrapped_phase.py#70\u001b\\\u001b[2m70\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m file \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m/u/aurora-r0/staniewi/dev/bet\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35ma-delivery/delivery_data_smal\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35ml/t042_088905_iw1/PS/\u001b[0m\u001b[95mps_pixel\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[95ms.tif\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Saving a looked PS mask to \u001b]8;id=897750;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/ps.py\u001b\\\u001b[2mps.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=1363;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/ps.py#281\u001b\\\u001b[2m281\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m \u001b[35m/u/aurora-r0/staniewi/dev/beta-delivery\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m/delivery_data_small/t042_088905_iw1/PS\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m/\u001b[0m\u001b[95mps_pixels_looked.tif\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m gdal_calc.py --quiet --outfile \u001b]8;id=496313;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/opera_utils.py\u001b\\\u001b[2mopera_utils.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=204640;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/opera_utils.py#206\u001b\\\u001b[2m206\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m \u001b[35m/u/aurora-r0/staniewi/dev/beta\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m-delivery/delivery_data_small/\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35mt042_088906_iw1/\u001b[0m\u001b[95mnodata_mask.ti\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[95mf\u001b[0m --type Byte -A \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m NETCDF:\u001b[35m/u/aurora-r0/staniewi/d\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35mev/beta-delivery/delivery_data\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m_small/input_slcs/\u001b[0m\u001b[95mt042_088906_\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[95miw1_20221107.h5\u001b[0m:\u001b[35m/\u001b[0m\u001b[35m/data/\u001b[0m\u001b[95mVV\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m --calc \u001b[32m'numpy.nan_to_num\u001b[0m\u001b[32m(\u001b[0m\u001b[32mA\u001b[0m\u001b[32m)\u001b[0m\u001b[32m * \u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[32m0'\u001b[0m --creation-option \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[33mCOMPRESS\u001b[0m=\u001b[35mLZW\u001b[0m --creation-option \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[33mTILED\u001b[0m=\u001b[35mYES\u001b[0m --creation-option \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[33mBLOCKXSIZE\u001b[0m=\u001b[1;36m256\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m --creation-option \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[33mBLOCKYSIZE\u001b[0m=\u001b[1;36m256\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m \u001b[35m/u/aurora-r0/staniewi/dev/beta-delivery\u001b[0m \u001b]8;id=372570;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/ps.py\u001b\\\u001b[2mps.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=39608;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/ps.py#286\u001b\\\u001b[2m286\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m \u001b[35m/delivery_data_small/t042_088905_iw1/PS\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m/\u001b[0m\u001b[95mps_pixels_looked.tif\u001b[0m exists, skipping. \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Running sequential EMI step \u001b]8;id=804091;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/wrapped_phase.py\u001b\\\u001b[2mwrapped_phase.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=813703;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/wrapped_phase.py#107\u001b\\\u001b[2m107\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m in \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m/u/aurora-r0/staniewi/dev/be\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35mta-delivery/delivery_data_sm\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35mall/t042_088905_iw1/\u001b[0m\u001b[95mlinked_p\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[95mhase\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m[2023-10-03 10:33:48]\u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Logging GPU memory usage to \u001b]8;id=288308;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/_background.py\u001b\\\u001b[2m_background.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=763599;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/_background.py#296\u001b\\\u001b[2m296\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m \u001b[35m/u/aurora-r0/staniewi/dev/beta\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m-delivery/delivery_data_small/\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35mt042_088905_iw1/linked_phase/\u001b[0m\u001b[95mn\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[95mvidia_memory.log\u001b[0m every \u001b[1;36m1.0\u001b[0m s \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m \u001b[1;35mVRTStack\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m4\u001b[0m bands, \u001b]8;id=350043;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/sequential.py\u001b\\\u001b[2msequential.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=151048;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/sequential.py#61\u001b\\\u001b[2m61\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m \u001b[33moutfile\u001b[0m=\u001b[35m/u/aurora-r0/staniewi/de\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35mv/beta-delivery/delivery_data_sm\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35mall/t042_088905_iw1/\u001b[0m\u001b[95mslc_stack.vr\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[95mt\u001b[0m\u001b[1m)\u001b[0m: from \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m/u/aurora-r0/staniewi/dev/beta-d\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35melivery/delivery_data_small/inpu\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35mt_slcs/\u001b[0m\u001b[95mt042_088905_iw1_20221107.\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[95mh5\u001b[0m to \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m/u/aurora-r0/staniewi/dev/beta-d\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35melivery/delivery_data_small/inpu\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35mt_slcs/\u001b[0m\u001b[95mt042_088905_iw1_20221213.\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[95mh5\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Processing \u001b[1;36m4\u001b[0m SLCs.Output folder: \u001b]8;id=178504;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/sequential.py\u001b\\\u001b[2msequential.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=223900;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/sequential.py#84\u001b\\\u001b[2m84\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m \u001b[35m/u/aurora-r0/staniewi/dev/beta-d\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35melivery/delivery_data_small/t042\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m_088905_iw1/linked_phase/\u001b[0m\u001b[95m2022110\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[95m7_20221213\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Overwriting \u001b]8;id=907592;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/stack.py\u001b\\\u001b[2mstack.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=276444;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/stack.py#79\u001b\\\u001b[2m79\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m \u001b[35m/u/aurora-r0/staniewi/dev/beta-delive\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35mry/delivery_data_small/t042_088905_iw\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m1/linked_phase/20221107_20221213/\u001b[0m\u001b[95m2022\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[95m1107_20221213.vrt\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m \u001b[1;35mVRTStack\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m4\u001b[0m bands, \u001b]8;id=829477;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/single.py\u001b\\\u001b[2msingle.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=825971;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/single.py#72\u001b\\\u001b[2m72\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m \u001b[33moutfile\u001b[0m=\u001b[35m/u/aurora-r0/staniewi/dev/be\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35mta-delivery/delivery_data_small/t042\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m_088905_iw1/linked_phase/20221107_20\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m221213/\u001b[0m\u001b[95m20221107_20221213.vrt\u001b[0m\u001b[1m)\u001b[0m: from \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m/u/aurora-r0/staniewi/dev/beta-deliv\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35mery/delivery_data_small/input_slcs/\u001b[0m\u001b[95mt\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[95m042_088905_iw1_20221107.h5\u001b[0m to \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m/u/aurora-r0/staniewi/dev/beta-deliv\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35mery/delivery_data_small/input_slcs/\u001b[0m\u001b[95mt\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[95m042_088905_iw1_20221213.h5\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m[2023-10-03 10:33:53]\u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m gdal_rasterize -q -burn \u001b[1;36m1\u001b[0m \u001b]8;id=329093;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/opera_utils.py\u001b\\\u001b[2mopera_utils.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=981782;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/opera_utils.py#223\u001b\\\u001b[2m223\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m \u001b[35m/tmp/tmp5gks18o3/\u001b[0m\u001b[95mtemp.geojson\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m/u/aurora-r0/staniewi/dev/beta\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m-delivery/delivery_data_small/\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35mt042_088906_iw1/\u001b[0m\u001b[95mnodata_mask.ti\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[95mf\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Creating persistent scatterer \u001b]8;id=380847;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/wrapped_phase.py\u001b\\\u001b[2mwrapped_phase.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=357676;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/wrapped_phase.py#72\u001b\\\u001b[2m72\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m file \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m/u/aurora-r0/staniewi/dev/bet\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35ma-delivery/delivery_data_smal\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35ml/t042_088906_iw1/PS/\u001b[0m\u001b[95mps_pixel\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[95ms.tif\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2K\u001b[32m⠋\u001b[0m \u001b[32m 0/390\u001b[0m Processing (512, 512) sized blocks... \u001b[90m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m \u001b[33m0:00:00\u001b[0m\u001b[2;36m[2023-10-03 10:33:53]\u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Processing \u001b[1;36m4\u001b[0m SLCs + \u001b[1;36m0\u001b[0m compressed \u001b]8;id=445207;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/single.py\u001b\\\u001b[2msingle.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=520770;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/single.py#125\u001b\\\u001b[2m125\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m SLCs. \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m \u001b[1;35mVRTStack\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m4\u001b[0m bands, \u001b]8;id=588553;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/single.py\u001b\\\u001b[2msingle.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=321769;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/single.py#130\u001b\\\u001b[2m130\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m \u001b[33moutfile\u001b[0m=\u001b[35m/u/aurora-r0/staniewi/dev/b\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35meta-delivery/delivery_data_small/t0\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m42_088905_iw1/linked_phase/20221107\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m_20221213/\u001b[0m\u001b[95m20221107_20221213.vrt\u001b[0m\u001b[1m)\u001b[0m: \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m from t042_088905_iw1_20221107.h5 to \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m t042_088905_iw1_20221213.h5 \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Total stack size \u001b[1m(\u001b[0min pixels\u001b[1m)\u001b[0m: \u001b[1m(\u001b[0m\u001b[1;36m4\u001b[0m, \u001b]8;id=30083;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/single.py\u001b\\\u001b[2msingle.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=195670;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/single.py#134\u001b\\\u001b[2m134\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m \u001b[1;36m4840\u001b[0m, \u001b[1;36m19520\u001b[0m\u001b[1m)\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2K\u001b[32m⠹\u001b[0m \u001b[32m 0/390\u001b[0m Processing (512, 512) sized blocks... \u001b[90m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 0%\u001b[0m \u001b[33m0:00:00\u001b[0m\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Iterating over \u001b[1m(\u001b[0m\u001b[1;36m512\u001b[0m, \u001b[1;36m512\u001b[0m\u001b[1m)\u001b[0m blocks, \u001b]8;id=461970;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/single.py\u001b\\\u001b[2msingle.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=64531;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/single.py#178\u001b\\\u001b[2m178\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m \u001b[1;36m390\u001b[0m total \u001b[2m \u001b[0m\n", - "\u001b[2K \u001b[32m390/390\u001b[0m Processing (512, 512) sized blocks... \u001b[90m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[33m0:00:32\u001b[0mm \u001b[33m0:00:32\u001b[0m00:31\u001b[0m\n", - "\u001b[?25h\u001b[2;36m[2023-10-03 10:34:26]\u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Waiting to write \u001b[1;36m0\u001b[0m blocks of data. \u001b]8;id=992890;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/ps.py\u001b\\\u001b[2mps.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=275639;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/ps.py#148\u001b\\\u001b[2m148\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Finished writing out PS files \u001b]8;id=504538;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/ps.py\u001b\\\u001b[2mps.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=510579;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/ps.py#150\u001b\\\u001b[2m150\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Saving a looked PS mask to \u001b]8;id=300381;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/ps.py\u001b\\\u001b[2mps.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=821020;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/ps.py#281\u001b\\\u001b[2m281\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m \u001b[35m/u/aurora-r0/staniewi/dev/beta-delivery\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m/delivery_data_small/t042_088906_iw1/PS\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m/\u001b[0m\u001b[95mps_pixels_looked.tif\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m[2023-10-03 10:34:28]\u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Running sequential EMI step \u001b]8;id=40876;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/wrapped_phase.py\u001b\\\u001b[2mwrapped_phase.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=976493;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/wrapped_phase.py#107\u001b\\\u001b[2m107\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m in \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m/u/aurora-r0/staniewi/dev/be\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35mta-delivery/delivery_data_sm\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35mall/t042_088906_iw1/\u001b[0m\u001b[95mlinked_p\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[95mhase\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Logging GPU memory usage to \u001b]8;id=924239;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/_background.py\u001b\\\u001b[2m_background.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=973385;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/_background.py#296\u001b\\\u001b[2m296\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m \u001b[35m/u/aurora-r0/staniewi/dev/beta\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m-delivery/delivery_data_small/\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35mt042_088906_iw1/linked_phase/\u001b[0m\u001b[95mn\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[95mvidia_memory.log\u001b[0m every \u001b[1;36m1.0\u001b[0m s \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m \u001b[1;35mVRTStack\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m4\u001b[0m bands, \u001b]8;id=932386;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/sequential.py\u001b\\\u001b[2msequential.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=357818;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/sequential.py#61\u001b\\\u001b[2m61\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m \u001b[33moutfile\u001b[0m=\u001b[35m/u/aurora-r0/staniewi/de\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35mv/beta-delivery/delivery_data_sm\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35mall/t042_088906_iw1/\u001b[0m\u001b[95mslc_stack.vr\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[95mt\u001b[0m\u001b[1m)\u001b[0m: from \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m/u/aurora-r0/staniewi/dev/beta-d\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35melivery/delivery_data_small/inpu\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35mt_slcs/\u001b[0m\u001b[95mt042_088906_iw1_20221107.\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[95mh5\u001b[0m to \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m/u/aurora-r0/staniewi/dev/beta-d\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35melivery/delivery_data_small/inpu\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35mt_slcs/\u001b[0m\u001b[95mt042_088906_iw1_20221213.\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[95mh5\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Processing \u001b[1;36m4\u001b[0m SLCs.Output folder: \u001b]8;id=535234;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/sequential.py\u001b\\\u001b[2msequential.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=836061;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/sequential.py#84\u001b\\\u001b[2m84\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m \u001b[35m/u/aurora-r0/staniewi/dev/beta-d\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35melivery/delivery_data_small/t042\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m_088906_iw1/linked_phase/\u001b[0m\u001b[95m2022110\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[95m7_20221213\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m \u001b[1;35mVRTStack\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m4\u001b[0m bands, \u001b]8;id=134756;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/single.py\u001b\\\u001b[2msingle.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=921110;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/single.py#72\u001b\\\u001b[2m72\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m \u001b[33moutfile\u001b[0m=\u001b[35m/u/aurora-r0/staniewi/dev/be\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35mta-delivery/delivery_data_small/t042\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m_088906_iw1/linked_phase/20221107_20\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m221213/\u001b[0m\u001b[95m20221107_20221213.vrt\u001b[0m\u001b[1m)\u001b[0m: from \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m/u/aurora-r0/staniewi/dev/beta-deliv\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35mery/delivery_data_small/input_slcs/\u001b[0m\u001b[95mt\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[95m042_088906_iw1_20221107.h5\u001b[0m to \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m/u/aurora-r0/staniewi/dev/beta-deliv\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35mery/delivery_data_small/input_slcs/\u001b[0m\u001b[95mt\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[95m042_088906_iw1_20221213.h5\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m[2023-10-03 10:34:33]\u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Processing \u001b[1;36m4\u001b[0m SLCs + \u001b[1;36m0\u001b[0m compressed \u001b]8;id=821049;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/single.py\u001b\\\u001b[2msingle.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=849095;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/single.py#125\u001b\\\u001b[2m125\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m SLCs. \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m \u001b[1;35mVRTStack\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m4\u001b[0m bands, \u001b]8;id=539332;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/single.py\u001b\\\u001b[2msingle.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=463701;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/single.py#130\u001b\\\u001b[2m130\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m \u001b[33moutfile\u001b[0m=\u001b[35m/u/aurora-r0/staniewi/dev/b\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35meta-delivery/delivery_data_small/t0\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m42_088906_iw1/linked_phase/20221107\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m_20221213/\u001b[0m\u001b[95m20221107_20221213.vrt\u001b[0m\u001b[1m)\u001b[0m: \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m from t042_088906_iw1_20221107.h5 to \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m t042_088906_iw1_20221213.h5 \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Total stack size \u001b[1m(\u001b[0min pixels\u001b[1m)\u001b[0m: \u001b[1m(\u001b[0m\u001b[1;36m4\u001b[0m, \u001b]8;id=2336;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/single.py\u001b\\\u001b[2msingle.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=874957;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/single.py#134\u001b\\\u001b[2m134\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m \u001b[1;36m4850\u001b[0m, \u001b[1;36m19530\u001b[0m\u001b[1m)\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Iterating over \u001b[1m(\u001b[0m\u001b[1;36m512\u001b[0m, \u001b[1;36m512\u001b[0m\u001b[1m)\u001b[0m blocks, \u001b]8;id=106967;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/single.py\u001b\\\u001b[2msingle.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=602142;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/single.py#178\u001b\\\u001b[2m178\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m \u001b[1;36m390\u001b[0m total \u001b[2m \u001b[0m\n", - "\u001b[2;36m[2023-10-03 10:34:57]\u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Waiting to write \u001b[1;36m0\u001b[0m blocks of data. \u001b]8;id=809676;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/single.py\u001b\\\u001b[2msingle.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=14637;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/single.py#290\u001b\\\u001b[2m290\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m[2023-10-03 10:34:58]\u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Finished ministack of size \u001b[1m(\u001b[0m\u001b[1;36m4\u001b[0m, \u001b]8;id=380255;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/single.py\u001b\\\u001b[2msingle.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=154502;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/single.py#292\u001b\\\u001b[2m292\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m \u001b[1;36m4840\u001b[0m, \u001b[1;36m19520\u001b[0m\u001b[1m)\u001b[0m. \u001b[2m \u001b[0m\n", - "\u001b[2;36m[2023-10-03 10:34:59]\u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Creating virtual \u001b]8;id=151181;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/wrapped_phase.py\u001b\\\u001b[2mwrapped_phase.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=175297;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/wrapped_phase.py#152\u001b\\\u001b[2m152\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m interferograms from \u001b[1;36m4\u001b[0m files \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Total elapsed time for \u001b]8;id=236294;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/_log.py\u001b\\\u001b[2m_log.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=16637;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/_log.py#114\u001b\\\u001b[2m114\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m dolphin.workflows.wrapped_phase.run : \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[1;36m1.20\u001b[0m minutes \u001b[1m(\u001b[0m\u001b[1;36m72.13\u001b[0m seconds\u001b[1m)\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m[2023-10-03 10:35:36]\u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Waiting to write \u001b[1;36m0\u001b[0m blocks of data. \u001b]8;id=858553;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/single.py\u001b\\\u001b[2msingle.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=735109;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/single.py#290\u001b\\\u001b[2m290\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Finished ministack of size \u001b[1m(\u001b[0m\u001b[1;36m4\u001b[0m, \u001b]8;id=568399;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/single.py\u001b\\\u001b[2msingle.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=662702;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/single.py#292\u001b\\\u001b[2m292\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m \u001b[1;36m4850\u001b[0m, \u001b[1;36m19530\u001b[0m\u001b[1m)\u001b[0m. \u001b[2m \u001b[0m\n", - "\u001b[2;36m[2023-10-03 10:35:37]\u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Creating virtual \u001b]8;id=97017;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/wrapped_phase.py\u001b\\\u001b[2mwrapped_phase.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=290559;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/wrapped_phase.py#152\u001b\\\u001b[2m152\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m interferograms from \u001b[1;36m4\u001b[0m files \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Total elapsed time for \u001b]8;id=28891;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/_log.py\u001b\\\u001b[2m_log.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=962017;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/_log.py#114\u001b\\\u001b[2m114\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m dolphin.workflows.wrapped_phase.run : \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[1;36m1.84\u001b[0m minutes \u001b[1m(\u001b[0m\u001b[1;36m110.29\u001b[0m seconds\u001b[1m)\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m[2023-10-03 10:35:38]\u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Stitching interferograms \u001b]8;id=182557;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/stitch_and_unwrap.py\u001b\\\u001b[2mstitch_and_unwrap.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=49063;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/stitch_and_unwrap.py#63\u001b\\\u001b[2m63\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m by date. \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m \u001b[1m(\u001b[0m\u001b[1;35mdatetime.date\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m2022\u001b[0m, \u001b[1;36m11\u001b[0m, \u001b[1;36m7\u001b[0m\u001b[1m)\u001b[0m, \u001b]8;id=418099;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/stitching.py\u001b\\\u001b[2mstitching.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=825712;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/stitching.py#83\u001b\\\u001b[2m83\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m \u001b[1;35mdatetime.date\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m2022\u001b[0m, \u001b[1;36m11\u001b[0m, \u001b[1;36m19\u001b[0m\u001b[1m)\u001b[0m\u001b[1m)\u001b[0m: \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m Stitching \u001b[1;36m2\u001b[0m images. \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Running gdal_merge.py -o \u001b]8;id=425563;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/stitching.py\u001b\\\u001b[2mstitching.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=75586;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/stitching.py#249\u001b\\\u001b[2m249\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m \u001b[35m/u/aurora-r0/staniewi/dev/beta-d\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35melivery/delivery_data_small/inte\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35mrferograms/stitched/\u001b[0m\u001b[95m20221107_202\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[95m21119.int\u001b[0m --optfile \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m/tmp/tmpubxt2p4d/\u001b[0m\u001b[95mfile_list.txt\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m -of ENVI -ul_lr \u001b[1;36m215190.0\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[1;36m4397520.0\u001b[0m \u001b[1;36m316860.0\u001b[0m \u001b[1;36m4330770.0\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m -a_nodata \u001b[1;36m0\u001b[0m -n \u001b[1;36m0.0\u001b[0m -tap -co \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[33mSUFFIX\u001b[0m=\u001b[35mADD\u001b[0m \u001b[2m \u001b[0m\n", - "0...10...20...30...40...50...60...70...80...90...100 - done.\n", - "\u001b[2;36m[2023-10-03 10:35:39]\u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m \u001b[1m(\u001b[0m\u001b[1;35mdatetime.date\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m2022\u001b[0m, \u001b[1;36m11\u001b[0m, \u001b[1;36m7\u001b[0m\u001b[1m)\u001b[0m, \u001b]8;id=502811;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/stitching.py\u001b\\\u001b[2mstitching.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=986328;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/stitching.py#83\u001b\\\u001b[2m83\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m \u001b[1;35mdatetime.date\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m2022\u001b[0m, \u001b[1;36m12\u001b[0m, \u001b[1;36m1\u001b[0m\u001b[1m)\u001b[0m\u001b[1m)\u001b[0m: \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m Stitching \u001b[1;36m2\u001b[0m images. \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Running gdal_merge.py -o \u001b]8;id=251215;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/stitching.py\u001b\\\u001b[2mstitching.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=164542;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/stitching.py#249\u001b\\\u001b[2m249\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m \u001b[35m/u/aurora-r0/staniewi/dev/beta-d\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35melivery/delivery_data_small/inte\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35mrferograms/stitched/\u001b[0m\u001b[95m20221107_202\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[95m21201.int\u001b[0m --optfile \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m/tmp/tmph9kluh7i/\u001b[0m\u001b[95mfile_list.txt\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m -of ENVI -ul_lr \u001b[1;36m215190.0\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[1;36m4397520.0\u001b[0m \u001b[1;36m316860.0\u001b[0m \u001b[1;36m4330770.0\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m -a_nodata \u001b[1;36m0\u001b[0m -n \u001b[1;36m0.0\u001b[0m -tap -co \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[33mSUFFIX\u001b[0m=\u001b[35mADD\u001b[0m \u001b[2m \u001b[0m\n", - "0...10...20...30...40...50...60...70...80...90...100 - done.\n", - "\u001b[2;36m[2023-10-03 10:35:40]\u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m \u001b[1m(\u001b[0m\u001b[1;35mdatetime.date\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m2022\u001b[0m, \u001b[1;36m11\u001b[0m, \u001b[1;36m7\u001b[0m\u001b[1m)\u001b[0m, \u001b]8;id=884481;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/stitching.py\u001b\\\u001b[2mstitching.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=180275;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/stitching.py#83\u001b\\\u001b[2m83\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m \u001b[1;35mdatetime.date\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m2022\u001b[0m, \u001b[1;36m12\u001b[0m, \u001b[1;36m13\u001b[0m\u001b[1m)\u001b[0m\u001b[1m)\u001b[0m: \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m Stitching \u001b[1;36m2\u001b[0m images. \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Running gdal_merge.py -o \u001b]8;id=47238;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/stitching.py\u001b\\\u001b[2mstitching.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=313091;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/stitching.py#249\u001b\\\u001b[2m249\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m \u001b[35m/u/aurora-r0/staniewi/dev/beta-d\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35melivery/delivery_data_small/inte\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35mrferograms/stitched/\u001b[0m\u001b[95m20221107_202\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[95m21213.int\u001b[0m --optfile \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m/tmp/tmphklip4mh/\u001b[0m\u001b[95mfile_list.txt\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m -of ENVI -ul_lr \u001b[1;36m215190.0\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[1;36m4397520.0\u001b[0m \u001b[1;36m316860.0\u001b[0m \u001b[1;36m4330770.0\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m -a_nodata \u001b[1;36m0\u001b[0m -n \u001b[1;36m0.0\u001b[0m -tap -co \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[33mSUFFIX\u001b[0m=\u001b[35mADD\u001b[0m \u001b[2m \u001b[0m\n", - "0...10...20...30...40...50...60...70...80...90...100 - done.\n", - "\u001b[2;36m[2023-10-03 10:35:41]\u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Estimating spatial \u001b]8;id=457752;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/stitch_and_unwrap.py\u001b\\\u001b[2mstitch_and_unwrap.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=685401;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/stitch_and_unwrap.py#163\u001b\\\u001b[2m163\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m correlation for \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[1m(\u001b[0m\u001b[1;35mdatetime.date\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m2022\u001b[0m, \u001b[1;36m11\u001b[0m, \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[1;36m7\u001b[0m\u001b[1m)\u001b[0m, \u001b[1;35mdatetime.date\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m2022\u001b[0m, \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[1;36m11\u001b[0m, \u001b[1;36m19\u001b[0m\u001b[1m)\u001b[0m\u001b[1m)\u001b[0m\u001b[33m...\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Writing spatial \u001b]8;id=788854;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/stitch_and_unwrap.py\u001b\\\u001b[2mstitch_and_unwrap.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=502567;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/stitch_and_unwrap.py#165\u001b\\\u001b[2m165\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m correlation to \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m/u/aurora-r0/staniewi/de\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35mv/beta-delivery/delivery\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m_data_small/interferogra\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35mms/stitched/\u001b[0m\u001b[95m20221107_202\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[95m21119.cor\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m[2023-10-03 10:35:42]\u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Estimating spatial \u001b]8;id=995136;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/stitch_and_unwrap.py\u001b\\\u001b[2mstitch_and_unwrap.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=639077;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/stitch_and_unwrap.py#163\u001b\\\u001b[2m163\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m correlation for \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[1m(\u001b[0m\u001b[1;35mdatetime.date\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m2022\u001b[0m, \u001b[1;36m11\u001b[0m, \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[1;36m7\u001b[0m\u001b[1m)\u001b[0m, \u001b[1;35mdatetime.date\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m2022\u001b[0m, \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[1;36m12\u001b[0m, \u001b[1;36m1\u001b[0m\u001b[1m)\u001b[0m\u001b[1m)\u001b[0m\u001b[33m...\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Writing spatial \u001b]8;id=630604;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/stitch_and_unwrap.py\u001b\\\u001b[2mstitch_and_unwrap.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=494897;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/stitch_and_unwrap.py#165\u001b\\\u001b[2m165\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m correlation to \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m/u/aurora-r0/staniewi/de\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35mv/beta-delivery/delivery\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m_data_small/interferogra\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35mms/stitched/\u001b[0m\u001b[95m20221107_202\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[95m21201.cor\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Estimating spatial \u001b]8;id=383346;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/stitch_and_unwrap.py\u001b\\\u001b[2mstitch_and_unwrap.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=299762;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/stitch_and_unwrap.py#163\u001b\\\u001b[2m163\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m correlation for \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[1m(\u001b[0m\u001b[1;35mdatetime.date\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m2022\u001b[0m, \u001b[1;36m11\u001b[0m, \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[1;36m7\u001b[0m\u001b[1m)\u001b[0m, \u001b[1;35mdatetime.date\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m2022\u001b[0m, \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[1;36m12\u001b[0m, \u001b[1;36m13\u001b[0m\u001b[1m)\u001b[0m\u001b[1m)\u001b[0m\u001b[33m...\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m[2023-10-03 10:35:43]\u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Writing spatial \u001b]8;id=320696;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/stitch_and_unwrap.py\u001b\\\u001b[2mstitch_and_unwrap.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=827265;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/stitch_and_unwrap.py#165\u001b\\\u001b[2m165\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m correlation to \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m/u/aurora-r0/staniewi/de\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35mv/beta-delivery/delivery\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m_data_small/interferogra\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35mms/stitched/\u001b[0m\u001b[95m20221107_202\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[95m21213.cor\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Running gdal_merge.py -o \u001b]8;id=12172;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/stitching.py\u001b\\\u001b[2mstitching.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=739392;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/stitching.py#249\u001b\\\u001b[2m249\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m \u001b[35m/u/aurora-r0/staniewi/dev/beta-d\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35melivery/delivery_data_small/inte\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35mrferograms/stitched/\u001b[0m\u001b[95mtcorr.tif\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m --optfile \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m/tmp/tmp1gg1twfd/\u001b[0m\u001b[95mfile_list.txt\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m -of GTiff -ul_lr \u001b[1;36m215190.0\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[1;36m4397520.0\u001b[0m \u001b[1;36m316860.0\u001b[0m \u001b[1;36m4330770.0\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m -a_nodata \u001b[1;36m0\u001b[0m -n \u001b[1;36m0.0\u001b[0m -tap -co \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[33mSUFFIX\u001b[0m=\u001b[35mADD\u001b[0m \u001b[2m \u001b[0m\n", - "Warning 6: driver GTiff does not support creation option SUFFIX\n", - "0...10...20...30...40...50...60...70...80...90...100 - done.\n", - "\u001b[2;36m[2023-10-03 10:35:44]\u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Running gdal_merge.py -o \u001b]8;id=437687;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/stitching.py\u001b\\\u001b[2mstitching.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=938119;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/stitching.py#249\u001b\\\u001b[2m249\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m \u001b[35m/u/aurora-r0/staniewi/dev/beta-d\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35melivery/delivery_data_small/inte\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35mrferograms/stitched/\u001b[0m\u001b[95mps_mask_look\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[95med.tif\u001b[0m --optfile \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m/tmp/tmp3d91nzcv/\u001b[0m\u001b[95mfile_list.txt\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m -of GTiff -ul_lr \u001b[1;36m215190.0\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[1;36m4397520.0\u001b[0m \u001b[1;36m316860.0\u001b[0m \u001b[1;36m4330770.0\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m -a_nodata \u001b[1;36m255\u001b[0m -n \u001b[1;36m255.0\u001b[0m -tap -co \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[33mSUFFIX\u001b[0m=\u001b[35mADD\u001b[0m \u001b[2m \u001b[0m\n", - "Warning 6: driver GTiff does not support creation option SUFFIX\n", - "0...10...20...30...40...50...60...70...80...90...100 - done.\n", - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Unwrapping \u001b]8;id=226978;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/stitch_and_unwrap.py\u001b\\\u001b[2mstitch_and_unwrap.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=957538;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/stitch_and_unwrap.py#127\u001b\\\u001b[2m127\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m interferograms in \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m/u/aurora-r0/staniewi/de\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35mv/beta-delivery/delivery\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35m_data_small/interferogra\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35mms/\u001b[0m\u001b[95mstitched\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m \u001b[1;36m3\u001b[0m left to unwrap \u001b]8;id=136185;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/unwrap.py\u001b\\\u001b[2munwrap.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=824633;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/unwrap.py#109\u001b\\\u001b[2m109\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m[2023-10-03 10:35:45]\u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Logging snaphu output to \u001b]8;id=489677;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/unwrap.py\u001b\\\u001b[2munwrap.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=597766;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/unwrap.py#388\u001b\\\u001b[2m388\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m \u001b[35m/u/aurora-r0/staniewi/dev/beta-deli\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35mvery/delivery_data_small/unwrapped/\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[95m20221107_20221119.unw.log\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m[2023-10-03 10:43:35]\u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Logging snaphu output to \u001b]8;id=733350;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/unwrap.py\u001b\\\u001b[2munwrap.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=91591;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/unwrap.py#388\u001b\\\u001b[2m388\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m \u001b[35m/u/aurora-r0/staniewi/dev/beta-deli\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35mvery/delivery_data_small/unwrapped/\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[95m20221107_20221201.unw.log\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m[2023-10-03 10:50:25]\u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Logging snaphu output to \u001b]8;id=352473;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/unwrap.py\u001b\\\u001b[2munwrap.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=575585;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/unwrap.py#388\u001b\\\u001b[2m388\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m \u001b[35m/u/aurora-r0/staniewi/dev/beta-deli\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[35mvery/delivery_data_small/unwrapped/\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[95m20221107_20221213.unw.log\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2K \u001b[32m3/3\u001b[0m Unwrapping... \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[33m0:00:00\u001b[0m00:00\u001b[0m\n", - "\u001b[?25h\u001b[2;36m[2023-10-03 11:11:00]\u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Total elapsed time for \u001b]8;id=424561;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/_log.py\u001b\\\u001b[2m_log.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=256353;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/_log.py#114\u001b\\\u001b[2m114\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m dolphin.unwrap.run : \u001b[1;36m35.27\u001b[0m minutes \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m \u001b[1m(\u001b[0m\u001b[1;36m2116.46\u001b[0m seconds\u001b[1m)\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Total elapsed time for \u001b]8;id=579773;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/_log.py\u001b\\\u001b[2m_log.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=396017;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/_log.py#114\u001b\\\u001b[2m114\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m dolphin.workflows.stitch_and_unwrap.r \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m un : \u001b[1;36m35.38\u001b[0m minutes \u001b[1m(\u001b[0m\u001b[1;36m2122.68\u001b[0m seconds\u001b[1m)\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Maximum memory usage: \u001b[1;36m5.75\u001b[0m GB \u001b]8;id=328696;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/s1_disp.py\u001b\\\u001b[2ms1_disp.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=861238;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/s1_disp.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Config file dolphin version: \u001b]8;id=751793;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/s1_disp.py\u001b\\\u001b[2ms1_disp.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=674700;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/s1_disp.py#140\u001b\\\u001b[2m140\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m \u001b[1;36m0.4\u001b[0m.\u001b[1;36m1.\u001b[0mpost1.dev3+g5ab5346.d2023092 \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m 7 \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Current running dolphin version: \u001b]8;id=185231;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/s1_disp.py\u001b\\\u001b[2ms1_disp.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=458335;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/workflows/s1_disp.py#141\u001b\\\u001b[2m141\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m \u001b[1;36m0.4\u001b[0m.\u001b[1;36m1.\u001b[0mpost1.dev3+g5ab5346.d2023092 \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m 7 \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Total elapsed time for \u001b]8;id=767383;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/_log.py\u001b\\\u001b[2m_log.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=178819;file:///u/aurora-r0/staniewi/repos/dolphin/src/dolphin/_log.py#114\u001b\\\u001b[2m114\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[2;36m \u001b[0m dolphin.workflows.s1_disp.run : \u001b[1;36m37.22\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[2;36m \u001b[0m minutes \u001b[1m(\u001b[0m\u001b[1;36m2233.48\u001b[0m seconds\u001b[1m)\u001b[0m \u001b[2m \u001b[0m\n", - "\u001b[0mCPU times: user 16.6 s, sys: 3.08 s, total: 19.7 s\n", - "Wall time: 37min 15s\n" - ] - } - ], + "outputs": [], "source": [ - "%%time\n", - "!dolphin run dolphin_config.yaml" + "# Make sure we have the SNAPHU wrapper installed:\n", + "!pip install snaphu" ] }, { "cell_type": "code", "execution_count": null, - "id": "21e50eb3-63a4-4d96-bfcb-563e80973ed0", - "metadata": {}, + "id": "d2cdb4cc", + "metadata": { + "scrolled": true + }, "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "id": "11b35d32-896a-4333-96b2-1e315b6c9d73", - "metadata": {}, "source": [ - "### Outputs\n", + "%%capture outputs\n", "\n", - "For each stack of SLCs (which may be > 1 when processing COMPASS GSLCs), the workflow creates a folder for\n", - "1. persistent scatter outputs (`PS`)\n", - "2. linked phase optimized SLCs (`linked_phase`)\n", - "3. (virtual) interferograms formed using the optimized SLCs (`interferograms`)\n", + "# To see all the output logging, remove the line above\n", "\n", - "Here we have two of these subdirectories named `t042_088905_iw1` and `t042_088906_iw1`.\n", - "Additionally, you may notice\n", - "- The `slc_stack.vrt` is a VRT file pointing to the input SLCs for that burst stack.\n", - "- The `nodata_mask.tif` has been created from the COMPASS GSLC metadata to skip over the nan regions\n", + "import os\n", "\n", - "Last, there is a top-level directory for `interferograms` that have been stitched together, and an `unwrapped` folder for the outputs of phase unwrapping.\n", + "# TQDM doesn't play nicely with notebook outputs, not like terminal\n", + "os.environ[\"TQDM_DISABLE\"] = \"1\"\n", "\n", - "```\n", - "$ tree -L 2\n", - ".\n", - "├── dolphin_config.yaml\n", - "├── input_slcs\n", - "│   ├── t042_088905_iw1_20221107.h5\n", - "│   ├── t042_088905_iw1_20221119.h5\n", - "│   ├── t042_088905_iw1_20221201.h5\n", - "│   ├── t042_088905_iw1_20221213.h5\n", - "│   ├── t042_088906_iw1_20221107.h5\n", - "│   ├── t042_088906_iw1_20221119.h5\n", - "│   ├── t042_088906_iw1_20221201.h5\n", - "│   └── t042_088906_iw1_20221213.h5\n", - "├── interferograms\n", - "│   └── stitched\n", - "├── new_config.yaml\n", - "├── slc_list.txt\n", - "├── t042_088905_iw1\n", - "│   ├── interferograms\n", - "│   ├── linked_phase\n", - "│   ├── nodata_mask.tif\n", - "│   ├── PS\n", - "│   ├── slc_stack.vrt\n", - "│   └── unwrapped\n", - "├── t042_088906_iw1\n", - "│   ├── interferograms\n", - "│   ├── linked_phase\n", - "│   ├── nodata_mask.tif\n", - "│   ├── PS\n", - "│   ├── slc_stack.vrt\n", - "│   └── unwrapped\n", - "└── unwrapped\n", - " ├── 20221107_20221119.unw.conncomp\n", - " └── 20221107_20221119.unw.tif\n", - " └── ...\n", - "\n", - "```" + "# Running from the command line\n", + "!dolphin run dolphin_config.yaml" ] }, { "cell_type": "markdown", - "id": "5a797186-34b7-460f-a3f1-33c81d0388a5", + "id": "5df612a3-8568-4743-aa0b-9bf3f7e1ed27", "metadata": {}, "source": [ - "## Visualization using `sweets`\n", + "## Visualization the displacement\n", "\n", - "The outputs can be plotted using any tool capable of reading GDAL-compatible rasters. \n", - "Here, we'll use some [basic plotting tools included in `sweets`](https://github.com/isce-framework/sweets/blob/d9ea016adb521534a7696c3082f1810a9e51d373/src/sweets/plotting.py) for browsing through images interactively:" + "The outputs can be plotted using any tool capable of reading GDAL-compatible rasters. You can also use the `dolphin.io.load_gdal` function for convenience.\n" ] }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 61, "id": "682685f0-7e45-4cf0-80b8-6ee18da73de0", "metadata": {}, "outputs": [ @@ -842,74 +418,50 @@ "name": "stdout", "output_type": "stream", "text": [ - "Found 3 interferograms\n", - "Found 3 correlation files\n", - "Found 3 unwrapped interferograms\n" + "Found 25 timeseries files\n" ] } ], "source": [ - "file_list = sorted(Path(\"interferograms/stitched/\").glob(\"*.int\"))\n", - "print(f\"Found {len(file_list)} interferograms\")\n", - "\n", - "cor_list = sorted(Path(\"interferograms/stitched/\").glob(\"*.cor\"))\n", - "print(f\"Found {len(file_list)} correlation files\")\n", - "\n", - "unw_list = sorted(Path(\"unwrapped/\").glob(\"*.unw.tif\"))\n", - "print(f\"Found {len(file_list)} unwrapped interferograms\")\n", + "file_list = sorted(Path(\"work-walkthrough/timeseries/\").glob(\"2*.tif\"))\n", + "print(f\"Found {len(file_list)} timeseries files\")" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "id": "eff42555-1417-48db-a7c6-e46ecd310b52", + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "from dolphin.io import load_gdal\n", + "from opera_utils import get_dates\n", "\n", - "conncomp_list = sorted(Path(\"unwrapped/\").glob(\"*.unw.conncomp\"))" + "%matplotlib inline" ] }, { "cell_type": "code", - "execution_count": 52, - "id": "c19a48a0-5099-441a-956e-49261fd22a0c", + "execution_count": 73, + "id": "fa550fdb-a862-4b50-b37b-a755d13bc9c3", "metadata": {}, "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Browsing 3 ifgs.\n", - "Found 3 .unw.tif files\n", - "Found 3 .unw.conncomp files\n" - ] - }, { "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "0bd3eee364834a6c9a64d8cc50086f96", - "version_major": 2, - "version_minor": 0 - }, "text/plain": [ - "interactive(children=(IntSlider(value=0, description='idx', max=2), Output()), _dom_classes=('widget-interact'…" + "[]" ] }, + "execution_count": 73, "metadata": {}, - "output_type": "display_data" + "output_type": "execute_result" }, { "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "c620b6269ac94450bbf18ad8aa68421f", - "version_major": 2, - "version_minor": 0 - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArwAAAGQCAYAAABMPLOTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5gUVdbA4d+t6tzTMz05wDDkHCRnERCMCOqqa0JdRBEVCWZRUTGgoqgYd82ia8aECgoGBCQjOTMzDJNjT+euut8fPfKJoKu7Koj3fZ56lNs1XVVdPc3h9LnnCimlRFEURVEURVGOUtrhPgFFURRFURRF+T2pgFdRFEVRFEU5qqmAV1EURVEURTmqqYBXURRFURRFOaqpgFdRFEVRFEU5qqmAV1EURVEURTmqqYBXURRFURRFOaqpgFdRlIMsXLiQf/zjH7Rt2xa3202jRo0YOXIkq1atOmjf1atXc/zxx5OQkIDX6+WMM85g165dB+yzbds2rr32Wrp3747X6yUlJYX+/fvz1ltvHfR877zzDueeey4tW7bE6XTStGlTzj//fLZv337Qvh9++CGjR4+mU6dOWK1WhBA/eU1Tp07l1FNPpVGjRgghuPjii39y3127dnHGGWfg9XpJSEhg2LBhrF69+oB9vvjiC4QQP7mNGzfuJ5//x4qLi5k6dSp9+/YlLS2NxMREunfvzjPPPINhGAftX19fz8SJE8nJycHhcHDMMcfw73//+4B9DMPgoYce4sQTT6Rx48a4XC7atWvHjTfeSE1NzQH7/pr7s3fvXiZOnMigQYPwer0IIXjhhRcOeV2/1/2ZM2cOXbt2xeFwkJaWxnnnnUdhYeFP7q8oiqICXkVRDvLkk0+yZ88errnmGubNm8cjjzxCWVkZffr0YeHChfv327JlC8cddxyRSIQ33niD5557jm3btjFw4EDKy8v37zd//nw++ugjzjzzTN58803mzJlDq1atOOuss7jzzjsPOPaMGTMIBALccsstfPLJJ0yfPp01a9bQrVs3Nm7ceMC+7777LsuWLaN9+/Z06dLlZ6/p4YcfprKyktNOOw2bzfaT+5WXlzNw4EC2bdvGc889xxtvvEEoFOK4445j69at+/fr1q0bS5cuPWgbPXo0AKeffvp/fqEbrFq1ipdeeomhQ4fy0ksv8fbbbzNo0CCuuOIKxo4de9D+Z5xxBi+++CK33347H3/8MT179uTcc8/l1Vdf3b9PMBhk2rRp5OXlMWvWLObNm8fYsWN55pln6N+/P8FgcP++v+b+7Nixgzlz5mCz2Tj55JN/9rp+j/vz2GOPccEFF9CjRw/ee+89ZsyYwRdffMHAgQOprq7+2WMoivIXJhVFUX6ktLT0oDGfzyczMzPl0KFD94+dddZZMi0tTdbW1u4f27Nnj7RarfL666/fP1ZeXi5N0zzoOU855RTpcrlkKBT62WMXFRVJq9Uqx4wZc8C4YRj7///KK6+UP/eR9sN93W63vOiiiw6533XXXSetVqvcs2fP/rHa2lqZlpYmzz777J98fimlNE1TNm/eXObl5R1wvP+kqqpKRiKRg8a/v6aCgoL9Yx999JEE5KuvvnrAvsOGDZM5OTkyFotJKaWMxWKyoqLioOd88803JSBffvnl/WO/5v788LpWrFghAfn8888f8rp+6/sTCoVkUlKSHDFixAHjS5YskYC8+eabf/L5FUX5a1MZXkVRDpKRkXHQWEJCAu3bt9//1XEsFuPDDz/kzDPPJDExcf9+eXl5DB48mHfffXf/WFpa2iG/zu7VqxeBQICqqqqfPXZOTg6NGzc+6GtrTfvlH2G/dN93332XIUOGkJeXt38sMTGRM844gw8++IBYLPaTP7to0SJ27drFJZdc8qvOLTk5GavVetB4r169gHgZwQ/PLyEhgbPOOuuAfS+55BL27dvHt99+C4Cu66Smpv7kc/7wtfw19+f3eM1/6b4bNmygtrb2oMxy3759SUlJ4e233/7Fx1MU5a9FBbyKovwitbW1rF69mg4dOgCwc+dOgsEgnTt3Pmjfzp07s2PHDkKh0M8+56JFi0hPTz9kkPtDu3btIj8/f/+xfy/BYJCdO3f+5DUFg8GD6pN/6Nlnn0XTNC655JLf5HwWLlyIxWKhdevW+8c2bNhAu3btsFgsB53f94//p+cEftFr+Uvvzx8lEokAYLfbD3rMbrezffv2//ieUxTlr0kFvIqi/CJXXnklfr+fW265BYDKykoAUlJSDto3JSUFKeXP1lT+61//4osvvmDq1Knouv6T+8ViMcaMGUNCQgKTJk36H6/i51VXVyOl/Mlrgv+/7h+rqanhnXfeYdiwYTRp0uR/Ppf58+fz8ssvc/XVVx+Qqa2srPyvzg+gqKiIG2+8kR49enDqqaf+7PF/6f35I7Vp0wZN0/jmm28OGN+5cyfFxcWYpqnqeBVFOSTLf95FUZS/ultvvZU5c+bw2GOP0b179wMe+7mZ9z/12Mcff8yVV17J3/72N66++uqf/HkpJWPGjOHrr7/m7bffJjc397+7gF/pv7mmOXPmEAqFuPTSS//n469evZqzzz6bPn36cO+99/4m51dVVcXJJ5+MlJLXX3/9Z0sIfun9+aOlpKRw/vnn89JLL9GzZ0/OOuss9u7dy2WXXYau6xiG8avKKBRF+etQnwyKovysO+64g+nTp3P33Xdz1VVX7R//Put4qIxiVVUVQgi8Xu9Bj3366aecccYZDBs2jDlz5vxkgCal5NJLL+WVV17hhRdeYOTIkb/NBf2M5ORkhBA/eU1w6Iw2xMsZ0tPT/+fzXLNmDcOGDaNVq1bMmzfvoK/vU1NTf/X5VVdXM2zYMIqKiliwYAHNmzf/yeP/0vtzuDz55JOcc845jB8/ntTUVLp27Urbtm055ZRTsNvth6xbVhRFUQGvoig/6Y477mDatGlMmzaNm2+++YDHWrRogdPpZP369Qf93Pr162nZsiUOh+OA8U8//ZRRo0YxaNAg3n777Z9sP/V9sPv888/zr3/9iwsuuOC3u6if4XQ6admy5U9ek9PpPGSwuGbNGtasWcPo0aMPOfnsl1qzZg3HH388eXl5zJ8/n6SkpIP26dSpE5s3bz5o8tz359yxY8cDxqurqzn++OPZvXs3CxYsOGR98vd+6f05nNxuNy+//DIVFRWsW7eO0tJSXnjhBbZu3Uq/fv0Oqm1WFEUBFfAqivIT7rrrLqZNm8bUqVO5/fbbD3rcYrEwYsQI3nnnHXw+3/7xgoICFi1axBlnnHHA/vPnz2fUqFEMGDCAuXPnHnLiEcSD3bFjx/L888/z9NNP/2YTwH6p008/nYULFx7QxcDn8/HOO+9w2mmnHTKgevbZZwEYM2bMf33ctWvXcvzxx9O4cWMWLFhAcnLyT55ffX39QR0JXnzxRXJycujdu/f+se+D3V27djF//ny6du36k8f/pffnSJGcnEznzp1JS0vj/fffZ+vWrVxzzTWH+7QURTlCqX8KK4pykJkzZ3Lbbbdx4okncsopp7Bs2bIDHu/Tpw8QzwD37NmTU089lRtvvJFQKMRtt91GWloaU6ZM2b//4sWLGTVqFFlZWdx8882sXbv2gOdr3779/tZmEyZM4Nlnn+Uf//gHnTp1OuDYdrv9gKAtPz+fFStWAPGJS8D+1cGaNm1Kjx499u/75Zdf7l8MwzAM8vPz9+87aNAg0tPTAbj22mt5+eWXOeWUU7jzzjux2+3cd999hEIhpk2bdtBrFQqFePXVV+nXrx/t2rX7ha/wgbZu3crxxx8PwN1338327dsPWFmuRYsW+8/vpJNOYtiwYVxxxRXU1dXRsmVLXnvtNT755BNeeeWV/RPMgsEgJ5xwAmvWrGHWrFnEYrEDXsv09HRatGgB/Lr7A///Gn/fsWLlypUkJCQA8Le//W3/fr/H/Xn77bfZt28f7dq1IxQK8cUXX/DII48wbty4P6TsRVGUP6nD2ANYUZQj1KBBgyTwk9sPrVy5Ug4dOlS6XC6ZmJgoR40aJXfs2HHAPrfffvvPPt+iRYv275uXl/eT++Xl5R3wvM8///xP7vvjhQt+7pp+eHwppdyxY4ccNWqUTExMlC6XSw4dOlSuWrXqkK/VnDlzJCCfe+65X/Ua/9Lr4BALO/h8PjlhwgSZlZUlbTab7Ny5s3zttdcO2Gf37t0/+5w/fH1+zf2RUv7i98bvcX/effddecwxx0i32y2dTqfs0aOHfPbZZw+5cIaiKMr3hJRS/tfRsqIoiqIoiqIc4VQNr6IoiqIoinJUUzW8iqIov6OfW4oY4kvqqt6xiqIovy/1KasoivI72bNnD1ar9We3O++883CfpqIoylFPZXgVRVF+Jzk5Ofu7FPzcPoqiKMrvS01aUxRFURRFUY5qqqRBURRFURRFOaqpgFdRFEVRFEU5qqmAV1EURVEURTmqqYBXURRFURRFOaqpgFdRFEVRFEU5qqmAV1EURVEURTmqqYBXURRFURRFOaqpgFdRFEVRFEU5qqmAV1EURVEURTmqqYBXURRFURRFOaqpgFdRFEVRFEU5qqmAV1EURVEURTmqqYBXURRFURRFOaqpgFdRFEVRFEU5qqmAV1EURVEURTmqqYBXURRFURRFOaqpgFdRFEVRFEU5qqmAV1EURVEURTmqqYBXURRFURTlMPrqq68YMWIEOTk5CCGYO3fuf/yZL7/8ku7du+NwOGjevDlPPfXU73+if2Iq4FUURVEURTmM/H4/Xbp0Yfbs2b9o/927d3PyySczcOBA1qxZw80338yECRN4++23f+cz/fMSUkp5uE9CURRFURRFASEE7777LqNGjfrJfW644Qbef/99Nm/evH9s3LhxrFu3jqVLl/4BZ/nnYzncJ6AoivJzQqEQkUjkkI/ZbDYcDscffEaKoihxP/f5JKVECHHAmN1ux263/8/HXbp0KcOHDz9g7IQTTuDZZ58lGo1itVr/52McbVTAqyjKESsUCpHSrBnBkpJDPp6VlcXu3btV0Ksoyh8uFArRtFkCpSXGIR9PSEigvr7+gLHbb7+dadOm/c/HLikpITMz84CxzMxMYrEYFRUVZGdn/8/HONqogPc/eOKJJ3jggQcoLi6mQ4cOzJo1i4EDBx7u01KUv4RIJEKwpITzC3ZiS0w88LG6OuY0aUEkElEBr6Iof7hIJEJpicGmbU3xeA6cEuXzmbRvvYfCwkISf/DZ9Vtkd7/34+zx9xWqPx5X4lTA+zNef/11Jk6cyBNPPEH//v15+umnOemkk9i0aRNNmjQ53KenKH8ZrkQ3tkT3AWMWDp1VURRF+SMluiwkuvUDxoQR/3xKTEw8IOD9rWRlZVHyo2++ysrKsFgspKam/ubHOxqoLg0/46GHHmLMmDFceumltGvXjlmzZpGbm8uTTz55uE9NUf5SdGJYfrTpxA73aSmKoiBih95+T3379mXBggUHjM2fP58ePXqo+t2foDK8PyESibBq1SpuvPHGA8aHDx/OkiVLDvkz4XCYcDi8/8+maVJVVUVqaqr6ikFRiH/l5vP5yMnJQdN++b+3dQz0H2V0f/xn5aepzyZF+c/+288nzQTNOHjs16ivr2fHjh37/7x7927Wrl1LSkoKTZo04aabbqKoqIiXXnoJiHdkmD17NpMnT2bs2LEsXbqUZ599ltdee+3XHfgvRAW8P6GiogLDMA5ZFP7jrxG+d++993LHHXf8EaenKH9qhYWFNG7c+Bfvb8HA8qOMrqEC3l9MfTYpyi/3az+fhCERhjxo7NdYuXIlgwcP3v/nyZMnA3DRRRfxwgsvUFxcTEFBwf7HmzVrxrx585g0aRKPP/44OTk5PProo5x55pm/6rh/JSrg/Q8OVRT+UxmRm266af+bFKC2tpYmTZpQ8Ow/SXS5ftfzVJQ/g7pAgCZjxuLxeH7Vz2mYaJgHjSm/zE99NrmsNyDEbzeJRlH+zKQME4jO+NWfT5gN24/HfoXjjjuOn1sW4YUXXjhobNCgQaxevfrXHegvTAW8PyEtLQ1d1w9ZFP7jrO/3fqq/XqLLpQJeRfmBX/s1un6Iml1Vw/vL/dRnkxB2hFAdLhTlh37t55OISURMHjSmHFnUpLWfYLPZ6N69+0FF4QsWLKBfv36H6awU5a8pXtJw8KYoinK4CePQm3JkURnenzF58mQuvPBCevToQd++fXnmmWcoKChg3Lhxh/vUFOUvRTtEhldTGV5FUY4A8QD3xzW8h+lklJ+kAt6fcc4551BZWcmdd95JcXExHTt2ZN68eeTl5R3uU1OUv5RDZXRVhldRlCOBMA5uQ6YC3iOPCnj/g/HjxzN+/PjDfRqK8pd2qC4NKuBVFOVIcKgSBhXwHnlUwKsoyhFPdWlQFOWI9Rt0aVB+fyrgVRTliKcWnlAU5UgVz/CKg8aUI4sKeBVFOeJ9v7Twj8cURVEOO6Nh+/GYckRRAa+iKEc81Yf3yGdBoEuNsEptKX8xwhCHyPCqJbuPNKoP759QYMRn3NJr5OE+DUX5w1gwD9GHVxXJHUm6xNI5PdKEvrEs2hjJZJounFLlVJS/AENA7EebCniPOOrT6M9mQ0c+HwF3v/8ti8dWk7/oYtYOruJYvmbEB4f75BTl96EmrR35Whtu9mohakUEOzrtjGQAAiJGSBjUigh1IkyAmMoCK0cX2bD9eEw5oqiA90/mnpsENy8vgQE7+HdwCr018BSk4Ns+kvck5OfBhFeqIejkm24O+qe/d7hPWVH+Z5ZD1PD++M/K4ZNpuijVItRqUQwkJiZhYRDBpJHhxIWGXxgYSCxSo1wPUy0ihIlRpYXwiygxFSEof1aGFt8OGFPv5yONCnj/ZHq83hzSPVzb6xw6shKfpwfFTaL0bjKXE/6dzHv5x/PW0GR2n7iFIhrTf/xJMPQzWN6bmRen4gzC+CIVBCt/LqpLw5Gto5GCT0SpFmEam26STCsANVqUEj2EVWokSQvZ0soeLUK1iBDFIFO6yIt5SDEtlGsRyrQQZVpAZYGVPxURE4iYOGhMObKogPdPZHXBSLb1g+FbM3hw3ud8fDKkdFvDpazBNuUeHh3tJeiEvHzozXI2UQ/tLcw/08eHJ6bS0r2Ojqzju241ZN84gXfvW85pvE/WBz0P96Upys9SXRqOXKmmg2zTSkgzsEmNahHZPztEl4J6LUqtFsEmNSqkgzAGFgRBISklgFtYKdRiOLGQLO3opiBBWtEQ1IkIYQwqtKDKAitHLuMQNbuqhveIoyat/Ylsu3IBURvg8UFuISd9YKH31hpsd19LKOxlwgt17GoB/ZbAsU90pHZbD667qgnrtpxDVikc81IX3giOphm7CbhhGAtIGzedq44fSeTjkfDVsZSMWMGLXjUhTjmyxDO8sR9tvy4DeO+999KzZ088Hg8ZGRmMGjWKrVu3/k5n/NfRP5pJhYixT/MTExIN2KcFiGLiQCeGxCF1QsKgWAtgQSPTdKJJsGPBIXW80o5HWqkWYXwiSkDEiGKSIK1kmS7aGSm0NpLpbKTRyvCSabpIkNbDfemKEvd9wPvjTTmiqAzvn8Q3Iyr5+4RhfPzo26ztsI/6FyYCkNlmBnNusQKFDGAxkymkyTHtIKZzQ+hReLUj8/Uh9D5nCh/vnMnspa9SO0Qj74Sn2YSTsgxo61xDzRNvsvPZe9jFUMJ2YOjn3OS6lRP4lEYzLqBVe1UGoRw+33dm+PHYr/Hll19y5ZVX0rNnT2KxGLfccgvDhw9n06ZNuN3u3/J0/1LaWjS2xKClkUi1FiEiTJoYbgSCCAZeaSNIjFjDJMN6EaVOxPezS4gIEyGhTkRwSQt2dBobTsq0MAYShEmlCGEicWMlQVpJkjaSTRsBYWBFo1qE2af54xlhVQqh/MGkqSF/VMMrTfVtxJFGZXj/JPpfdR4FqS5OuuoUku+6mq4XX0OPlfAvxnDK07lMq59J2mPn0mZlIqzowYYzt7F49QRIqmV4j3vxkYCnHqqHrCHp7iu5ofnlvMMZ3HMT9GMJD5ffwzunw7CbB7OtNWBqXM/9HFe5nqwbJrF35Uj46GRmNx4J1V6+G5F/uF8S5S/k+y4NP95+jU8++YSLL76YDh060KVLF55//nkKCgpYtWrV73TWRz8LgqAh8KBhRZBtOgAICgO/iCEQOKROgrRix0KKdGBHJ1HaSJI27FIjhklIGPsDWSGhSouSYzhJMW0ERIxEaSPHdOOQOgBWNKq0CAERo1qEyTadtDW89Ipl0MZIpoWRtD8LbEFl2pTfmRSH3pQjigp4/yQmzo5RePtzMPpF8k55AnedxoPXwow9T2EPw7SEKRwzbhwf549j8nQ3Ja9NZMDyCLf0OB0iNuauuYMtp2/m488fYFVKc85Pe5R88jjjXej2bDfOSH8aW0opd9wTxu+G6xJu40bjAXh4Ip6PjsV9x3Xc91Q+V2VNhRM+pQU78Y9YyK09RsIJn8KnJxzul0g5ih1czvD/C1HU1dUdsIXD4V/0nLW1tQCkpKT8bud9tEsy7ewiRqEWf82FFHhMKxKICpNaESEkDDQgQVoIinimt0aEsUoNDREPchv+W6aFqNEi1IgIWy11VGhhYkg80kptQ4BbL6KUiSD1IkpUmFjR2K7XUamFqRPR/ZngNoaXkyONGBRtxLHRHDoaqWSaLuwNQbOi/GZ+w5KGJ554gmbNmuFwOOjevTtff/31z+4/Z84cunTpgsvlIjs7m0suuYTKysr/6thHO1XS8Ccxa4LGVz3+wRcaZJTBmlpoNngR22dMpfCGdxlGNausXbCf+Srtl53H8UsDXPmwi8e3PsrYTlO45hFo1PU5VgztQffGBazGRe9lgo/Pq+J9OnHN3X3p1QkyyiE65iWO/cTJ2u1nceuV2fRafjojtm/jxu+2ETuzghIyaTztOlZkN6Z7I4h9+ASW226D9DKutd5HuyVexnSeyIo5s+iZo0ohlP+dfoiShu9reHNzcw8Yv/3225k2bdrPPp+UksmTJzNgwAA6duz4m57rX0mKdFAnotSJKCGh4zVtRIVJDBMTiQcrVqkREgblWgibjOdYIsKknijJ0o5fxEg17egI0k07tZpGBJMUaSfBtFClRbCiYSLREESEuX9Bi+/rhBNlPBNsivhxk0wrHmlBAlmmlQItRDPDTYIWr/t1SZ16EaNcBKnRwvhERE2IU/57v1Fbstdff52JEyfyxBNP0L9/f55++mlOOukkNm3aRJMmTQ7af/HixYwePZqHH36YESNGUFRUxLhx47j00kt59913/9urOWqpDO+fxNpHn6XtFmh/wc20v3oc578b4Pyn3bxwMcTQ2bPoH+x9/wqGbC/k0lcDrG7j4vEb6+CpcZz7GnS86DqSXzmZ4e+54LGr6TYvi8w+79GfJXRakkB+HoxsMpu+u4tJo4LJJ57AMWfeRqPslXTcACtaeSGnmHsKnsJ28x3QcwU9ez7BqPrPePyp9UzP+QcU5jL4XS+t+r3ElQkz0GPAmq5galw54kQYvIjnR6Qe5ldS+TP6vg/vjzeAwsJCamtr92833XTTf3y+q666iu+++47XXnvt9z71o1qHWBJRIXFiISQMCnQ/GoKwMLFKDQl4pIUU04YmQUOQLO1YpMCChgWNMPEMcJZpJdW0oct44JtgWvBIHW9DMGshnhHONl3Y0AgTw4pGRJgkSVu8bEJqJEgrQWGwSa9ho6UOPyYBYRDCJEiMIDG8poUeppvGppthkWyGRBrT2UijjZFMqulQWWDl1/mNMrwPPfQQY8aM4dJLL6Vdu3bMmjWL3NxcnnzyyUPuv2zZMpo2bcqECRNo1qwZAwYM4PLLL2flypX/6xUdlVTA+ycwvdNIjtlTy613QcbKJuy05jF5uotXL/dx0seQ+sJpnN99EkMWwWcrb4DRL2G7chbTH66Ci17Ect5L3GA8wMcXVEFaxf5tRORTPuUEkvp9QskFC6BREUunz6P9bX/nDm7nkco7OYFP2X7L6/QsKKWy71YmNZnE4/cUUbL0dNZ+Mx6W9KMpu8mihE+bt+aUjOfZSXMG8hWaCZMnNmH6yE48wLWYk2dhJ8xb1pGwqjvk57FqxL7D/fIqfwI/16UhMTHxgM1ut//sc1199dW8//77LFq0iMaNG/8Rp3/USkBDAJUiRAwTA5M6EUEiMRsypj4Ro1gLYop47W2diJJjukmRdkpFAIGgVotSqIWp0WJEhUlUSEwBYSExkHhMKw6pUylCFGl+IphoCFzSgktaqNLC1Iso9SKKFQ2n1Mkx3SRJGzss9aSYNqwIGpsu8gw3tZqBU5PkmQ50BA6pkWk46BdL5uxoDidFGjM8kkvfWBatDC+5pkctk6z8JGloh9zgl5dcRSIRVq1axfDhww8YHz58OEuWLDnkz/Tr14+9e/cyb948pJSUlpby1ltvccopp/y2F3iUUAHvn8DUlwpgTVee0sayooegkFwe+nAh531WTsXFH7Li4o3UJmrcMh2OHzER85lxLKEfZf6mLOztpvXU0ZhpVfjmn8na/vV8NW0hrDsG5o6i7Xor2rwTKdwyDMrSWbJ5DFzxBGX3PsyoufAFg2hMEUStpH7XmJe5kP6vN+Ll6VtIqQJOf4eRdYvoxHq6soZHEi9hT9EA/r6wnG1t4KG5XzJ1OriiUXjmMs67rht/a30370z7jtiGYyh7+wpY05UXvSO54sSRkFhL9YjFh/kVV44033dp+PH2a0gpueqqq3jnnXdYuHAhzZo1+53O9q8jVRNUiBAZphML8QloLmnBRGIISb2IUqwFqNEixDDxE8UrbezV/ZSJIAB2qZFm2inTQtSLKA6pUyoC+ESUKi2CiaROiwezHmnDIXWcUseKjokkxbSSZThpYSSQZbrQEFRr8W4NVSJME8OFR+r4RAyfiGEBkkydekOwWwuxSfdRo0UJC5N6TDZrYXZZ/JRrIdoYLo6Jefm7TOMWRzY305TR4Wb0j2aTbbrVhDglzhD/X9awf4u/N3Jzc0lKStq/3XvvvYd8ioqKCgzDIDMz84DxzMxMSkpKDvkz/fr1Y86cOZxzzjnYbDaysrLwer089thjv+31HSVUwPsnsCmhCTed3gsue4aeSy00Yzfsbkr+0r+TQhX59R0I3zyTqDtKQUIyZc9MZei9vejtXsSQ8X9j7vSVyJoUzuYNimjMvgWjwRRcO3w416xbRMbJL3Bd0lTMRyZT0q6KR7PPouiml8g77kUavT6ARhRBoyLmb55ACpX0P+cajB1taXLTeJ7yXMBnHz3MOxVjybh3DF3WwR1Vs6j85DxGzYUNo9cwp39TVls78enbzzD7vGS+aJ7HGZMGYLntNk7KeRZMjbJ0ePK1L3lnUBpvchYs7QMxC5gabOjIvhFqJv1f2W/RpeHKK6/klVde4dVXX8Xj8VBSUkJJSQnBYPB3Ouujm1Na8DfcAkPEe+2aAgwkSdKGiSSMQVJDkJoqHXilHasUpJh2TCR2LISFSVAYJEgLtSKCT0SxY6FcBKkSYXbqdVSKEInShkRiRyfY0HosIGIEhElEmCRKCzqCOhFFl4KQMAiIGAlSJywk6aaNVqaDFHTsaPiRdJVO+hiJNDLtpJhWyrUoIWGQa7jIM1wEMAkJE7tukp5cT7OcWoa2LueGXnt5tk81bx9j8M+cZC4JN6dLLI1k+fPfLihHKSnA/NHW0KXh15ZcCXHgP6KklAeNfW/Tpk1MmDCB2267jVWrVvHJJ5+we/duxo0b99tc11FGfUfzJ9ByB3RlDe+NHM6CbmN4fPNMbrrFQz/eY+jVo/G2AmHCk2ufhhcnwdWPwbXjWLTsKe58ooBzWMi4L4tZvfdsTsmdSfnnMP++3Ty4+WvmeqeQ9gI80h1OfmYGeWtuIKc4hWPryvnm7wWsYRvDnzqXp8ZB7Tnb6Ewd14cf4YY5QIuzqLhgD/4eQQa81w6KsznulEe5IXsiM3rP419nplDIWZy5Hv7V60oeZR5LV59M31I7ldZEUqu9YA9TMu0pxl8zHaJ92d7Hhmy9A076hNq5F5F0+yTyR64l76OurNg3kp7RtWyIHUPHHaF4dwjlL+GHXRl+OPZrfF8Hd9xxxx0w/vzzz3PxxRf/L6f3l3SMkcZWLUiytFPekK11NpQXfN+KzK+FKBfxyWoRTHxaBN10UdEwgc0uNVxYsMh4uUG+LjCRVIvw/oloDqmjo1EvougINARRYsSExCIFhVo9TiwYmNjQyTAdJEidemGQgp0IEpfUsCPQAT+SMCZZQselS8KmoM6EvXqQHMNJM+z4MUlFIwK0sUsS3VECITt2a4zSygSsthguV5DU9Gqad9hFn8HxXqxFuxqxZ3cOCwoT2K0H2KPXUS1+WdcQ5c9LmgJpioPG4P9Lrv6TtLQ0dF0/KJtbVlZ2UNb3e/feey/9+/fnuuuuA6Bz58643W4GDhzI9OnTyc7O/m8u56ilAt4j3JUjTqRDI7AvGc6Y6EfYPzyFj5nCvYtWs2n8TlwdlxO7fAXzaU/+rqs47eFZrGEAF65dz6XJD8Cky/ns4VwWjcxm3NcvMqddN9Lve523+RvDG13LF+3quWNKAgOKd/JAp5FM6XoZwa5OmH0J/Yu/YLHvH+yshl6PQ9fxYxEVaZz0dh6vDujBeQPfpJbpVJFC8SDYNHIv11w1gRm9vuSz0bVcOqUfgYiX5Y+9wqPV63jnzMEsJMgaWjA+byafrZ3C8clvknHZeJ54Zg1XLdzMDS2+gPGzmflElCmvRSA/j7w1XSHsoGfrV+CYdXScA5WuY/gkYSTOIAxYDA9PgvbpX3LhBzWH+Y4pv4ef69LwS0mpZuH/lvIMJyssVdjR0YhnVC1SwyktWBDEMPFIK36iNDUSMIRkqx6hUoRwyfgywjmGnX16mGotQkAYhIWxvxvD9zW6IWEQFLH46mwIBBATJllGvLNDmRaKB8FCIqSJgaRMC5Nm2nFIjX16CLvU8EorhtTRifcP3iTCtDfsZDhj1AUsNDNc5OqC1o1qcNijFJZ4EQL8IZ3iGjtpCVGc9ghOWwzTFKRlVhEO2Sjc3oSyklRad9hJWlYljZoX0b40GYvVoLIsmdLSNEorE9hdZ2WdXk++5qNaC6muEEeRH9bs/nDs17DZbHTv3p0FCxZw+umn7x9fsGABI0ceevXTQCCAxXJgGKfr8QmX6vPuYCrgPcI9vn0W13UbyzGsY1rhKUx5CO68FVakpNHvtcm0P2E63TY76eb9nMnNu9Oxfg+v+ybyxDEext/cCIYsYtW2c7nmUaAjnDXwOXbQkqffm8fkkXeQQhVJWpRvbvqSzm/+Ay18LnMbDeZ89zfw3D/glm3cf1MLBrCYBdv+yQ0F/+bf46rZWAq+G57A9XARd7yyjbkX+Bn1WT0TZ+dwMiUMn3oc02fWkLHcy7ms4oOvHiYycgGzv3yTZwe1ZHKjKbSvhW/Xn0Xv7su5jBdgUIza658hyYzS8c120OdL+OQkmDwTHpoCdUnwr0tZldCGbtWS87euYm7jHtxyN2SJYkq2DGL3iLvJppg6EsnYnAo7Wh7uW6j8Bn7YleGHY8rhk4RoqKOFRGlDI56BzTCdVItwvFsDJk4sZEsrBSKCQ+pYGirp6kUUsJNq2ijVA9RqEVJMO3Z0EDFMZPybYiROaUFDsFuro7GZgFVqBESMXMNFrYgQbViNrYXpwSE1QiJea6E3BM2pphUngjIRo5G0YkWQYlpw6JJwTKO19/+zsD6/g0DQhtcTImbouJ1RrBaD7KxKwmEbCQnxbLYQEqc7iGlotGidjzQ1gvVOIiEbVnuUBG89CElemwKSsqoRmknI56SiMIP8nbkUFqXybbWFjZY6CjQfQaHez39ah2xL9usrRidPnsyFF15Ijx496Nu3L8888wwFBQX7SxRuuukmioqKeOmllwAYMWIEY8eO5cknn+SEE06guLiYiRMn0qtXL3Jycv7nyzraqID3SDdzMtPsVtzHBXj59C+56Z5BHO/8kFEzW3DVlCBFX08lqwSannU/vfgWKtL4R9O70e66hZkXQlGjkdx/PVgu+Se8eBG2ajftHzmby29tTId10H5TIru90L9yK9edVcVg3uT8Fy0w7HPyn5/GDffuZO1NT3BMQTXM6su0J/qTQhW5hRCywx1vbGTDBZvw0ZWZx7dg1jg7OE5h+sQErmYKcywzudZ4mObt4ITHhnHr1cVkr85mVLeXeL3raL7rBDXzerFmRy8S62D8XRPY9NSjfHUsnDDXCd4aWNIf8vOI7WyD5ZiVdPdvZlO7dpihHuxuBoPF53RkI51rnTBhEvRZhuNvb8FLk9h078vMKZ3MxIdhzX2v058luD8YcrjvqvIrfd+l4cdjyuGRajrYK2J4pQ2rFFgbSg4MJFFMLGiUacF4Jtd0sFeLkK/5ABpqd3X8RFllrd4fzNIQ4AaJoSEIiNj+dmcOGe+565V2qhrqeSu0EMnSRobpINBQ01uhhWluuIgQL1HQpaC54SYkTEKAo6EPsFNAnlOiaQblfgv2iE7jrDq8Xh/FJSkEQ1YSPSEsejzotegGqelVRMI2DENH00xiUR3dIgiHbbgT/dgcEXzVHkJBOxZrjEjIhtMdxO4O4StLorbCS0p2JY3aFpKWW0YPITnLFqOyMIN1K9tTXuVmY42NnXqQXVodpVrg8Nxc5VeThkD+qA3Zj//8S5xzzjlUVlZy5513UlxcTMeOHZk3bx55eXkAFBcXU1BQsH//iy++GJ/Px+zZs5kyZQper5chQ4YwY8aM/+2CjlIq4D3CLe1p5Z0xVTwQ+YgL620ssw5i1PaNXDHhVO6bAkmnvgIeOyXUsYdmPOIbxoSxEpFWzgmfpuPzgGXIfMgtZOsTs2gzvyfl02ZzNVl09PiJnVuIJQr43UxiFraoCWe9yeWuh0m7DPLyW7Cbv1O2NJ3iJ74mGS8T3ijl2bOX8Lrej/O7LmATw7jwtlbMuCCHL556hQrSuIZPmbPyYfothbJuhVzTegbXtH6E5vjo2m0ei7eM4dSN8TlpCb74f8fvngftTb6avJK2X/bg2stb8+AbyyGploWz32HIhFGsGreC7pH1OB94As2ELR0M3HjoPD+LT2vPZtPl4O6QwGWlXui1nPaf5XD3gKvYd18KHvKwEuXfI1wA5FDMKroDMOmDHYfvJiv/0aG6MvzaLg3Kb6e9kUx5w8pmXmwIKck0nZRpISq1MBrgkhbs6OgIKhpWYosIk0TThiEkqdJBCINKESJJ2okhifdkkPhEfFEKh9RJwkYUkwothFNaMAWEMGhlJOKQGnnSSlNvGJczwuf7XOzRg3iklRzDSRNpxQQMqZFmkVh1iU2P0SjTRzSqY7Ua5GRIrJYYQkikKXC7wiR760lJrcVsqMNMy6zEneRn787GOF1BdN2ktDgdTTPx1blJ8PhxJ/lJ8NZjscSw2GJoFoNo2EZtqZfvVrfHZo2SkOwjJdWHLTFAsNKDlAJXUj3d+nyHzRXmHG89QpOU785m99Y8CorSWFdpZ73uY49eR62IHL6brvyk36Kk4Xvjx49n/Pjxh3zshRdeOGjs6quv5uqrr/6vjvVXowLeI9g7+kjOyH2DTUvOhsZZMHcUjwe3s/uGGE9unsnemXUkhSrh5QvZ9/hZDLXAa+fCsn8+RzN28/GW6SS1XU7SQ8NpX7GFNu8cy9ymx2DOO5szFpfyzT0f8XnBLQSblHPvN4uxfHM6NF4Ngxfx9JtFPH9bAZe8bwX3N0zvPZmWhIhghU3t8cxvzN+GTyGp1M7Ztw/mprusDP0MSlpnsoW2rKErzXss4f0ejZm271+QHuNU64eMmNGeZweO4dR+D8KH19JsDzgGfEZ0yfFw6uewrgvjEr6CfD8XvmpQdt4XvMa5VBV1oreA7vcOZ7P1CtoVh/hgmIOT+JhRt3WDU9fQZfhUehHGK2vYmdmcFuu68O9pm/n7Py/kvvN6c6/7Gj5nKKcwjzu4nebsYtIbRTxztpdVI/bRPbKeR22X04JdnPKBamByJDlUV4Zf26VB+e10NJ1s1uLLA1uJlxdUizCxhuxuQsNCED4RxSei2KSGRWhoUlAnIvGMbkM214besNKZSaxhEQmXtBAkRlgYOKROrRbP7oeJ4ZQW0k07dSJKGJ0dSDw+G7uq7eQISDBcNHOYGFKQ4IhQ6rNhSPAbghTdJNEdwZMQIGZoRCJWbLYoCQkBpBRIKfAkBDBNDYslRiRiJTWjCpsjQlVJCnZHmHqfm8ryZPL3pRCKarTJq0AIiW6N4dANakpTsNojuL31BOpc2BwR+g5djtURwZXiI1ztRrdHEZqJNDWsjgjOJD9Ck4TqXDi9fhp12k1Wm0JO7J4P6QHM3V4qVzdj45KOLFrRgmUiyHathtqGpZeVw0z+f1eGA8aUI4oKeI9geflw+WVn03MFBJqUsyytM0OcH5E77hYWP/UCX+yZwklNn+S7sVFWhiHTXkCf+U1o8cUYMqLVFN0Opz7Yi3bGdiKdt2CLWVjTLZ07brZAWgUOwtxW8yiffjuBpXWn0/f4V/lqSAz3k1P47rbFNHtlALvH3k2zrTYubToVKxFSb7qOF09O5yLf20zmdq7MfJwWt9/B5JnT+fBUMHEz7c2N+M/6mAUMo6CoH3wzgHcShhOxwrcp0LvfLNo9Ohz21nPlzAQev6MTbTV4MW8m4YHL2U0z7v2nExLryGc7p/MONHoH9wkdedFzJhct28rLZ7Vh26BinLRn1JWz8WUGyfrn3/l27Hf4RAK9WQ6j5vL3b+3QUePRfV+wqVUeQZx4VrbB3cNPZ77j47M9dGcnO2lBc9suTmEer3Euy0dYse5phLcaUqpgY0e4e7laJvlw0Q7RpUFTNbyHhVNaqEbu72lZoYXIMB1EGxadSJBWDCRVWhgfEUwBDqnTxEygVAtSKyKkmXY0BDoCoyFg8xMlJuIT1ixo+Inuby1mk9r+ZYXDMobAQYZpJwZIJCvNCB2EnezECPvqbCR7wkRj8ck7WYlhAiELdpuJrpkEwlbKKxNJTfFhGDoQpbbGgyfRTyRso97vxGqJUViQTTBkIxyy46934kn0Yxg6FRVJWCwmtUGdmBQkp9SSklVFZVEaFlsMKQUWWwyL1cBqj+JICOLJrEG3xgjXudBtMXwlyfEAOSmAwxYjGrDjSKnHmepDc0QBsFtMsMWQdhOtWQ3pTdcy6PxVHFdhR9Y6qN+cTdH6pmzf3Jwlm7NZqfnZqdVSqYX++DfFX5w0D5HhNVXS5EijAt4jWH4ePH17Md9M/5gP5z/GpoEwZN8+7ntqD+3nXcz5a2DBLd25bOfnXDI3lYXZ7SjJBLcfZj5SQvN1yWRcez23MonRM56g1bHPcjrvYN6znrWPP8PzwQ5s6Pw1WucvOeHuXAJjluJ+8jHMK57mkpvOgA6LmP/6LXx3zvuMXFrOPX0Hc2p2OssHhun66Jk89O5HPNPoJh7qAs77anjwlTV8VjiYFec+Td7Nj5DSFgZZgDPep53jOwwstB4/EdusofGLG/4pj1xzJnQsJit3ORftSAHbJvb1/pC1Le6ky3du3im/nHudEyFqBU8957wO983W8a6EWhLJI59IZg2epd3BW03v+UmwrTXkJnBrrxGMyn6S7jOOx3/DbNYwCp0Yb/RoTifW04dlfMxJFJLLKXyEHzdlZHAqH+ChnsVNB7C8aS9MNDKKrMwVI9mXA8Xdimn5dTZhO1xWqoLgP4IqaThy2NAo16IUan7s6FilRlFDvamJJCiM/SUNXuxEG1ZFyzKtpJgWtlrqiQoTn4juXxI4jIFdWEDG0GXD0sTomFLilXZqRJiIMMkwnUA8yLaYTqKYNDEdOKVACiius8VbjUV1stPrqK5zE41qeBMiNMquoqbWTTSm40304/M5cTnDRCJWLLpBLBr/6zAQtJGaEiYas+BxBzFiOkleH7U1HixWAyEkCe4gfbv4cLmDJHj8OL1+ZHEq0bAVuzNMYnoNrlQfVSUpOFwhYkEb0YCdWNiKEdUxDQ27Ox7omlELVncIJAiLie6MoDmjCHsMEqIQi2cKTU8MaQUtLYzMCuFp5KP1qM20MQUjih3IoJX6DY3YtqQD3yztwNf1sNlSQ5kIEBbqd+X39HNtyZQjhwp4j2BnFC5n0/TFvMllXLYBytJh30djmfrNRtgV4orZOhPv7wXVzSBmoeeUSXg2N2buI20oow9ZXTaSWi05OXkerXo62dq3kgVbrud9FwxIhvNfhboxJXzEyVzo2cnUusd46OwbuKV0Bj2zv2PiqMGYCX46ksVX20/j/L53kVc8jptuT8d5x/UwdRKR09fgrOlKB/sG2NWCmts+odm9l5PR/13WnhJheP1S5n42m1WnFnNX/Qzys2FnRieGnPQANN+J//MzCV/1Bm9wFmfwLjlL88h5tzc5fZ+CUyq59oFb2JAzi47DHoIVPXDcMpWrr5nOtQ9CD9bhJIitPAnabYKIFdpuwTd8KZ5XR3DX6nehUznP3lCOm1OpxktbtmBgwUsN/+JSTuUDVtEdd6kbd3INCba1rKQn6zgGDZNzeJ3XOYfEOtjeEkqz4Jyns8m4/C4+XnkrzyePpOsaKM6Bj0+ERxeqAPj3EA94f9ylQf0lfjg0MhNIMS3s1QQ+ESVHughjYEHDIXVcWKhuKFuICJMEaSUgYmTqUGiAVcYnuFmkwCo1gsQnp6UbDtZbqrBhEMEg0tBpoZ4obqxYTY1U006dFsUP6FKQLR0kC0GNlLRODpPiDVDncyCloNbnQhOSfTV2akxBMJKB3WoQDFuornMSiQrsNhObxcRqMRAa5OWW4naF2ZmfjtVi4LAbeGIWEoFI1ErM0ElKDGCYGm57GLsjjDupHjOmoWkHlhZIQyOtcTl2TxAzqmNPDKBZDSI+J9LUiIZsOBID2JP9ROqcCN2EmI5mjSFsBlpCBGkzkS4TogJpAxEFaZVofg0qnAi9YWKbO4ZIjJLQdAvdTtpK99Bcxq3LxpefTn1lIuuWdWTelkzWW+oo1HyqFvg39lvW8Cq/HxXwHqF8C0dy58NVtF3Si3v6Xc22ya2p2XM1r58D7Td14KPJfh7kBm64/j6uvj+dT06CstKHadluMbtoQZVMY0bNDLjpHuqemgsRWMAwMtp+jZ0QQ7LKKRuygfSxd3PCLXdzy4SxjOYxpKzCI3ZAXSKdvoOTPnGzaHAvjs16g4Wv3sqcsdBnGbwm76fjOXDNDTZ8Myax87GHmXHbNpzrTuRvF0/l2d3TGXP3LibfchLWPjDj2w+p7m1lS1uoPOtz7ttxHTe+uZCkrK2wx8VV7jcIpNczv+BOhlevhI4bYMEwUu+8ijJHUwJXX4vr2E/ghUuYdjskWisI46CULD794l5O6H8btNhFZWYMDQuR894iho4rYuChnhP4lDmcTwVpVJFKRzZw6u09MO74mO6sYnFmazqxng85FS81FJILgP75IB5Pf5TrGk+g2R5Iq4C3Lq/ArLoVWy54q+GVC6H1NrCH4doRg3DjpyzaiHNehwXDVCnEbyG+8IR+0Jjyx+sd87Jer8fVsLJZgVa/fzW1KCZ+ESMoYvhEhGzThSBe0mDTJDlSo1Ra9tfxVokQNuI/V6dHsKCRZjowhaSEAE4sWND2L1cskbgb6nvrtRiZhhVdQIekCFariUU3aJxTiW4xKC1NoazKhSagsd0gKSGEyxkhGtXxJvmpqvYQClsaujEY1PpcbN2RQ3qKnzRvgGDIiscdf8w0NfKaFhEMOLDaYtjsEazWGAG/k3DQjitqQbfGyGxWgsURIexzUpmfSVJWFc5UXzwDaGhYU/yYUR0zqhOud1KyrREpjSpJzCtHGhoWdxjNEUFzRZDJYcxkE0wQAYEwJMIQmHYJNXaiRV60CjeaJ4zZpgYR1hAhDaRAlrvQHFFSzl1DiiHIu2AJpwUtSJ8d3+Yc8te2ZM2qtny+z8U6SzXlWrChTZzy31AB75+DCniPUJ5zn+aBjzJ41XE6rjdG8NXZmUzNvQweuxpz4mNs4hoe2fUIbZuvIa+gK2UZ8YXH1o72cFfpY7CjFXP7D+Lbu6zce/Ox0HEj7V/tSoudkHfdVTwy5HIu5VtEn2U84ptKhQHmU1cjoutpN3ETl089haefXcpnd+5hCWdwKt/ixMcwYryWdjnniNdI6VTFNzOcOB9/mLZXX82WBY+RUQ58cCnGcPjO05yWq2H8pzv5rOlY2AXpVXDC8h3EnhsK130Ls6/EvGcq2vkvsWiQh9bnzKAEHw9XTOe+y8YiolbahfbA+Jmwqhs7acG4p2FHyzQqzlrPOJ5Ca9+W+TkdGB5dRJgM7IQoIZMsSimxpRBDZ8nbMxlw5qMEcWKbNwzfyfk0Pn02c+nKqXxIMTkUkksmJczjFHqwAgMLVUOruSI6gXbWddRVdSFkB38wDZyQUQa2tuvJ3NKJhF6fE6U3Ghpl0UZYrX4WXFCPlQj3jehADAspVFFBGrd9sOZwv73+dFRJw5HDAVjRSDYtVGhhXFiwSx0TSaChl6zXtCEFWNDwiSiZppO6mEaWO0aS30KttCAFeEwrYWFgRaNMBNEQ7NX9uKUFOxZ8Ikqa6UAQ76kbEgYxIWljJCCJLyCRbxqIOhsuq6Sq1k56cpDUFB+5uSU0bxFjz+4cwhEr6al1CCEJh63xc/TWY9ENXAkBCvKzsduiuJwRYjENlzOM1WrgcIRJTqkl0tB6zOEME41a0HUDqz1CyzaF6NYYtoQQmsVAt0UJ1bkI+x3YnWFCtW7MmI4tIUh9aTKWkiiutDpcGbVoFpN1SzpTVZ5C18aVAIQrE3A2qUQkNZQ4hEEYAplgIkICUe6AUg8GYG1TBnYTfFZEiSNe/mAIiGqE81NxtC3BtEi0kAZWEzMzgLQGSOhQTYczN9JBvMfovU5Cm7KpLUhjx9rWLF/VkiVByUZLNaWaX02I+4XiJQ0/ruFVJQ1HGhXwHqnSKriq12hmX1fNnVcPpywIfDmMh4d1YlLAQfe3OnCsYz6sMrlhdgW3X53Gu48tYsLajUxseQ+zVqxnbX8vAxbD8/ds55KV2xhSVcG/089mq2Mgwx7qxMftH+Fv/u+4Zv1C/P8aQskj93In53Pl9acxcswDcEYZLfCSSyHXcz/3cSPJs0aTMPFBPtl4Lc12w5quMKYCXMVJ7GgF7gCQW0hVrxi+DS1JqwBqvBwvF/LIeemkU0a3O0+iMBeaPTwJGhWh9XkfuqyjJ3YyJkxl76MzCDugQqSSHgrHU6j9loCpsaMlJNbBgrNqyN48mAnt+iA7aEzjdvZaMzGw4MFHGW5sIY0URxWt2IH9zI3sojl7aUSwOYxiG4Fj9nIiW9hJczqwgS20JY8CMimhDdt4jXMx0ci2FlBOBnYLFDUGjw96rIAl/aDxjk6UtK0nTAsyKIvfO2sFmZRgwaCMdHqzHD9ufHhw4+e6EQNpwS40TILre2HvtJJxHxQdxjfbkU91aThyJFji2VdNF8SEJMW0ExUm9cQD1yRpw9+wJHAUkzAGRVqAdoaN+pBOsgTDdLJXDxIQMepFFDvxgNkkvlxwsGHpYLe0EhQGpowH02nEW5nt0gNIIMW04ZE6u0wTR1jQ3iXjC0I4Q0SjVmqqE9F1ScuWhYSCDoSQBIN2rLYoNlsEw9Bp1HQfADXVidisMaIxC+kZldT73CQl1+H2+ImGbVhtMYyohV07mpCRUUmi10fZ7iwsVoOMFvtwJMXLCyy2GPaEaqr3phGsd5GcVYVuNbDYozhTfPFJbUlBPMl+Bl/8CZEaF1Gfg0B1AjZXGL0sEWeqH9PVsBiGGd9ESAebQaTMgz27FnNfIuHiJDRbDFtWHbFdqUhDo2prDmmdCjBaBNHLLWCCdBnx54gSzwJbJUQFJEZx9M3H0aaUjL7b6Z8aYJKh4V+Ty+7lbfjyi66sr7WyxlLLXs2nssA/xRTx7cdjyhFF5dyPUGOb3cIo5sLoF5kyE2br42FHKzI7fM5aVyuObfwq9FrOvrOWcBrvc/djpbRkB7PlVaQl7OGDibu47ppcTqn4lkYU8VHhONjRkr8bb1JOBosnL+ekE6/h1Qnl0HED990ILaafi6+qCUv6A8v68HDyxSxYfguF4Zb0YSm3cieTJ+bx9fJrGdZhFmtOLaL5LnhyPIzNmo7fDUUjVxJYOZDdNGNjR9jdFF4dnsrO/CF4v+5E1Zqh4PPQrK4ynpLus5S3BqdBZRoZV93G3EcXsoW2zCq9l/TlzdiUmAtNd8OHp8KyvsQs8MLF0Gijl5R2i5ldehfN2cU6utB4aRNKyMKzuhX/5DJqHXZsuxqRRgVh7DQhnzqS6Nn2FaJY2Ux7olipx0MxOXioJ58muPGzli6kUUEQJzV1TcilkMTa+L0ZmvguXx4HSXUQs8Cst7+ilkSCOCkjg5vf2EHprn6cy2ucyocsLBzNOrpQg5ddNOc4vmSTvwcxLAgTwut78EjTkdzTYSTTRnTj09Chl5H8K/u+S8MPN9Wl4fBJlQ7s6KSYdsLCINhwL+xSp0wE8RGvEa0T8c66bhnPrVh0SZIQOKSG17TtzwjHkHiIl0U4G/IwLmnBhkaCtGA0dG9wSh07OrUiQo0IU6/FcKKR3rAMSUXQQmWNk8pKL3W1CfgDDqyWGNGIldT0KrIal5LgCRCNWLFYDRK9PnSrQW7LvbTrso0mLQrJzC7HMHRMU9u/0IRhaOiWGKGgnRat8gEo3ZdBdYWXgM9JLGzFjOoEKj3UV3moyM/ENDX27MylqjiVmn0pBOvi/b+lIYhWuxCaxOr1Y3FGMGM60ZCNos151BWmEtiQg7YnARHQQIJWY4GQDjENR4tyhDX+7Yaz4z6safXEap0ES5LY83UHhJBYWlSi1WrgtyA9BqZHIu3Eg96IBlGBKHUiCz3IgkRixYnxG2tokBjB1aaEDud9zfinHuORR/7JB+O/4o3eft7uqHGPozFDoo1oZCZgQQV1AKYpDrkpRxaV4T1CNRO7iGLj5U5duTBowKrusKMl521cyIoObp4f0oRLHurCF106UJoFuUHI+HQspwAfdK1lGAvY1mIkZqg3wxfuhLwnqD59N8n7nOTvupOgEza934vzWvybVcdbqQ4C6WX0T9lA2shSML5l0rOX8M6YecSMk7nkm+1c4l4LCwfzUbMOdHx0CM9M8HLRywb/+odOWvpmpjzpZm63HrjunkRPzmFtry7MvrOc22/TWT3UzYMbn4svV3zRy+Dz8HLsEnp9C/bB78HW1nDhy/hojfXdU1l4+qssa9GHUcxl95ozaRbbC5rJKcsqMbVUVvaAc/mENzKPoy1bSKGKVX01GlHCd91SuZ07SNqeAQsHs6R1L85/zWD6zTpZTZdRRgZVpJBNMfrVDxN67DmsRKjHw3J6k0shF4be5NVvZjNs6JPM9V9Bj5d7ATDh7X3cd2cnLHqYGq+dskzJnU070pgiNtCRY/mKmWfnksci/LjRMPHkbiaIk1VGL07Q5xHFiqcewm471i5rWE9nrEGdFrugjGTePw3m2k+m0R4r+U0lnjpBJDHI7A/mH8635GGlShqODE5pIWIKDBFf7lcAPhGNZ2bRqCOyP+sbxiCGiQ2dsDDIJ4Y1LKjQQhTq9VjQ0NHQiPfXDRNfmOL75YeTpZ36hj6+aaaDkDAIYxIkho6GlfjqawB5CTFSQzogqQha8BV4SbA1TDpz69TVO6mqSiIpqR6XO4jdESYStlGyL4OK0lQSvT7sjjBCSDxJ8SDYXpWIrzYBTTPRNIlpauzbm0lqejVOV4iERD8WS7y0oWx3Fi5PgIS0OnRrbH9/3R6pdbhS67B5Quxa0o6CBT2IhG04nGHa9d2APSmArziZPRuaEwlbycgpJ6XDXiwpfqIliVhiGkanOnQMzO2pSFMQrXbjaFmG9NuI5qcQq3cAULqtMenNi/F224OZ1jApLTmC1ONlCVIQ/xs/rCH8FjA0YnVOAntTkFKQ2K4IoUmocuzPToqkEJaAFUeSn64nfYurZwHH6ybjK1yE9qRRurEJm1e35asNjVijBdij+SjXAn+5UghVw/vnoALeI9TFvEDOwrbg3EHomTfZ9dBs2t85iU8T+3HCv5NZ3GkAaOs5b+/X0PMdIolhbM6WXNtoMk3WdcFhac6u5mA99V3K0HGQQCbp5L99PTcfN4uZ4YmUXf4uvJrBx/Rh9vqnWei5HOu70HfoJDCSuHJMN9IL7TwyA0g8mRV5mfQ89ikW9WjEApoz6zI3sWfG4eIsdpcO5cXbvqYKH2998jB4oXefL5l7mw8fx3Iur8Hrf4/XPKztAi12cWHhIki30ab0W+iqwevncGHahxA0ILIY0yZov7cOqmoIRBrjn30jK+mJ9u6ZpFTB3OLpZPd4n3nh0+lv/5wqUsiv6soDH3zNLRedQ16rfJq32onAx8dVQ7mm6SSY9DCrHn6FMHayKGHJY69RQS6vcw4X8go3Rx7kLdtpjLXPpqcHvll3BZ26zOeTk4bj9oO70yvUcgkmGt460EyBO9PPXhoxmIUUkEdrtrGT5ixmAKVkMomH+Y5OtNB38RXHUoOXYZmvcNxCjSuGnAXAg86reLLDFZz8egeW9IO6JCtRK/ztTcHeRrC6u5MvakdSlgF1iVCZApoJ123/a0yIU10ajgwp0sF2GcUqNKKYBEQMixQEhLG/V65NioZlf+37s7Uppp0KLUIEk6gwiQlJhBip0kEEk5AwSJQ2PNIGQK2IUE0YKxqRhvvsF7GGLYqGILOhLZkOlPgteG0mupBkeiN4kwIkevy4PQE2bmqKwx5lX1kS9X4HWRnV+H0uKqsScTnDxKI6vr2ZJCfXYbPHA0VfbQI+XwLBoJ2a6kRcrhAJ9S6czjCmoWEYOlZbFLszRDjowOYI482pAiAYcGNzh7A4I1jdIcI+F87MOvK67yAnaKO+LInS/Cw+f2sIFt2gPuCgdet8mrbNJ/ektYhsPxgCixSY9XbE0nREs2rQJZo9hiOhCgwNYY9h+u1UbMtB102aHrcBvc8+jHjnNoQB0tFQ9mOCHhAIv46scoKhESlOAsCeFABNIpxRiOhE9yWBKdBcEcxKN2bYgi0xiDWtHnQTIjoiKYRj4G7yhuyiiX0RJ+2zI312osVJFC5tw6qlXViwO4lVlmr2aX6C4uj+NkZK7eAaXqkC3iONCniPUDmX3Q7jn+S6Y87jgXGjef2pIjp98jB/a303dLfQYfXx3HNaJ0oywXT3YPbyl3jEeTm33gVzZ34Na23sO3U1heWnc9wXUG0H87RXePMy6GXvTt4nEGunM/e8AFNDD/JVr14MWb0STn6NN5Y9zNm7VsIldozcYmq82Wxpm8mcCyQ9P/NiovHwWDf3/3Mb9cVPkVgLwRwoJBfLjqYMPvF6au69n7Q+73M/19OPJfQsKOWKO9N5cuGb8bWE65LwrxiM+6oZzNl0D+cfcx3/muinkNFc3+J+pnMH9xq3UPLUM6T5obA55Ey6j4zWsKIneDt9zSba0ZMiTrW/zUnXDeGpB3aSk7KRLy7Kp4ZeeKnm+KUBfH0/5NpRQ1lY9TAP5GzFRKMdm0ilihB2OrKR9mymjkSesv2DCFauFfezvFdvCosHsYP+PPr119x08kAe919PnnszdkKUenNJrAULMSQaRTSioqYlo70vcSIfs4auaO+ORKsxCF6yhTIy6MJaGkdLed56Ab2GvI4WPo8eq+DBftfiJMiSflCRGySLUmrMpiwcDOPS7mYNk1nV3Ul+k3gpRSi7isYUcZ9lJBe/APbp13G9fIB/fnh0BsB6Q1bvx2PKH6uFkUiBHs/gBUUMt7TgwYYmBW6seE0bpVqQZGkn13DhEzEkEguCCPGgNcd0ogtBUMQzwEZDn96AiBGRBqnSQRI2gsTQEJgC9mn+/TW98c1CfUPmt1oY+KWGFtEISigLOcmot+FxubHoJhmpdaSmVwNQWZ7Mjj2Z7Ky10dIbRkpBRY0LXZPEYhqllR4yU31EYxakhGRvPUJAeYUXw9CxO8JYrAZOV5Bo1Iqv1oPTHSQhxYeUYEsIIWV8wlKgyoPQTIyIFYTE0agaS40TV2YNlUXpVNW4sOgmzZqW4PYE8OaWx4NdIZFuA2GPoTUEmNGNmYTKEqkv8yKEJLllMUI3ifmcmDEdl7cea8sKjHiyF2kBIQEDTAdoIRARES+LkAIzbCEWsBOqcaHbY9iTAsiADdPQ4ucctKMnhBG6iRG0Yc+sRc/0QciCrLchEsOIeiuyyomW6QeXAYn1WNrU0ey4QprxGWcXOKn6sg2FG5qxckU7VpU7WW/xUaj5CDSsone0kIZAGuKgMeXIIqSUf63vHv5AdXV1JCUlUfPaHBJdrl/+g2kVlH0whoxzZ8GyvqwYu5adCy6ncVE82Ju0ZhGvZg9mydAglz7mZHlvyOz1Po2fPI0VV6xk3M25BHyZuDylXHt9JvYwnPUGHLM5ArdPg6iN9xp3Y+TEIWyf9Tg2Itin3krWuQ/B3FE8cUsN4y7rxu5n7sV++008OR5aZi7mkuUbeYbLySyJr+2Q1nYxGpJdRQMZ2+h25i2/A3uvrynZNpBzW9/B4xW3k5S2i9qK5njS9jB1Ugrcdhc7n3qAlCpItheDqcVrees9LDwlyLF8xQKG4cZPS3YQQ6fJVTcw7QYH00IzeLHkBprthjnnQ24hmE0LuG3XyxQ0jzGLSbjx04dlmGjkkc8umjNq5V5IrmZDCydBnOjE6BbZSKUtga85llHG+8zQr+V85vA6f2fKdVlc+YALEbTT2bmcHqzgNc6lL8tYED0ZPRZf3APiwWdZ83rasoUNdCCLUqaWPw1FjXjgmOMZxgJe41xGvJBG64tvZil9SCO+yl0JWZjvnc6nw8HmrMONHw2TTqynPZt4g7Ow7cqlqnkNmVu8pFXEj6fHoC4p3gZtV/N4HXFMh3BuOb5gOrnObfRnCQuKLia1AiYUHDlBcF0ggPfc86mtrSUxMfE/7//971D1aBITbT96LII3+aVf/FzK//v+dXXbbkMIxy/+uUvDzflO9xMSBhFMbA3/CLE1ZLOsaCSYFrzSQhIae0WUYi3efeH7BSnircfsOKVOqRaiVkTQ0bBLLb6gBBrZpotKEcJExldfkxAS8WDYIXUiwiSCSaK0kmLaMIHWWKmUkg6JMZpkV7FqeybVpqS5y8BmNXE7o6R4fVTVeIjFNJISg3gSAgSDdmp9LlzOeHbX5QqR5K1jz54cMhsCZSkFjfKKMRuWI9Z1g3DIjhDxUgeLNYYrIUDTHtsJVHriLcYcEUJ1LtxpdThS6qkvSsGVUYs0Bes+6cWmTU1xOqI0blxKbsu9NB2xCpERiC80UW+jbGF7EvPKsSYFMGM6mj2GsBjxfr2ASA1gliUgIzp6i2qMjPiEMq1Ww0gz40FvjHh21ycQNVbMkgRkyErN5kas/bIrFkuMzEZlOBJCZLYviE+GC1kwgjZ0ZwTDb6fg2zZktirCc0wBIiESr41wxjCTYmgVNgjGyyOwGZiNgvtnBkktPklOq7ARWteIcLUbR0o927/ozJ6duSzfnE2FKVlv8ZGv1eEX0cNeCiFlCH/kzl/9+bR78mkk2q0HPhaO0uyh99Xn0xFE5dyPRJpJRtsv2d3JT/W23vS87mz+/mUxa7vApOTbeDV7MPVDlzP7zS9Jq4CKXrs4ji9xBmHc0yYr8jJZ/dgLFNzzFIO+hLuj01hw9RZmTLSBJgk1rqAvy+CsN1lFvNVX5l1j4etjKbjlZcLY0a55iC+W3MSabvE+smEcsGgIl71dych9K6lIgyF3DaA7qxjT6A42vX4Hl6XeS+GegdyQfBNNPmmPmVaFr7w5wxZAmb8pYx9K5I0VD9Ci9TyS238DvZcz7YpMVg/ywbAFlJHOC1xMHvl4qSFn/FSaTL8Izn2N4z8HXj+HY7+CTe0hsTYe7LZkO7c2/wcGFrqwDj9udtCSYrLp/M/ejPqyCnY3ZWcLSKSWTbQniTq22priJsCowHwCup1j+Zp/cSklVe247gHJLdzNCfNhH9m8yvl4qOdk5tHWup6uziUYaTUYFihp7sdJEAsxhrGAqdWPx9s4VKVw3ZfLmcP5tGYb7S6+now3j2XkewIbUdIp41P/6TQbOYtWzvXMlFPowAYG8hXN2ck7eybjx01F8zrSdnhJqotf975sKM8AZzD+Vrnx8TrOfAsaF0GwPh1PPVw0tTWvhS+mupE/Huw23U3Z0pHQfCdUpTCz5Z9wUtz3a9X/eFP+UIm6pE5E8ZhWchpWPYN4La1T6iSbVkLCoEQLs1EP7G8lFhAxjIb621IRYKfuwy8MQsKgXkQJE+/W4JE2NAnlIogTCxoCj7QSEeb+Xrz1IkatiGBBUC+i7NUDFOh+NogwtSLG7joruwpTyUoMk2OVbA3oLK4T7C5zUVXjwRewETM0fH4HVlsUlytEelotWVnlZGRUYhoCv89Nemot4YiVYNCOr95FdWUSoaCdYMBBNGLF7QkQCtrZujUP09DwJPsQuoE9IYjQJO6sGpKbl2J1hzBCVioLM6gvTiEWsOOrTcCbFKBJXjFZuWVkd96DDFsgrIErBs4oujVGoDQJM2LBkhhEz6lFa1KLyKkHAbLKheG3x2tFfVY0n4ZeaUFEtHg5gwARAd0vQAJ2Ey3Hh96mEndONdm5JbTotJPcrrtIb12EsJgYPgfBfcnUF6ZSn58OUpDVrhBX4yqEIwbWH3RGEfHnNGsdYDWQ6Q1LGpvxYFcLC0QwHmLY++XjOWsD9lZltDl5JcMvf58JE9/llI7F3NDGz7X2TJ5qlMQ10eYMiTYi1/Rglwf23T6iNay09sNNdWk48qiShiPQV73t2L8bhP/VQXQFtqYn47j+LsZTCK+cS+CCZcSwce2wE8nuCDdfl8zlD9zP08ZW3snthc8D57OMEjLxjfwc3u5FYeNcrp8DX7W4l2P5khtHd8faLoEHphYz/dJshvjKqN3egyZvVuA9q5pPN01mzOdRaFxE+dSljJtyI0tnvk1f41u2znyGmjSDvPIwtxZPZGD260Rt8ETtTUydu4/p/7iX2hOreGDjC2zqAF+1msyj1dNY/OY0BlgW8e/Mkzn7U9DSSmlvh251YXDn8PdPk3jx8jApVJFllMU/MEJ2/G9cwoCgAWlO/BlQmwi9l8O3JyZQRxJ6YTZFuY3YQluGvZ3Ix2c2J6nYDcUF3H5yb/oMept8huGlmot2LoYvjuOZTn05v9c1kN+EZe2yiaHTl2WcsH4RDwzqxYecSq+Rj7GKUdzP9bzF33iIyewjm55fO3nQ9k8+2jeWj0/XyGYfPVhBEBcvJ5/KhVuXs2pILd3faMEd3M4LXIKNKLTaAUWNWEV3xr1ZwaMjx8Pqjuzrtokqkcw22lCPh09qzuXKpnfzMheSRC3Blk6CBOn4dSc2dABHON4WbVsbuHNSImkV8W4YUSt4EopxBrNpswUqu9Tw1Yha8u6aSF6gHt4fydxOLZjyrxoun3kqViIYWBg838rZ4SMnC3xIMUt8O2BMtSX7o5kSwiJGVFjRpSCCiQVBirTjkjoBYVInoiTKeLarRAuhI4hi0tRIoFaLUkkIDUGR5sclLaTjjLchwyQoYtikRoK0Ui+iJEs7BpKmpod6EaVORLChkyRtCAmmkOhSUKtFCAgr6aaTcgwKgxIjJGhqasQw8YkYu0yNfSVOYkhcWOjgjVBamoIQksTEAIWFWQCkJPswTA2HI94WLGxoWC0xdN0kKbWOkN+Bbo23KEtOrcU0NdKyK0hIryVQnoQrrS7eeSGqs29dM1JyK0hsVUyzQRuQhqBmRzbZuaUk+lwYRjyo8xWl4gjYSXBFELoEDVJ67EZG9fjCEn4rImyBiI702TEjlniXh6ZVyFoH4V1phJd72PDlMeQ020fTSxZDehStTvv/tFZAR1a5EMlBHK3KaJdXGQ9WATNkI1LtJlIT/yYyqVUJsTon6Cbu5mXxc6h0g5Bo6X6QAq3SCrUOYlVuzNIkHEkFmC4jntUNi3jbMw2kN4ooc2BuTCRmaGiOKJFaJwUbm+J0htB1g87t/bTsvIN2pSmcb48SjViorUpi5ZqW7K63sE0Lskf3USGCR2QphDQPUcNrqnzikUbdkSPQJtrzzunQcjvYH7gavxvyJkzhK45lZ+Fg9hb2oe2r3Xiw6m7OegMYNZenr6vjo5ZtWHpyFbsHFjKTyTR++hTWVA2Fr48lio3Gvd5lzmiDOaNNZo238cDaV1mRm03rbUDAzacz50NdEq2fG8AJHWdy+61WuOE+kqnhuzwvc4JjKNdTWHcMZFDGW49+xajsJ1m56xzM099jfPhZdt/5PBe+DON4Gh6/ivb7ahi35lvGNr49npU86ROGLQDNVc9b96zh7J7XUd6hDOadDO034yRIVqgGZk2C1tuonf4g7ouegBa7KDczWdIPwg4oyYTzH0th3PbPOT93Bm/4L6Ymmk6fM68jiItGRfDobdXsy4EObGAYC+jKGja3sEL3VQzuNYMNdCTQbg8aJl9yHKvozuJBJm3ZiobJDlrRgl3cz/VsozUVdc1JpYpOAx/nUcdYPj3dT2fWcxxfYiNKLgWcw+ssbZNC97UGz5ztxVWcxPgvN+D59ymwszlzTvEyrv4Vnj8rIV6b0Hobw78rZRl9uS10P6PH9+Ee73ieK76FYSyg17OdqMbLJqMTSbVgWOLZbXcAaryQVQLF2fH3Tbq9kLF3ZFOWES85ueOj5XxcPpo8x1bILWSztQVN8uGrme/z9CQ/s5e/xJPjJa23wvMjUvmqeiQz2ozku90jYV2Xw/X2P7SYfuhN+cOkm06KzHg3hkoRwi9iZJlO0kwHCVKnVot3a0iSNgQCl7QQFga+ht6tZQ3lCyaSBGklSdripQ4NtdgagiRpI1HaqBFhkqWdchEkKuIT3b5fyMIjrbikhUzTSbdYEk1MF2mmgw6Gmw4uEykkFuJZ5ygSvzDYq/nJ1/1ssdSzV49nImv9VipqXJRVJbAzP531exPJzS3BYo2xd18KwaADizWGOyGIyx1CCEk0YiHB64ufr27i9AQwTQ1ftYdo0IZmMYj4HcSCNqp3Z+KvTcDiCiMNjZjfTqzegWkK7K4QNVVJJHp97N2dQ32VBxnTwNAwiz3IWjsA0Uo34YJkTL+d0NZMogUpxL5fhhgwK1yYQSvRWhclW3OZ93U7ygoz4jdMEF+WWJeIqIhPdHPEX2ujLAFhjyFjOoHCVMyYhhG24K9MxIhYqS9IQ7NHwdAIFaYQ2pmOf3d6vL643gZ+C0X/7k31shbonjDWpACyxI1eYUGEtXjvYF3Gj13mwKx0UfldHqWrWrDjox6Ub2lMZl4pnfqvJ69NAenZFaxf1onSfelEQjZ03SApuY6/nfcZt055h5cnfcxbp+7k1U6SR5IzmRJrxnFHUGs00xCH3JQji6rh/R391zW8Pg+3ntcOf102fRLnM2r8cCrSIKffm2BqLC47kwQf/OtSuPdmMB+eQpLhw687cVfb+C45l3V04cKpreHme7nc/ihPr3qahTsuZ0jFd8zP7Ez0nHdZzADufXMVH9hOZMhCcI+bCZ8Oh+6recp5Ee03wUejKzj7yTTeuaKUu2+wMGNGJRYMzp/ajqLpT9J9XgZbN5yJef2DtIvuYPUzT9G4CJz3TOIdzmDUlIFEZt5IGDtffX4HZwy9Csf8Y6EsHVrsgqAzHp11WYf/32NwPnIZ22lJm7pi2NI2vtJDRhm038TCjx9gQweQXdbT6JNOfDUQLAaMmgsbOkJpJqRUwdDPIXvi9TzKNQx+pRHNL7iDJvXVsKob+YPy+ZbenB34kA9cQ2nPJl7jXM7kLdp90IrdIzaQRgWehy4lNPlJHOUe3kvvSxQbS+jHxDsSCTvgpdHQNHsJAKvpzql8SBoV5FJIVmU03kLhnTOIjHkZ2yeDoVERLBoCJ3zKW206sYw+PFg+g5J0nQ10IJdC2rzUm8Dot1jAMHbRghP4lKe4nJbsoIA8fHjowjrWGd3ougY29Agy+7Zq7hudQ8ger2mWWnxOYHFO/KXNb24w+jkdvxvWd4ZrHoH3T4t3uYtlVmDBYMDbmWTvg87r41n3yTdmcu5r0NO/MR5hh+3QbhPY/vem8/91DW/hFSQm2n/0WBhv7pOqRu6/8N/U8J4ZbopPGOzWfUSESQwTj7ThlbZ4cCnM/cFrrummTkSpFfG62Igw93dxqBdREhoywHZ0msbc5Ot+wiK+eLCrYenhiDCxSEFEmKRKBzapUa6FaGy4MYXEKjWKtQCJ0kZnI4HmnihSCj4LxIgKk7aGCwns0cLs1uNBapK0kWk4qNDC2NHJNRxEkTQWOgLo3LSaimoX4YhO00bVuN1BnO4gkbCNBI8fj9eHppkYho4npY5I0M7urU3JyKogMbUWhydIYqNKdEcUI2QlXOsiuWs+ZshKrM4Bhka42k3p9kbYXSFiYSvb1reizTHbSEjxkdislEi1m2CVB6FJNEsM3R5D0w3czcvRU/0YlW5kREfYDDAEoRIvRtiCp/NejCoXuieMSA5iZsdXa5NW0Kt1KHdhVDnRUwNgM5ABK9F9SUhDQ3M2BLflHvzlSVQXpxCLWklKqyFQ5yK9aSne9nvRPGHQTUyfA2IamjeI8ITBE+/wgEm8ntcQ4IgvdoHfClYTWWfH9NvRHFFEQhikIJKfgi23GqPSxbo3BuKvd5GRU0F1uRe7IxxfxtkZxp3kR2gmsbAVT2YNyX12Ig1BrDSRqs2N2LisI1+sas5S4We7XkO1CP9Xvxf/bQ3v9iv+hudHNby+cJRWT76lPp+OICrDe4TZOWITZJVw1xQnD11rcPbm9dhiBjk936N2wVnUfn4mL19s8P7VBcw2JuJps5J/bZ7J8/poZhY8wuLkDhTRiKG3DYLxTzLbdQmD9QVgi1Jy3uf4dnfGcs6rnDJlMPeOT4I22/jkRHAn74V1XXh2og9evoBxGXdyrHseDsLYw3D3vMXcMiPGJGYx+sZ2ZF19M/veuwKO/Zrnrq/gdc7hrc+fots6g933/JO3Fj+Mf/VA1sx8hXmcEi83GHojczgvvoiExeDf9WNg7ih8W3vw3YoxLO0D/+JS2lSXUzn9YRb3ssdnZdV4mVnyAB5fPIjT13Tii0GQVwBaYg07m0PHDSDMeNL08YlRbgvfzx17/8mmC1ZTRxL7EhL5YpCGkyB9WMqnHz2KGz8mGlPrZ1FDMmxqTwK++Ape457GRwJUpKEh+VvxYqwVibxwCdx/g2Rg9usYWMilkMd3PkQKVfQszSdTlsZTsEEntN6GHzf0WRaPRE/6mFCbfP72iY/TeB/uupVEagm/ey6NKYJjv8b13nAyKGdS6RyW0A87YbLmdyGCFTd+8iu6oelR7CEY9r6TR87KYdCX8Vg0qzQ+BzClCiZFZ3PzY3Vcf6/Oxo6w55zlTNEe4JFr4OR58WB3AN9wwkuZNN8Jb/8NJj8E37TM5B/PQU/tWxZmdYAOG6D/YijNgqoUKGoEefmwqjvPJ/+BtcDflzT8eFP+EE5pwY3Ap0VJlDbSTEdDv1xBpQhRJyI0NpxkmE6saOzTgoQaanTt6NikhhWNjIafS5Z2kmS8E8M2i68hCLbQLpZIQMQICQO3tJLSEOjWigiVIoRTWqjVIvhElDItRESY1IsobgEJriiaJmlk2glhUNQwCapCC+GRVmxSI0iMai1CUBiUiyAhYRIRJt+JENVS8u3uZKrqbdht8XZhALU1iZSXe3G6QiRnV2FzREjOrMZii7F7a1MczhABvxOrI4LDE8SM6vEljGtdBGsSKPm6LZEyD2bYSrA8kfryJHZvaUp6myLSmpfQquMOvDmVOLz1RKrdSFOQmFuBw1tPQk41zoxa3E0q0RvXgjMGsfhf20I30VxRrJ4g7mYViJQgekoAkRJf8U0ENERUIGLxTK/MrUdPDcS7B9gMhDOKrU0ZttxqLOk+dE+IhDYleHKqsDvDRCMWtn3XiljUyr5tuVSua0o4P5XoPi+homQCe+OZ38i2DMydyZiFicgqJ7LaEQ9+A/ESDGTD8ZJDyIhOcE8qdSuaEtiQg9Ak+z7pzNYPe6JpJk5XPPuekOinqDCb3TtysdqjSAlIgTe3HEdyPaGd6QibgaV7MSkTl9PvwxeYumsqC754gM13zWfRcbX0iGX8Yb8f35c0/HhTjizqjhxhNr13E9d2O4+9Mx9m4kM6vHwB33XUWVo2kqcuh6T2S7n9Np2Tnm7CA3tnUbmrB1PWfcb6ugHc5p/JJtqziu6k3HkVVKZw1WzB30PvgbeG8z6pYvJDUEw2X3T1wq13Uv7qBC5+Acxpd/LV3/cRxcbifjozQrexuuRkLudpvNXwhuVMbr0qk0VvPkH6kDfgwxGMWL8H6hKZ8cZqoqW5/C38ATx5Bb3rN3LCfBjfchK5FJJPHlmzziV9/J1oi/uB20/o73OpH7YMBi/CEw3R+ZybefvcKJc9kARBJxvvf4kBNeuhzzIiH51O9j544fIw58+Jv05d18RjYRONnGLY3Qw89fFg74QPrUyw3w/f9iKXQjbRnmX0IYMyvqMTTa66gRO27aItW8gjn2c2zaIjG9h6w7ukr23MFtpiukIUkMfz7XpTRyJrszNpm7YYzYRG7GXlrnNozk7yyGdvixC9i/OhOAdRm4i0GPE0a0Uaybu8sLo7fHoChOxYxs2GrFKO3V7Me8e7mFr3GNbTX+cb+sHi/pBWQd/1PgKZPgaziAf2zaL38LtwEiSxMJGuaQvozir87njHhpKseIL8nNfBlwBpFTD/BJhpv4p/n5zI4gFw2cZvWEFPbm1zASd8Co62a7GUplFBKm4/rDsGSrIlbn+8+8M7Z8Bia2+81RCad2Y8JWyNQoeN0GYL7G0E3mpO/fAP/MWQ4v+X7/x+U5PW/jDNzER2a6H9E4nCwoiXJZjxsgQnFkwgy7TT2HBjl/E+vSmmnSAxmpgJNDJcmICTeEux75cU9on4YhURYbKvodzAJS3IhmA1JiSOhuNGMQhjEMXEK214pJUUaWevNHi3XGOxDyJIEqSFKi1MmYiRaTqpFRFimDixkGzaSDXtWNGpElFqRYyIMCnWoqzQ61hlRlhXY2NNkYev1jVhwcZs8kuSKCtJw1eZSEqTclwpPuwJQUxDw+9zo2kmZkxHt0XjLclKvYTrnUTDVop35uxfVU23RwnWxWt3q3Zmkzh0G02HfoenWRn2lHqs7jCmoWNJDOLKrcSaUYdmNdCSA2A3wSIR9obV6apdmAErujuMGbAR3ZaOWW+P/61uCERMg5iIB751lnjWNSOAsJpQb0MGreAyEN4QMmAjVOSlflsWloQQac1LyG1XQJOWhQQDDj5d0I3ta1oTrPQQrXOCFFTszKZkYx6+PenUrM8lWJBK/cZGmAFbfBJXMH5MGdGRFS6MvUnE6h04GtXgSPdhRC1EalykdyogvWkppqlhGhrBegeNO+yh74lL6dh9M0lZVZiGhmYxcGbVolkNdGcknlU2wVIrEFGJadeQbgPHsbvpdtP7uOQf9w/i71vRHbD9l9+dP/HEEzRr1gyHw0H37t35+uuvf3b/cDjMLbfcQl5eHna7nRYtWvDcc8/9dwc/yqkUyRFkwpCRDHO/h88Yie/BO5jV8U24awGd/W7eSjyBG+5sDy2D5Ax7keINF2FqkDphGjx1OQ/lb+eKGyaQt8PK4JbP4Qho5Hfy8bLnGGpCs0lpuoub78tFO9HA++5gPj0Bjnv5XL4ZAE1PfYxqvLzGuTzOlVRc/A5fcSnvtbZzx9ctuOWOUvz1mSwbXsdD258k1mo3jHuKj06Gnjlw39n9OY3XKFlxLlknf8THCQM5qeN8+PI4WgxexBXTmzD/vkV0nF/OlgFDIPQ5jnIP/nQ3V53ehdl8zqdf3YN2Gjw1uA3jvuvEsU8MgLa50G8JpgbnfVNAx41NeOQaaL8Jgi6YOQXun13Dmq6JVKTFX8MdLQFrlG+5hHt7P86IaAkfW4dx0uY9fNsukR20YsDsa3mOf9CSDmRQxsm9bkcnRhQbVHvpwmKe52JqSOZ85rCK7oRx0IodXPJCU545ORet1zLW05kk6thDM9ZlWzilqBTWdUFsa0P12LdIjlpheW+oSIPW22BPMyz/eBrWdIWKNEb2eIWRj/cFehC76QHol8uG5m7SqMCNhQzKoLA9tW+NZdSEZ5lnGYOGZAttcWZBftcq6vFw8kwrBXnx7O4ZS4pJqcrG44vHpa12wC1XtOS4RYK1XbJZMXExC/Hgrwc/brqvj/DaFQFaUkb/j1uzvSXcdl8EskrY7GqC49LZ8NaZYInFz9vWsIKTO0BpFqT/Ub8chiW+HTB25E1eOVp1jiWxSw+gIQmLeMDpF8b+EgWPaSUqJH4MyrUQVjTCmBhCYiIp10LEMLGgYZUaYWFgEF8u2IIWL13AxIVlf2cHrxlvQxcjXj6RKuMZV5+IEsGgRkRoG/NgRRASJhVaiDTTgRWBDZ1E00qpFtpfQ+zBhte0UdbQ+uyHKkWIahHvBew04++zEhFjnxakv+nBqplUVCShaSYOdxBpajg8AZq0KKS4YbJbXVUiFlsMb14ZANGyJISQNO+xDWkKhM0goWMR4ToX3qJaqktSyCl1o2f7QIvXuxp7kzAiFnRvEJEQRtY50D0hRGIk3sHBZydc7AUJlqQg4dL44hGWhBCxOhe21HqIavH62Wo7wmLGuz7ERLxzg1VCqOH3SDfjzxnTGlYK00GCNcWPvWU5st5Ocq2Dla8OJjM1QOMWe/GVerFUJ6BZDHZtboavzk1WTjk5zYtweP3xvsEQL7lwxOI1vAkRiOhomsThDSJDFvSEMG5vAM0TRgasJLctIqVjAXpqgHB+CjKmo9lipA7YDkIilrXAiFgoXdMMTZOktt0bXzY5OUosWYAAYUhiSRIRk1h22tmoV/1+vxA/sr8zw4/Gfq3XX3+diRMn8sQTT9C/f3+efvppTjrpJDZt2kSTJk0O+TNnn302paWlPPvss7Rs2ZKysjJiMdWj/FBUhvcI0s+9gG2bR9JP/5p2A//JVYPOgufGUPDwwwxjAR/ctgb6LWHvwF3Yw3Dpv4DFA/h2+oeUV7cij3zKMqCYHFa9+Ch5RiHBpqU8+NA+bq57jCsfsdJ+vc7HJ8LQ9Nf4LLsDK04tBWDbs/dzBU+ivTuSjK/bcCxfccdLO+D1cziX10hL2MO5Tyey+JsbmOx/ipmTIXjaAh6su5NH1/+T47fu5eXpW3jRej4nVS4ndPb7vDHCCbYI6albac02nhrenDuYBu+cwbXpN7At3InZS1+F097D74ZrH4Rze0yBXS0guSZe97qmK1Nn1/BxhyZErTDyfbhk59ec9h7MmgiFsgkJLdeAt4YEH2CNxud8V6VT0jjGVmtz5jIK2XYLrdlG1a4e2IhwFm8wPPIlToLsoRlfcyzt2QTzTiGClZ6s5Orx7cgK1BH98HSeM8ZSSQp3TjNJ6PU538o+AFiJUEgupxSsj6dY9zQDZ4Dkb1tDbRJXjTw+XhawYFg867u6O5WXvBdPxa7vDA2ztJ9a8xQsHkDtcxPJqgkSwco2WrOwtxvPhLuxEeHk7Gf5kkEMfdvLXXdEeWDrs2RQxrOXxsudz3vdYK+ejdsPzXfFqxCW9oEIVvLz4iUP/jUDCGMnaoUoNh6YEA8qontas7QP1CRDtdvGZlcTwnYIPHsVZll2PGjvvgpCdljRkxVmbwpz/8BfDlXScFglIDCQ1IgIVqnhkDoxIRt668YfC4gY+/QgLmnB0tBX10+UFOnAJeMtxrIMJ0nShktaSDMd6DI+Uc0eXzwXt7Tsbz+mIRAIzIberPaGJYcFAjsWUk07NVqMkDAxoSF4FoQw/4+99w6Tok7X9++q6uo4Pd2TEzPDMAMMWYIgQYIKZjFiWDOCiKKIIoqsGDAgiqioIOqas2vGgEoUyTmHgcl5eqbDdKiu+vz+qJZNnvM9Z8+u7u6P57rqmqurq0NNd3W//dbz3g8tUpQWOYaKaaVwCksi7S1CRNLxSzF0DHxyFBko0t2oyBgIauV2tlpaOaD4cQuVZKtBXdhCNKaa8cJlebTUpXJkZzFxTT12Gj4es7D1xz7s/qGvma7maced2YrVFUGPqkgWHaPVQePRLE68YjnFQ3cTPpxhkhfSo2DXUYp8OMcchOI2RGoUKSOEnNaO8NlpWtqLhuXdaNyXR7jZjRG1EKhNIR62Emt1YWgWE1MWtph83pAVEbYgmu0QsEG7BSmiYLRbMfx2kwahGhhNTuJtDpzFDTgLmxG6jOFzIKIWmncW4HK30617GfGYBT2uoEVVGo5mI8sGPfvvxZvWytYf+1C/Lx/ZGidUloHuc2K02dFrkxE+B0IzB/LwRJDy/ShZAZP2kBJBD9qQFMO0bGS2Y+3gw+IOow6sRu8WAG+UlJMPkHZiGXlnbCfn2p+w9atG5EQwnCCHBUpQoIQEQpUQFvCvK6JZjvxqx4dhyL+4/G81f/58xo8fzw033EC3bt1YsGAB+fn5vPDCC7+4/ddff83KlStZunQpp512Gh07dmTgwIEMGTLk/7pL/5E6XvD+C+my5u/ocgCuWV7O5kFxUhy13HnJIAoKfjRTuBrHwvJRdNiZQlM6pHXaxJHL1vNhywSCjz1Ml6UlzNdmcPGOA/RP/5p5B1/kPD5j7pW57E3O47mqR7ktvJiHHXdw2qyRnObbQo/vs9i9fAotqfACN2Fc8Kk5of/qtVDdAWPhrWylL1Fs9NoJP127j2cOLkR0OcRITA7wPHUqbO6PgzAN+07m07ShvLB7IeN27yJkVXlyuoF37o1Man2H+WUL+e75jzD8Xp57+0cOrhrPG8rv8J21logNtr/+JHsi/Xh6TDcYtoa5vc7iiZlRznR9QP+L7+Gdy+GWcSezciS0ecxubxnF5FOJK38faCo92EXv1JX48LJ2zV0sXvoJb0tXkBILcU/RBMI4OEAXVllPIpt66simhEPspwvc/Rh2ouRTySPPV0JlPh3PeZarlVeIYqfPZwV0feFUvD6zQ5pNPefwhelvbXdBr52mL6AmFyxxFu5cTPsfrzQL3M6HaDs4gLTVPUyPr9dn+ntbvdyy/zsoLmOoshqeuQ2A/s1HOWXOEIq+7kLW7Juo/2I8XXba+P6iVqY+obLny+kUrM0jtcV82BXDFY4WQckh2NPN7Pge6gz9l6WSVWeSLfaVQktjKTabnyg2qjuYtpBZH+xHs5pWkXUnmcEaxWVQmQ8yOhzuBGuGUVE3EOIKrpAZfPGrKS7/AqXh+MfXryGHsBBEYEU+9oVhQU4UugYuoWJDoT2BFmuX4hgI07qJgl0ox+boY5JBmxRLJKgJ/Alqg5wobI/K5nCZK4ElCyW6s7mGE00yaJVitElR9EQccbsUJ1NYcAmZHN1EjilIdNWTSDfMYToDQYqwEZV0DPgznq+GhoGERIscRREmWcItVJKESv94CrmGjS/jQXYo7WypTWLzrgI2bulCPG4hu7COjIJ6vGmtHDhQSDDgwuP1IwyJxqNZGLqELTmMYtdQbBpyShjJFsflDdK0s4DqbZ2o2lZM68YipGarSUCw6cTTBfE0gRSyIBpdiJQoUno7ni61hHxJGLpCw+EcmnYXEAvbUGxx4lGVQz91I9zgIVaVQrgylbjPiaQI4vXJGEGrWfQGVETUgtbmJF7vRjQ50INm5zzuM4kPIqagNbpp3lLEoW1diIRtWCxmx1C1x7BY40TCNtyeIFldq9i1rZT2sI0jezvSVpGOI7cVSTHQGt1oTUnEaj1IikDKCiGS4yY5wq2BxYAWB0pSFCUrgPBqCLuAoqCZ8tZsQw5I6Ee9GM0upOQIoiRAPNtAOHXQQXdIxL0yepJEPFnGsEkYNonNXw/6FY8QEh3yv13AHGz78yUa/eUPzlgsxubNmxkzZsxfrB8zZgxr1679xdt89tlnDBgwgMcff5y8vDy6dOnCnXfeSTgc/sfu4H+Ijn9j/AsplBbh3LaVxEetod+ESTz09l5SW4D8ShpmP895GS9z5wVDqenVwsjsd5l7ygA2ciKXvwM+vGQ2wE1pc2h491Y4/xPcQejCAaxddtOttpUVxfmQXY+BzPNzagkc7Mfp35gF0sYB8PwECwcff5HyWz43/bO1OczmAa4KfkwGDezuAToWKDnE3a0vsINeTOl0O322A2uGccvE3kxXH6WFVK5+DVgyEdd9M7j2rm68OaMa3v4dM1+twYOf+cs/Z+p1fejc82Mu5I/sbR1C8M7FrB0Cn58Dt1mehLsfY+ISIL2J5h8u4dOfHuXGxSaV4XfpCzj9G7NePJXvaSGVdJoYpX5LC6mk0sJ7XMp1+usc2XqRWZSuGs5RqSNV5JFOEyFcfME5rOJkDtAFO1Ha0uLIS0/nbn0e5/IFkWen02XKFPx4GMYaxp52K7GbXubE1G+Z9eNy9lHKs0xhxwkGJPtha182S/0QS88yUyI2nYgjIswu7/M34blrplkcn/4N72ePMP2xE18Ed4AZXa9j7zXroSaHtPWdIa4QmPU0LBuN9sDD+M5Zw/mfgNTi5abnzWbr0SKYuHUDn9xawch1ETIazCI15IIRK8ysidpcyGw063DhiNIzYzlxFJpbSsipAfzJPDjdQdxi+oFtUcivEriLt7G7J4QcClh0Gmt6U9DeDFaNpACc4v4V2b0/Wxr+ejmuf7o6GEk0yhohySx6fubhRhJxzw6h0CxFEBLomF1fv6ThMVTyDCd2FEJSnCg6dbLJUf2Z4GB6f8WxRDUXKgLTq2umuel01j1kGFai6Mc6wElCpVh3Uqo78SoCnxSnQY6gI0gRFvp4Y4zJCVOiu8g2HCQbKhoGSYmCNkXYSEoU6ppkHPMm/1x8+6UY2yxtlCthcgwHPXQnGoItMR1/u4XmhlRkRSc5rxkhJJKcEaIRkyLia/Zi6AqyIpAUnXjYimzXEEEbcp6flMJG1i8byHdfn8Salf3w16Yg2uwIm4EkQG4HS5OEdigdI2oxI4JDKmq+j/TiWmRFp7khjQPbOnNwe2d85RlIkkAICTUpghFVMeIKRtSCEfhTRLCIWBCtdoSQsOW2oqSFkGRQ81qxdW2gcUchNRs649uTT7QliZbqdPI7V+Br8lJxJI/2gAtZMdDjMpn5DWTm19N4MJfCompycxtJz2zB6ozSXpWK/2AOwepUs3PriqI3ucBnR6p1IFU7oMkBUQUy2qFzK7g1pLCC1KJCVEJ095lWjINelBw/cq4frAZyqwW1wuxUS61WbBUSllaDnwPaJE1gq5CYuznnVz1G/rsOb35+Ph6P59jy6KOP/uJ9NDU1oes6WVlZf7E+KyuLurq6X7xNWVkZa9asYdeuXXz88ccsWLCADz/8kJtvvvkfu4P/ITr+jfEvJAkDTtyEPHERBzpD0xVHKWUprM4DYPDOAL173cY87uSqjflceNpcdtODdhf8xKn0vfYdXvipnbdGj2fI44sI3LuPlxjP6c+UQvopjGzIgKPnkzJkLefs7Yf70VugJZVX/A9yVf6jSOodfHLXUWbsdPPt1D18pPei11YnHB2N/wIP/bUdhNmCkdSO7POwm560fnspJ176MFPPvpcFexZDxEbh28NIu+5JfurmpYSDLCl7jAg2OFjCjHuTmft6KXQ9wIJZAd469QL6cgSAF8WNLCl7H7b2JVRzB3+41hxEu2ZnlA/GmXCAl24NcdMTLnbVT6X/1Nt5+uhThBovoDVDoyNHqN05hrxe33OIEkayEjofoqj3dOYxgf6nbeEUvZxGJZUlTMRLKz3ZhUKcvmxlPQMZxAbUs1ZwEzV8cXQKsYUvM9i3j0w6IWPwiXMM52+pYE+/JCg6QicUHmANlp2lZrWoxuif+Slct8yMRgOkmhwIuk2G2hfngi3Cqh/voezqQ+D9HgJu2N+FuelL2JVugeteBWeIe7JuZyQrOPXJu3lMX8TiWY1w/hKiqVfw3mUuSg6aVIq5owZyznOwo4uJJps/zQymeOHOEKmVLhxh86nd/Rg8MtPGmvgoSg5Barc1BCqHYcjQQioexXSReNpAVyTKAyegxBPOAU8LKQ257C1Jo1tzI1v7OvllR9k/SfovcHf14xzeX0MeYaVRjhBFR0FCxaQdyEhYkdEkgyShoklmNzXTsCfYuQINHWvC2iAjYRMyfimGDQshKY7rzwaLZAFRdDNiNuH99QobISlOSIJWOUaqYaOznoxTyKRLMhn2OPvDCtWWdrINB2FJZ48SwN/mpNVvwSPFzWQ2OYYNhXTDRpqhEpIUUrBiSNAqxYjKOqmGDWfieSUJFQWJDrodAyiTo4QlnR66k+I8H0crM7A7OqFYDBSLQVq6j/aQ06QzRFWCfhfuVhd6XMZb2Ig1M0CsxoMVk9/ba8Ae3AcKSUlrxZvXjOSKQZtqpqFFBVKLFUuKSVug3oXQZLPz2m5DsRjkFtVwYHtn0jJbCAecOJLb6Tpih+nhFWaymqFZaNvdgaSOjcgWHdkVQxgSFk8YyR43bQbuKIRVEBI5I/YSrfES9bnYumwAba1uuvQ4TFHpUdIKGmg6ms3+LV0xDJn9h3LxBa0U57XS3OoiHFUYfco27ClBwk3J+Bu8pBfXYmgKRqsTWdWJtSQh4jK2TD+yM4YkJapUQ0I/lIpS2Gr6imtcyJ6oGVlsi4MuI1IjSK1W0/7R5MQIWdHDViwpISzNESwpUYTd9A9rO7LZ8yv6dwEMQ8L4K8/uz5crKyv/Aktms/0lXvGvJUl/5QUW4m/W/ekxDCRJ4q233sLjMf3c8+fP5+KLL+a5557D4XD84u3+/6rjHd5/IX227Fn44wXIHh8b7lpJh4eu59Q7zsK45g06TJ0O6U0coYjTXs2n+Jr72Ecp57d/S0YD9GE7y5ouhz7bWTPMbBweoCunvFDKhlvXcbj8FJ6aKlOXZKK2CtqbWbh3IbR5uKN0IsWLRkPpPqpDXTj8xVTGvJvG4neWc0uPydw75GxmLWqCLvv5gVOQ58xkbuM8pk7oTuGYJTzJNBY8XcZrA7uDIXOKthreuoLBn2ZSTzYhl9lpvvmxZOZ++wPTzxnB+4MK+XBYDr/rfD+V5BNywZJVr7OiYRz03MWn58EtL+hcc+IttO/tx6nfw5nrfMgIuvX8gJ6XzuLZsqcY9QM8+tlPZFHHPkrJ6fUtApkMGhjIemK5TdCUzvT61znx9itoVFJ5jpvpwS76s5le7OSy59PIfn00KbRymE4437yQE6qaubvjJAbvCHGrdR7J+Hmheg4xrDT2qyCECyO3joL9TjbTHxZPYu/4H6HnbsiqIzRjIbxxpTlFN3w1+Lym/6J0H4RcDD/xSfJWlpgt2s39ofMhYq9NoOf0a3hrUAnlvQI8+mQTp2+rxxKxcKPyHF89uop3/RMA8CfDFdoHXPWmaa3dMAhstz5OyGl2vYvL4MI3XVR3gGCXWkaugMfvMt9ncdX8opFXD6NDtYnZLd2URJr5rwLgk/OhuPRLxm6qYVcPeP78XI4UmSlvnw7OoHTfr3xwGPIvL8f1T1eyUImiH/Pe5hhO3FixolAvtRNFP+blzTYcVCkhDARWIWMVZkHsTXRULchkCPNL2J24XwsyHmHFhUoX3U224cRA4BZWcgwnPjlKndyORZgDcgClNolct0ZjxMLeBGO3SY6iYRY9e5TWY4lcubqddMNOCI1KOcQRpZ1qOZwIx5DxCJU+8WQGSDbSDStxDFKFDQFUKhF8skaBYSPFUIkDW8pTcDpipGX62Lu5FF+jF9UaR4srBANOhJBoqEujfH8BoRY3geo06td0RRgyeqsDSdFJLWhkxOQv6HvrV9hSQjQvLzXtCzVJSBUuiFpAMdDb7Gg1HiJH0olWp2AkPLT2pDA9Bu7G7Q3S1uwh2JyMFrITDzgwYhb0qEq4yY01yQzMQBKIuIwetKM1JaG3OEAWiFYHQpcw/DbiLS7CjclU7uiERdVJcrdTXZ6LEBJtdamsXt6PnXsL2HOgAynJYXQBNQ1uuhTXcvroLai2GEc3dKXhiDnEF2lzHTutL9s1LMlh7PktyK4YRtS0ThC2IDXbTP+uYoDVQMoJmd1fbwyjWwCRGUFqtoEjjvDGkJIjGDFz8E1oFrPAD1uQIjJSTMJ/MPsY//lX018TZP4sWjg5Ofkvlv+q4E1PT0dRlL/p5jY0NPxN1/dn5eTkkJeXd6zYBejWrRtCCKqqqv5BO/efo3+7b4xVq1Zx7rnnkpubiyRJfPLJJ39xvRCC+++/n9zcXBwOByNHjmT37t1/sU00GmXKlCmkp6fjcrk477zz/ubN4fP5uOqqq46dhrjqqqtobW395+3YgI1c1v45XPwR3PY0V31bT1Y9eC78A/KcmWxMKWFuYA75d0yl6dovWPXdg+RRxYfOs+g6YTrtuJic/hAbnT2Y8CLcVjqJJS+vo//ldzCGbyi+dhY51JgFzbA13DstjVtiS3iy21n8vv5FCLlYdGuM613P8sn5MPWyk3ixyyjY3J+H0yfyfqcB+L6/hJk8wppZK5hx8GOkG15iIwNYuPIDaqKd8NDGml5eZl/Tibo5z3Fw37ksYzQPhx6mrH4Iz9om8o16CvO0mZQ+M4bhZ8xkXvB+9m+/hE6HYXqvqxl5+j3cM/ACuh4AnrgTnr6NsMNE9957ZwoT5yexMOsSZqhzMGSTH/tal8HUk80pLGfcxxq/e83CFT9WsJueaKjUdA4hMhtxPzGRZ7iNVFo4heV04QApG0rgrKXUXb2M4fMGEcTNN1c2QXIbitChdB/PlC2g804bN+bdx7jG5WTMmcSt2xKoGENm0E8yPH4X3eafaRa5B7oQcgGF5bw2zmH6RVpSzUSM7nsgamfXN3dweEQl83qPYdX4g1Scu409zz8LssFZ00dRuD4bxnzD+hNsrLCfxCE6c5ASLus9k/QKF6O8H/O2egkf3nOAsBPUGHSdeAflhSZQYdlo86GKD4PrUA7OkFkfuiU/3hYJudtuPCd/wcGzDnCSuprhqyCtxbQV/zjERAmHVpxNnZHL0IJ3mfx6kK19TatEdr0JbPhVddzS8Jupg2ElSaj4JY2ApNEumV5dl7Bgx7QXtElRAph8255xLwKOsXJ1BB6hHiM2yEj0j3vwJCgMITSq5BA+KcpBJUi7FE8MuUGlHETGDJ+IJIpqq5BxWHV+CBp8ZKkjKhk4ElYHmzBjh62YNoujSogySwgFieREAa0jsKFgQ8IuZEoMGyoSujAH3mxCwSYkOiUsEw6h0Jiwc6QpghE9a+jd5wAlw3ZR1PUo+V0qcThNRJkQEorFoLBTNakZrdhcEcJ+B+GAk8qNnalZ35lgbSp6zAIGiKAVS3KYUIubeJsZ5au3OtAbXejNLiTFwIjLtFVk0LA3n1i7DU+2D1tSmORsH97sZpJTzIJf6DKRJjcIUOwaEb+TeERFj6iIuEKsziyKjIhKtN6DVush3uxCq/ESrUkh5nMRaPDQVJ/Kzl1FfLyxiENlOVQcymf5N+aQbmFuC5071uOwxzjrlB2UFDbx/ZZCXvx8AN99N4BN63sSCriQZEGgwUOk1QVAPGAHQyLucxKr9ZjFri4jGp3otW5Emx1UgbAl4sJTohCVUWqsUJYMdh2hmL5mbDpqh1aUQh9KWgjSwwhvzPQGGxKVewp/vYMjoX/E0JrVaqV///4sW7bsL9YvW7bsvxxCGzp0KDU1NQSDwWPrDhw4gCzLdOjQ4X+/I//h+rcreEOhEH369GHhwoW/eP3jjz/O/PnzWbhwIRs3biQ7O5vRo0cTCASObTN16lQ+/vhj3n33XdasWUMwGOScc85B/zPM0RVXXMG2bdv4+uuv+frrr9m2bRtXXXXVP22/fvxqDu87zuURdTq8ei3TThrHZwu/ZWqf6+CWZznxBzczlu5kex9oIJOkAKTRwsV/cPNYyo3soieb6U/mQzfS78JZBFQHj43PgNXDKaOYhXVz6M8WOk2dAj+M4s6s6fgGHeCOt2t5eOsHMGwNOZ8N4M3WKbgD0GttEjsGhml/ezwbX3qRsjGH+GLeSiytLlJp4d6zh7Di4ARCB/oyN+dqcm+eiZMQw/7QmVvvyiN7/uUcKoEijvBUp/O58wlow0O/zVD1/CP0vnki6RMfYeIS0Prspe9WCKeGuSnjQR59qJ2IDXjsbvaonfF74PYXItw7x2yG7usbZmb6HczsOJH5i/cTP3ktU+ar1JHNIxd0g/M+4/DQOnqxkybSsREhKCVRpeTQKxEF7D6caQZMCBnqs8j+sRi8rZz+Y5APuRg0K1LYwTfWUWaFl1tL7j1T+CpjACtmreHzE/L5A9eC18eRwXUQdhCZ9gKc9xn030Lm0I9BFlyze6M5sGbRzdCG706FiS/SU9vP/e/uZ/rKDeQ/fDUFRxVO2BuD618hpXAb7w8qBCHjxUcftnMen3Hr7u9ZlVXKxIJZ9HzoAioKYcbEYs6Nfsv4bVu49yGFocEdOMLgDpg83YJy0/aw9Gzosx0CIhlnajV7RA9+ZAi92clOerFoWoh9pdCYCQWVZrhdmwey/e3s3XYZX45I4qSfgKkLsEXM+/pVdZzS8JtJB+rkdqwJ2oFPihGS4vikqBkeIel4hA0XKjahmHgxoaBLgrAUJyhpSEj4pCiaZFAth9ilBIhKOh0NN2oimMKCTJQ/ba8KmVzDiU2Yg29pwo6ERLMc4/VwgCNygCShkixUrMjEMVCQ8BqmHeFnkgOAioySGE4DTPQZBlYkQggCGFQaOk1ylKikU6G0E5B0mqU4lUo7LiFzkkuiQ3qYwuJKsorqCDe7ySipIaNnOcmpfrJymsjObaSgYzWaZiHQlkTtkVwiIQdWewyrPUYk6CTQlIwr14dkiyOpBo3bOmJzRVDzfSaCSzFASMjOGMigOGIIIREJOTB0GdUVwYgrNJVlY0uKkFZQjyO5HUd2K47MNmRbHNmm4fC0Y7FrRBqTzThii45si6OmB5FVnbayLPxlmRgRFS1oI+p3oMcthEJOkpMiXD58H52La7A7ImRltFLcqYbCTmZj6PsDGby2rDebDmQjSVBgM/AkRSnIr6e2OpNASzJazPxBI3QZQ7MQrkukujljKN4wWONg1dFaXSa7VzO7okLBtC602k12cH4AI01DiiqIpDhGVgyR2w5WA1KiGE4DJCAqQURh08buv/oxIsTfFrtC/O/Lq2nTpvHSSy/xyiuvsHfvXm6//XYqKiqYNGkSAPfccw9XX331se2vuOIK0tLSuO6669izZw+rVq1i+vTpXH/99cftDL+gf7tvjDPPPJMzzzzzF68TQrBgwQLuvfdeLrzwQgBee+01srKyePvtt7nxxhtpa2vj5Zdf5o033uC0004D4M033yQ/P5/vvvuO008/nb179/L111+zbt06Bg0ypz2XLFnC4MGD2b9/P127dv2H71fj9V+wuekcLkxfwocDJjD/6295d5zEAsst8M5VfDehDOp7cdrBCuq+HUjXA9BOiB/FUO5+bTXkVxL4/Arcoz/i+ZwL8X7fj7tPmAHDDL5onceoo9C5QysYbt6dWsdlP5UyJ2c8hXkQH7GGak5Eq4ZR3o/ZkHcBDXkaA9c4eOdy6D7kZcq18WSoDWx740lSW2BEKYzsvISR2/PxbTgDLizG/s2lRK67hWW0c9mWg5x5qJrX8NBCKiknLaX5rnlkZOyHynzuVB6nz4srWR8ewe18QvGOdLZf3oSxrxs/9VE51BncwSzKOpk1JMWVLJkRofSDXlyz2EHdjVk8VfkkYno1cbwUT3uTwjevpM+Vz/LTH+fRd/wtBEjCSyuedo23nWPx48GLj96t5fD5tXjyK01v7bA1ZjDEJR+AK8Rdc6+D6M1w5RsMe/oSIk+vZCt9GZzeRB7V/LHyVkrzlzH+y3ruPPtOnvj4R9jTDXvpPh65qJTLH+5EUd+PwBKnfdE0nJf9AfZ2h109YORKeHGiOdBWug/6bKdocXdo9UJLKm2nbGbrxhMYyUz46Xxe6DQQW1IT1/MK0e+n4eixmMN0YmjxD9z0wil8N0pBU8bw/eRWZt8O757Vm4ZMcIbNbuyebqbFYcMgyE46RK/tJTT3gZKDUN3Fxrrqi4jkhdE1B323mkEWObWw6UQ4eRUcdjix6HD2umZ25aTR8vpUGjrDxdqvOLAGf6I0/PW64/qnqm88g/1KiBRhwy4Uk7uLhiygULhpl+JEiROXBAV6EnYUypQAKgpJwkKqsKFJBo1yBAOB9mdUB4BauZ0C3UWzHCWIRrphp0mOoGMgJBm3YUFBJpzw+5boNuplc9jNbag4hUKWUIkiCEk6EhJlluAxj7FPjqEI6RgZwiYUVGRapCgx2aCFGC5hoaNhw484FmThNhSSkWnFwC4UfFIcXZfJzWpBi6qo9hjxiBUjruDq1EjewINImwTtASd2Z4RwbTqe1DZUm0a738XB3cVUVqeRkRZg6Bk/AZgBELY4WUMOEC5Pw2j+kwVA6DLRqhTU5AiyTSO9RyVpRhWBoxm0VaXjq0sl3G5HdcSIhuxkda1CxCyEm90AGHGZWLsdxaqZwRV2DQRoLS4URwzZrhFN0BlkRSDJBu2+JCxWjbR0Hy0+Nx+u6kam1aBn53rimkJ5czabthcBoGEGfKRi/nhwO+OEIypL15fgsQiczgjdB+4xLRjtNqzuMGpyO9YCH1h1075gMxD1LmRrHNkdgYjFRKXpEsiY0ck2A+EwkNplhCuOkSSQAxJaFoCBpU0gRSWERZihHGHBj01W+O9tsv9wCV1CyNLfrPvf6tJLL6W5uZkHH3yQ2tpaevbsydKlSyksNLvWtbW1VFRUHNs+KSmJZcuWMWXKFAYMGEBaWhrjxo1jzpw5/7cd+g/Vf9Q3xpEjR6irq/sLrIfNZmPEiBHHsB6bN29G07S/2CY3N5eePXse2+ann37C4/EcK3YBTjrpJDwez3+JBwHTKvHXCJL/idq/HUvWy+cw99FW3glOoCETpo8bwGV7d5hdweGrSH3ucvyXL4UuBxg+ZhbNTz/ALP0xWq//2ISt5lWzqydQn015Uz8yT30HDndiW0oBD8yGswMrodXLnrce4bKFGTydNN6ssUbspC9bmdU+n/y8dQy//QIe+PonBrCR0mEvU1YMld+O5x71AVpJQZ/yArt7wshLJ/P7QeeAO8Bd8wQ3D76S4bnvYr9nNufzKUf6+XhjnI1DtSeTRzU3XnS6aSI93IlmuxNavZxx9wjmOybzBedAYTlNpOMOwuCzZnHqd1B568cY5yxlRy94fnRn8pf24kgR7LpxDZuW38Vtz0DfL/KQMcihhpGdl/Bx9RQGX3QHLaSSseQCXIR4zXkJg1nHpPo/ci5fmD6IRCxb4Jo/wrY+kNrCtxkn8JVzBJ1HLYa7H+NgJwvlT89n2acL+SMXUHHH++yiB6flv8r5fApVeSQR4LELukKXA3x3URszV6+m6OyFZnxZfiWzn22h5pvroNdOYmtHmV6Dsk7UuZJNltiqk3njgiSTF+Zt5cDiJ1lxZSXPcxPrb9zOE0mTmM0DNJLJJ7dWUE4hH7dez+wRp/DN6eZZ/TNZyhXPeXn8qVouS3qZ07+Bc76AoiPmbjrDsMC4HelACWGHORzZ7gJNcxFwg6fewZC1Jp2h+LCJL7viLfMpuUKgqYAao2f0IF0OmOSHX13HLQ3/J/29n0299CSCCYtBvRwmTJx2KY4LlVYpRgjtWBJaQNY4pPhRUcg07EQkHaewoAoZRZhWhDgGOgZaopC0CYWIpBOS4riFiktYUJEJShoGgiolTFDSUIWMjqBGiZJv2DnFcKMg0S7pVMhRWqU4KcJCIEGDMCToqicTQkOXBKmGDb+k4RUmqswpLLiEhXzdQZJQCGLgQCbdUHEZCt1tEq5EN/lnqFp12EJ1bSqHDnSk4Ug2gaZk2ltd6AE7lqQIWd0rcKcECAedJKf4sag6Lm+Q9A6N9Bywh1NPX8+I81aT0qkeI6ZgBK0YTS4C+3JoOphLtNaD0W5FsujE/Q5aj2bRuLOAxm0dqdtahOZ3kJTXQqDZTV11JikZPmrLclFtGkjQWp5BPGKltSYNWREoFp1gowdFjRNpSKZ5Xwez2LXGiTYn4UwJ4khux+oOY/OGMHSZSNBB10F7GX3+SgZ3aiE9OUokYsWdHALAZjXwxxR6JMc5v7SBsaO3MbBrHRbF4Ms2QT06SXadcNiOrzaVeFTFnmGmxQGIqAURtCLa7BgVHvh5iM4WN1FlQRXa7GYghidqYsxUEHYD3SswbKBlCCRNoLQLhAK6RyBUkDQJbW8WK9X6f85B9N/oH8XhBZg8eTJHjx4lGo2yefNmhg8ffuy6V199lRUrVvzF9qWlpSxbtoz29nYqKyt58sknj3d3/wv9R31j/Gz2/iWsR3l5+bFtrFYrKSkpf7PNz7evq6sjM/Nvc7gzMzP/SzwIwKOPPsoDDzzwv37ezzx7iHSaWHXgJGQDTtwIk7WPiLxxB68v3ICBTOlGkL84C1bFaGg4jd4nvsxiXoYdveC5m5l38EWi448yeFYnQulhPIsvZ4ULRu7+kYO58NJZI7DoI8ibtoV3yKEPX3PbB/DaJS5O8JfRnixo334S054SLJnRhfH1T/J89SNM7Xc3GTuv4fAYK9fzCn/kAsbvrOIPF13BrTzNH88YzgKmUkMu9552LQ9nvcWz+xaSXwlXdZwLgd1gqeS1jDBpq3vw1aLPcLx5EWctheWPfUuXZ58na8oy/jhJ41p+YJlyF5QV4w7CiTMvoM1jnp4f8iOU7oePLoLI2mGcP+o2fhw1hCEzL4VzNtO1TGPLoBiXsICFW5/kmr63w+hlWLb15PIT3sF63yxIbcY17EfIroN+m2HNMNxLLjtW1Y2p3870rDs58+sgnLCdEnEI6YWb2Dd5KR6687A+G0OGm56HBTcPI3ReCd34nisWuyFb47Qv7TB6NWzuT1WkmA7VPua9vwmGt0Cf7VjTm2j86Vy0ZMideQvUZRO68S281FLHRg5RwjB1AScuHsJPN+5kM/3pw3bsRFnDMEJNBRSlf0mO9xXeU69n4wA4ZTk0bD6LaDE8NAsa4+Np6mJGLKe2QGtWlMg5q3iGa5nx3GFuvKuYYZRRruWjqiFy1EqaYqWktoBsmENro5abxW7/zfDlWfC7t2HFSTmUHIQD3c3356+LaOA4peH/qL/ns2lAPJODSpiwFEdDxy1UhEQizUymWTITy+IYqKiAyezVEyxeGYk22eyseg0rdhR8icAHXTJDLKLoqMhkGDaikoGKhIxEklAJE0dFIUPYaZfi+BKDSA2yQjZWCgwbe5UQmmTQOZ5EpRylXg6jIpOpO4hKgmRhRh/Xy2EEgjYphgSkCCvphkpHi0RcyDTo4MdABgolhbguaMLAjoIuBCoSClDV4sDic9Crr4FsMbBY44i4ecpetuq4UgMYiRS2eNSkH7T7nciygc0ZIRJw0LapBG9uM8KQqdnZkfqqTDoUVxMPW5Fkc8BMj6o4UoI4M9swNIXKzZ05sr6UDj2Oktu9gsziWporMikZsB9ds9B0OAddU/BkteJOb8OeGoAW9zEsWKjBixFXCJZnoFg1Im0uLPYY7W2mxxZJEAk5OLynE1VlebS0eKiqSybZFaOy1kNlrYeU5Ci9ux9l195CqvxWCoTE6h97EYwoJNl1LsiIMeLU1TiS22mpTSM1rwlXhh9JElg7NUFKBNpsxI6mEmly4+5dheTUkGIK2HUwAJsOFgORrCGcBsJ8WyFsYNjMHx6mU0CYh78sIekCYQHDKShf0+1XDZz4WSalQf6bdcf1r6X/qIL3Z/1vsB7/1Ta/tP3/637uuecepk2bduyy3+8nP/+/j6N6pmAsd0+OQZHO/umP0/XLzqAXQruDdQvfZB/nMX/DOzRe+SGV5PNV9GZCLvho8BnE6/N4WF4CugVbFKb/9D1MrGbho7/jq3u2EcLFCppoWTqUSekP8yxTmDzfxmZHDgXlObz72DKuecbD54VPcWDsXu7wzIElo6FI4Y19j3Dth7Blx2ME73iYLziPFlKZPTGP9y+G6yKP8dWXC7lQ/5b4uCguQuRQQ8Ufp1I0+2tGvHoGB1NmUJsDA/vdghcfO7ZeQ+o+yKkxU8DWHh3DyilRps4dTechr7Ho5FO4RV8EW0+iKR223vM1KxjBsxPsGLLE4wsriGKjSc+iltupjXak+yOzOX/GrXBpBf2ayxGpLfRMfhSDEDfnPAU5cBFvY33wW4Z96THblStGwoqRHJ63iDe4ksI1+VyX8yisG8y87I/g6noCVhsB0nlqckegIzIGedVmsu4LNwtKMHiofiHv5nTlyI3LyKMaa70XwxpHTgrQ4dxF4AqxvlsygyZeb3LBhqwl4ysNUlox7DGWdezK6cEmzl3q4JFx1zPz5XoYuYIVNx6gho5MftgLwdm8/+hWGvwl2ATsWHMT131bgzsdDt26lJyas8jUm1mblQbbPezvB74UePt30K3Xe3TcdymbskfzxF06tzyt0EXZi0Kc1o6t2DCw7C6FHk00paeTX2nCJGwR07ZcmW8GUdhP/ZKcg2ezdih02Q/uU35lOwP8MpXhOKXhf6y/57Opl57EFsVPHAM5kULmk6I4sRyzJKjIJAsrFmRiGESJ48ZKRNKPFbOKMJPYVCGjJ4bP2onjFlbcQkVHoCDTJkWIynrCA2whKGnoGKhCQpPMzrCKTJMc5WjcgiNxgtJA0PxnnOBkYUWTjGMECANBcsLr6xUqqpCoUiL0lq1YFEFUk5ERZKBgAayyoF2XSEICw4IBeJHZL0dxGjITT6zA5oziq0/BatPQIlac3hCyJY5ijWNzRYgGHUTb7dicEWTZIDmzDVtyiFCThz3buiLvEHQsqcDQFTr1OILN3Y5i0xCGRKgyjWBTMk1VGag2Dae7HVnRUW0aB9Z3oz3kwGY3sV5tzR5UNY6ixomGbaQVNGJNbqdhbz6O5Hac6X5C1anocZlY2Iq/KZf2oBOLRUex6MSiKulGI/Goys7N3ahp8NASstCmSzSjUx+FdAPG5ITJTG8jO7+Bjds6UZQaISunieEXrEKxathSQhxc0Zua8hxOGLOJjN7lxHwujLiCbIsjohakFgcipiDiihlOkWqGI4igFcIqUkrYpEkkawiHgbCZAAY5Brrt50IXkEgkqknm9Rpm1HKb4L0PhoNy5B956PzPJCRz+et1x/Uvpf+ogjc728Sh1NXVkZPzJ/D0n2M9srOzicVi+Hy+v+jyNjQ0HJuEzM7Opr7+b0+LNDY2/pd4EDDtE/8vxt5fq0M1MGsOvHspXSsiPF1wAbf9VAuOMCNfMxi5w2DekyMoopCLbxnJ8wu3MHlSL3aeAQ8/WwvXNcGO3hTUQc055TzMvVyeY+PMWU5q5rxAK15GFs+DOb9jfsFW1kw7wlf1PXg4PIfL3h8IZ3/JufO68dhYlUVNszhzwkN8xZkMZz7O6hMYcMUfsTe7uD7tFR6vfYpXXlyH9+uTWGUfyPqB8E3+EPLJ545bCzn9mWcpGL6bgrJyjrjPoPNZC+ic1kLDzIWc2wTlLz5M790O9vSAA8unMarjK7wqrqc2BzpvHMBFX/bgmcdUtAFW8lhGdPUZpJ1czfbeeXw8pZpTXy/gs/PA4o2SQw3JtjYejT7AtXMXc+LiAczuN5YH9r7LkW4Rijb056a10NPYDd1VMGzQ5uHls7M4f/CjpMWC5CFz/46Pib95K0K/m9ociY0DYPWgViQMLucdJrGYfCp5j0sp+mEEb1yrM5w15FHNmhOSOPOO0VTmj8aa+y3zxhUw/eiHLIpOJeyALt0+5uxniuGFm9ijlNL9h2zIr8R37wukvHk5ypV1IBusiI1hZvMMqL4ZQi4Gsp5NnAjTP+L9Fc8zzreMNSlDyTzkoiUNvnnwR06fcQq9l4ahtp5Ph2Yx5hvYVexkWFkNr43OJacWPup+KX2D0HsZ3PK0gtXhpzLYjUNJJQCk16oc6Qh5B9IxJHCEofdO0/vrCENelWlzWG89G9ljFvv12f+rt/c/Tr9kYThuafgf6+/5bIogaJXNrqojQWOQE8NkuiTIEk6apQhKoqjVEhiwMHEcia+WFMOGDDTIEWIJq0GqYaNFjqKhE0iwWBUkcgwn+5VWPMJm2hhQCEkaNUoYnxQl1bBRqLvwyTFa5Th2w0pn3UVA0hEIAhKkCBsS0CbF8Esx0oQdj2ElKhl00O20S+aAU0fdQQsQjsqUSTGKsFKcEsVh1whHVGrabLgAq5DRgXopjiokBieZ/5vDezpRVZ1BVkYrWVH1GFPWleYn3OY0I4eTQ7Q1eknJ8qHHZaJ+F5X7CrAoBo3NyQzvexiLI4aIy0T9TiK+JIQhUbO/gHDIjmo1i92Q38VHXwxEFxI2WSCALvmtdO56hIbaDLJyG3CnBEhO9SOrcRS7hievmYZDuTQczSauKaRmt6DaY1QfyWX1+i7UazK9s9pJ8waoOJJHZnYzqaltpKa24W9LorbBi25IbG6zc1p+gBMG7CE1txlbUoTrbv4Uf6OXeMyCM6sVa7YfrHG6jtnKgWUnsPGLwUiSoO+pm/EMOILkiINqgGIgAWrUYp5O0mVEsgaOAFJUASWBT3MYCCsYKkhx0J1mgStrAt1uVr2SLiAxqwYgxc3//1Zdg9/gxM8vWRj+XkvDcf3z9B/1ihQVFZGdnf0XWI9YLMbKlSuPFbP9+/dHVdW/2Ka2tpZdu3Yd22bw4MG0tbWxYcOGY9usX7+etra2f3hG9YX6p5DRwKfTDvPjd/dRug9WzVkGo5dx68Unc8+TGufxGZXkw83PMfnNNp5ZtIcMGiC/kg8P3kPbO5M4P7qU3JUl3LTARn4loFswkHiem2B7H56Z1QZrh9Bl5rWM+gF49hbWjytndvHVrBimcsHjJTSlw1ebfs/ldwzgE86n/adTqCYPPjuP57iZETnvEMHGxbnP0PD11QTdIGNw+X3d+P0zbSxjNN+NUiCzkfQmYHdPaMjku0e+R777YYra67m5ZBrdJtzOwRIY+pNg0HqTIlAR6IHlsemMfqIP+VSyr3I01+zZwJAP8nh9ip9TX8/jh1HQ5QAMWW6jZd8Qqpv68NzXn3Ni+244ZTkPrPwePjuPd8ruBUeYnjdPghO2m+fpe+7m8ysCXM47pG0zz8fbKzIhKcBn50F0yRRyB33M2LQ/8CC/ZyJL8L95M88G7+EuHqf7CyNYNtqM4V3FcAwknITY/OTb9LhtAvPGFXAH8zn43iwmyc9z+5oNdGcPNU29ma3MppR9ULqPO+9NJeX90dB7J6fdOhZsEUZ2XkJzmuC1+8pZ1dvL61zDNvowNfY868b4eTLlei59xUWnMrNB3Ykynro6DQrLOeLKoum8tdRnm8XppwNyAVgzFGRFY3sf2HfJTnCEcRPAnVRLMm2oIZVwTiu5tSaOTLNCbQ7HrA0VhWY92e4yMWfpTabV+bNLfs084T9TXPkFSsPf9832/PPPU1RUhN1up3///qxevfof/GT/M9Sc8NXKSAQkDf3nOCsgQIxGKZzo/kJU0nElbA0eYaVNMoMe3MKCP+HHtSYqkYhkhlH8HC7RLsXREciAXSho6AlurwUZ6RgDWEhQrYTRErdrkeI4kPBLGj5ZwykU2qU4bkOlSE+iu55CaqLgdgoLgURBfkQJEZR0mqQ4tejYkWlHUO+3IoREe0TBZwjcqkGOM06qRRBFICGxLihxuCyXhoYUIlEL0aiK1R4jGrYRDjrx16egqDqqPYa/yUOSN0hKx3o8BU34GzyEgmY4RZcuFRiagtAlYgEH8ahKqMVNNOCkuSGFPXs6sWVzKd98MZRwyEGKM44moFdJPaWFLZTXJLN9W1fSMlvIKqozKQ3e0DEMmS25HZsjyqYNPfC3ugkHnezf2hVfi4fOBT5ybAaBkJXl+7N472AKR8ryaGpKwe0Jkp7p46zzV3H5jZ/xwA3LOHHodtqDTgxdRpINUgccocOgAxSfvRlbzzqk1HaIWajdVMzu7V0p6naUjJwmgk3JxBvd5pBaSDW5tFYDqXMLcm4AXCZTGYtZ6NJqBVkgGZLp21UA2ezgCgUMq1n0/rkkQyDp5s0lzfxh9VvI0KVfXI7rX0v/di2SYDDIoUOHjl0+cuQI27ZtIzU1lYKCAqZOncojjzxC586d6dy5M4888ghOp5MrrrgCAI/Hw/jx47njjjtIS0sjNTWVO++8k169eh2jNnTr1o0zzjiDCRMmsHjxYgAmTpzIOeec808hNLyoXo9t9UB618Ib11fQBy/bPr6fC1Og9cr1dL3/Ct68sQO8kc4bj+xD3tqHW37cBt0PcXHfD8BTivGH8awaDiPzvqZh6xm8dlYGtmUPsFC8z/vjvJzCcuhi4eC09RTSCFJ/3PMnMCIbRuqrOXzXGu4VZUif3MqnI3ox5fZOHOoMn1TcQ+C6FmQMRk66nNOmP8r9va/k/JVwcZ9Z3B+YQ+7vJ/HQnLsR977ALGkOp32Vgnvik0zLu4MLk6tYyUhGvnoqrz94iFOXwrdjJIL5rTDvcnr0gcGX3M4f1zxFHZcz+YY7SJv5JDunQOjGtxjGWxzc+jSfnQeXv2PCFBxhGFb6MkfoaKYmbBxA4JOrcV/8B76ZsY2ZO7/k815FnPtpMbGxXxHGQQwVGxGcr40DyeDwCQG27rmHdWe08sTRt7mfGRQl53ONZQkzeZQFu1/kgMssMJ9beIgJN5/AJdJ7fM+p9GQ3p80YQ2jug7gevo3X7s2nnmy+/PRFzs3/gcP92tjcr5UWTqd7Cdx4Xx7vn/wi54++Be9RLw3jVpC5tD9PP3OY23aX0jzoIA7CGGtO5sAwld/xFnvozqGkEsK4yFzZjX2lcKgzhB2w+4sZFMpgfDKNVVfBKQ8PocjfzMHUNKLm4DX5lVBbGuZ09RPW1F5C/5w1RLETxUY5hWguDWurl4ZMqCsJMuqzJKyaOSNpyOZvhIZM8/EADpZA0VHQLb/y+PPP0pW/9ez+HR7e9957j6lTp/L8888zdOhQFi9ezJlnnsmePXsoKPi1jcn/2mqWo7iFioEgIGk0yRHswuy6JgsrQUkjVdhpkSJ4hY1WKUqGcFCoO1CRCUgatbI5dPazL9dAHAuPcArTGtFOHL8UO2aPcGBBS9gX0g37sQE2E4kWRUYiXdhplCP40XAJC0Gi6LJpuYgrBkV6EiHiSEiJgbo47ZIg3bCiCplaOYKChEMoCZ6wRKVusL5BptSw4EeHmEweMmnuGEk+09rQ3SaRlhKkscVNVasN1ZJEpi+ZdHsTsqLTUp+KxaKTnN5GpN2ON7OVqN+JMCTimkrHruW0NXko7FNGPKKitduwedoJt7kQhsT29b1p8bkpa3ARMSDHGWfLli5kpgbp3qWNiqpMttc7SVMEsmxg6DIWm4bFGices/DTV0PI7VBHTnENFmuc/ifuIRqxcmB3J1SLjs2q0eJzU5Dl50C1hzZ0WmSNI3VuVEWwvyIFRRJ0q0+lz6BdKBYdQ1eorsgm0JZElxMOkhyXsQyoQQonjr+IWbjnDt7PuGvWImy6GYccUUCTEW3mZ4akS9DoRMpoN7u7lS4kZ8zs7CoGImAzyRXWKJIGkmx2eWXjT+9JQ034eFXTzmCoEkok0e3d76VKDvJb6HiH999D/3YF76ZNmxg1atSxyz/70q655hpeffVV7rrrLsLhMJMnT8bn8zFo0CC+/fZb3G73sds89dRTWCwWxo0bRzgc5tRTT+XVV19FUf70BfrWW29x6623HqM5nHfeef8l+/f/KhtRNveDaz4Kct/UVDgvyCNTyhj1cid20ZNz7p/DQ/c8BDct5qqF5/F+F5h+SwFdiTCQJnr32IX8u9cZ6fHzjHQL2Zd8y1UTxyBPeh5evZbzP3FiPT3KhGndWfJ2PV/Zrqdz6UK+6XUatz+ts/HFPajP3sO+KU/QDSg7bzdjs9fw0sAreebbL6ko2It4aDaWKfP5vfMeUndD50PA3Lu5/8mJJuTVGWLpJ0t4+MBB3hp4Bud3+4q+rKTflGsZduJK3j15BH0+KuHM8yYxLbyI+btfwfdMLdYX5vH8oacoCoN1XT+MkxaxfhBckfMET1Y8bTKB90F5Iay/aQudlvUjOno1H3ER88R02sYl00Q6xY7FUJlP7NOzoOgZStlHxdgIBasHYe25i29S+nN6+2roVQrpTRROuo/iU7/m4ge7w4g41/MKBTvPZf9kHwtmRLlz7vWES+C5ma08+GQqbvxs4kRm8iieH/pz/9xOXEo+r96bzJ28SBFHODK2iDp+oJzu9GUrLaQyKPMInL2Jy169luZlC7np8btYy1C+OWsMOhYofZbvuZgSDnKgK9zAcl7jag6E+pLSCpJhhkqoMdNPq6lmczO7DvZ3MQfLXrsaBm1Io8sB88dAQwYUly7FX3sWn+ecQ/ecLdiIsp0TGMUP3DYzk1seUVHiKiEPoCVRn21GNyuXvEPtB5dTYM54sre7mZlRl23SGyz6f/0+/qdK/wXu7t9haZg/fz7jx4/nhhtuAGDBggV88803vPDCC/9lxv3/X5Vm2DiotJEszIEzI9HhNSTwE8Psv5qX6yQzBlcXgkolQhyDlESwhCYZBCQNGe0vwiNsmJgzp7AcsyLokiAuDHroLjSgSdKIy0Yijtj8fHYKC/mG+cuuUTYRaR2Eg0IsHELDKmQalSgCkBK2jJ8xZciQYdhRkUzPsWQQkOLUJkIocg0bRxIxwpphxaNZkNpVSm0Q0mQicUFVvRdVMchwxXEnRYlFVVobvVjUONGIDcOq0VKXitWmEWpNQouane/kjFZi7TaSvEGMuExzRRbtAQexqJV43ILVFsPtCZDsDZCfX0dzUwpHq1OobrXTpaSagN/F0gYLQ51xzj5nHbKio0VVLDYNR1oArd1GdW0K0cTjRcJ2cgprSQKiERsNdWlU1nkpzG3BMGRSnHHsMYW8mJNyYVAsQ8yQyE6OoRsyOzb0wJviJzu/gd4Dd/PV50PJyG4mq92KJSaDVTe7sM12dL8DNd+HcCQ+IHxWiJjHp5QWMYtf1YD0sBkZrMkmczemICXFIC6bnl5JgAApBtKf/55NNHblqIESAd3OsYE1i09Cqnay/8PBv8nAGhwveP9dJAkhxP97s+P6e+T3+/F4PLS+8xbJTucvb7SvlEBNVw53gpVTdnLbMwKKjjB11FjOS3qbnuxi6wePELfA2WfeQuP9C/n0sXWc/PhJvHM5+D0mPnZweQ1bsnLZevNarpo8BCsxpj5uZWDS9+ylOw/9ocz8qZxTy5qacbx7bRh7q4PR3g/oy1YchNn6+lMMH/mgWV0d6MLBdVfjaIfdD3zAiFsuoSUVcoe9f4wnO6NgMnMrnqfx/cns7Q7DT3gGtvblxitPZvHjh+GGl6DVy5Odz0M71I0+JR9ROP8iXpvWRKuezuL5+/kxrStDqyr4/L6t8OlYuuyHrmc8w1e983C8eRGOK5dwhI7U7xzNbYe+5NYxZ1N0FDr1+IyxrStp98bw4yHbF4Uvz+KPV4YJ4aKSfGbWvsKOD+bQu9ebbNlzJf12x+Dux8wKblcPs4L0e0wmbpcDNPRq4EMuZvKcVD7t3ZHGTLj0PXCPe5l7SsYzKuM9jlLExKPfYnSsYBc9CeGieOZ4DhdDWSfIGvUOp906loo0J02zn6OSfMbeMgbuehzeu5Q1GV0Ztk7DMFRkawTm3Eu518u7XIp1dxdcPTZQXj+QwnKzyI+pJlps5ArY1dM8iz90rXndOV+Yg2XVefDhRXD+p7ByhLlbW/tCwA15yXtJp4k2khnMOpYxmj5sx0Dm++BYMpPKcO3sxA0vwTuXm2/JjAZzxu7spebfMd/ASzeYDpUSZR/TP9//9x8T7e14L/8dbW1tf5Ev//ccQz/f1y9l1f+SXzUWi+F0Ovnggw+44IILjq2/7bbb2LZtGytXrvy79+vfTT//X13W+5Ak+y9uc0usE18pzagohKU4DmHBgoRpZBBYkEkXdpNpm7Ah+KUYXmHDJcxix4JEnRzGADTMYiguCRzCQqZhJyTFCUlxvMJKrm6+ZrVKFIuQKDTsZClQr0O5HCE5kfZWaNiJIrAikZoYIo4LOKlLAxlZLeze05EtzTaiGNTLMZrlKDKgJsItQlKcpMTzSzdsWIVMSNZRhURIipMsVOxCRktUWSFZp6NhJd8ZJxBViBoSP59ZT7MZpLmjdOtWjs0exZYImBCG2aGUZIP0wnokCYLNbpqr0wkFXciyQVKyiQJrafICkJreit0VISWnGV9tGnFN4eCeTnx6IA0LEq2SjgxcXGSGKLWHrRQW1NF39CbcXerQgzbiQTuyGifS7ObQhlLimoUDBwpx2GNk5zSyZXsxuwMWOtsNaiMK6aqBISQqzHk/0iWJBmEQR3B+1yZsNg0hJAaf8yPBpmTs7jApPSpRCtrAEcfw6OYwmQRyRIKoZHZyYzIErWAxwB5PdHEFQhVIfhW9OhnZGje7vaphdok9sT/dVhUIl5muJjerGGka8RQJOSpQmmSwCZPNW++EuILW4ObDxy/jpobm/9NxIUSEUOzB//Xn04pTbyfpr85+BeNRRn7/1P/4vo7rn69/uw7vf5qenh4jRBkl33YihoqY8iTS2iEsWPcurB3Gjx2u4MPrBVfxBhN4lmGPraaq8mS6+hopzt/DVSvLITWNZwacjWaFQ5zIKXnw5b27WbBjNRN6T+E2ngZbbxi+ircO3k8nHUrZx1UP9eXFCZdwelsrTw4axg3b4fej7+Ohj7bx4y1bGNrhUd4v7k8lPRnz7ARyd/aCV67nh4FJFPX7hGt5gsj9d5IR18g4fTbrs4qorjoZhxKEYWu4JelRumds4Y7Ic1S9sZAOnVP5IRtCuLhIeY8vSy5l8wUVDF1Si4c2DqeBrRC6dttDHf343ZWTqSWHZYxG7XWAB3v14nJe5p0el5GOh6qnniT8wFzKKSA7tJ/Pr/STRAQfXmY2LqEuR6H3TZN4cesiJp78DJtvVum/KZPYgB3sOkGi3/s9TXvBjzI/9XKzYedUynv54a67qbbewOSPa+G+FZQvnEehCkczisikAfzJvMPlFFLOEYrYdxb0HLYYL5mMnHQ5Ny7SWXxwLgWPXky/Vi90OcBjsftInr6FS++CvSUq2XdOZzmj2M40hrCWCgpx5EEvonTfYxadExs/pnH1BURtpp3BFoHJuXP4JH8WNTmwYgTU5pr2hfM+g839zCbod6eavlxDBg9ttJFMOk30YifJtFFPNjvoRd+k1WyInozSK8SdT7iOocyy6uHETSbxzpBh1sMJIIKik0Lrb3Og/DeUhr+mDcyePZv777//b+6iqakJXdd/EVv43+EG//8oh7BwAC1RIGq4EmlmP0cDA9gSmDEbCk5hoV2KY0mERLiFSrsUN60JiSE3CyaTN4yOBQmbkAGTh1srt4MCXkMlX7cjgCiCI7pgcJpGfsBGY0ymRg5TJcfoatjo6I3idUewWAzicZlVBzLZcziJCBpJsiDNsOISFupoN+OKseDAQkjSEAiK9CScwkxgcxsqDZJpjyjEgtdmUBWViQEY0IzO0YhBSIqRJ+ykI5Np1xECrNY4oYCTpoYUUtNb8ab68WT4UO0aWkTFX5+C1R7D6QkRj6r4mr1YbRqSbJCS4SMWU9HjCuF2O431abzx4VAOotFBqJzcpYHuNlirabQlnp+mKciyQXqan+Jeh4mF7ISOZABQv68DaYUNJHetJWl/PhWHO3DGJT9QvrsjZYcKsKk6wzuEMYREUrsV1aJT1uSkXGknX7ejC4k4gpOzovQetJt4zIJFjRNsSiZv1G6zcLUkEGKyMIvdRCdWKALJAkIVCI+O5I0j+S1m11aX0NPjSBqQrKHgNwtiq25OEiWZNhcjSUcOSBCVkdoVJJsBQSuy34a1TgMhIfw2M3TGmbgctaC4I+yp8oD1/1bw/r0SQkL8FZXhry8f12+v4wXvbywDmZnPt/L85C1M/3E7xE/m/k5XM+VZSIsFWXffXqawjGzqWLLzaXN6aGF3Zs+N8UD7R9w8Yh7PTdW4dXsVK+5fgUovFt3YhxClrOq9k4v5kOe0qTjOgXjyIJ5pmw8dND7jej45H6o7QEVpDSUcxDNuDaNzbPC7nQzdUkSsXyWtnMod321nxglL0DqCMQcWhO8hRhvWr0fx7sJlXDZ1MCyexKv35XDXVjjprMeZd/IVTJ4PbZ5+fDq+irFJ+6ElDW59Gzej2XD0Uu49fwIHdi/hu6QC/EsHceFZd+B5+2x+UIeT+8Ew3sscRpcRS3Dv7Mht25fzds4o6k/NIoqdMA5SH5jCfa3PMsS7lC833s+5WZOIqTIbGQBN6bgzKuCB2Uy8YQ7s60qX3muZ0fEp5k4N0i+9idisx1n/6fNkj11Mf7bTd/F47HctgFQrkx9L56X7YlxPG4X1Ebb3sTOMEN9wOueX3kYlZ7GnfhSlWSvpO+xZKilgc+VY0hctYf5tEzj4NHQevQx0hc2D4tz9cBJ0r6XGDt3OfpKDpHPh8hZSq/MYec46Tn+vkB/VgdReH2L5qCiOVhtlhy4g+juziC06Yg6Wvdgwi0i+ySaWDfOvLWIWqkvPNovf5DbTgysn+fHhZTircRPgCB2xE2UIa2kinXwqqbXlcJhiPGor4SyZSlcytgjIwuwepzZDp+StBHHT6dsSxkV/fag78N9SGn6pw/vf6e/BFv7/TQPiGQRkjSShkmnYaZM13IaKDPgTnlwDQUjSCEtgRT6WiJZq2GiTYkQlHR2RGEQzjgU4AHSNu+npMGiOWNkuhTEQVMshmiWFOAYuVLIMB6qQ2N5sO2ZPKNFdWBP3s7pNprPfgyIJfiJMwNKGKmQ8wopPimKXFOqVCDHJ+FORLhTciQjkPKHSjqCDBcrjAodQ8CLjUARCgEeSaBMCT6KiSzEUkiQrTZgBC8lxmdy0MFkZrUQiVipqU1EsBm2tyeQkyA3ulACtTV4sljiqTcNq08jKa6ChJgMjrhAL23A4IySlBAi1uWht8ZCfEiHeYuewpPFkmZ1s3SAs62iSQYMUYVWlhyKb4NQuFfhq07AHwsSPZhEN29i8qRvnXr6MuN+OrOgUdq5Akg0O7OvI1koPzRh0DVlJc0dZ3iozyK5wxdh1dN3Qg3AkxsCBewBwusMc3FHC0cpMZEnQo8cRknNacOS2ojhjSC4NIgqyNWFBaLGCU0dYDIxkA8MOclSAU0NpkUGWTaSCAigCIzOK7NLM4tgukDTz9ZHikpm0FlUgZoGYDo646QNucYKqI7liaJUpqI44ki2OEbShNSexRg78WofH38jk8Ep/s+64/rV0vOD9DTW731iS2MfGyRuZvNLB5yNSWdk6lsfvAvmZW5hjvxPv1m4U9X2Re5nDM2t3s9kYSH9HFQ98tIP1F/XC0Gy8tmAD1yxysIIRNJHOmashtcXBgS5Xc+jkWp5Qb8MlNFh8LVxeyR+SL8JzKIPRyyB08ha20J+cJefAkPmkz58Alh0cDPfG028mh+nEttPWcxv3kesP8OP7T0H2AH4/8CImn/EQZ9MC7aewecGXnEwX9tzr5+znz2d6jYcf57xCMWWcOGkOGDohh8Ipk7pRuOgJitFpuHcJR+6Fiz6EptnP4Vl8KfffmMMpVNF9O2Rf+DwED6CugptuHsYLS9Yz9dSRXMurLGM0r3MNl3tfoL++lYMX7ISJz7HxxdewE4W8KvbThX4/dwUPdMVdXMbcgx/BhHIIubDeMp9z+/8IX6fCJ0/jWzSdpYziwg9kfPc9yw0re3FkRCEHT7Zz9euwdbyHKTxL86znqXo8zOCs5WxrGYWRKnMhfyQl38eg9wvhtofJow76HobyQvofFTB4HWtOiTGsaT0V3YIUU83eUQohPuZWHmT+jXdQSwtH6MiANTbCTtg3IMjA75OozQVvq2lR6L/ZTCE2ZPO3T8/dsHYIrBlmFrr9N5vDZu4ghFOryaOKgWIDYcmOU9NYoQ5DIU4ybdSQQzf24MOLmyDloiOeuFkshx3g8YOldDfG9r44ZPC0Ab989vufr58pDX+9DkhOTv4fnTJMT09HUZS/6eb+ObbwuEz1NBxsVkJmrK4cw0DQJsewCeWYdzcoabhQUQ35GPfWKmT8UoxCI4m4EDTIETTJONYFlgC3oZKJzP6wRLUcpkIJmQlrQjE7vygoQqJabseKzBF00g07+Yb9WLH7k8WPT4pSbzgSccBWsoQNTTIjhh1YaJKj5mMm7AcWZLzCiproVFsALxIxA6xAg6wRQiKmqxg6lCnmAFS7FKdHPJlkZMqI092iUB+XqY1DsS2G2xNEDjpRZAO/30laqp+jZR3IyGhB1xW0mIrdESW7uAZdUwg2J2O1aVjt0WNdwKDPja/ZQ1pmC6npPnrrCsGAi9XbCvleaSPTsCMLCZ8c5aASIhiz0/pdH9JsOp0Lm+jRbx+hgIsOuc24MvwYURVhyOzd3hljSyk7qzwclTSyhQWHNY7LGWW4phDXJY4eKqBv/33EEsSJbhevRW9zkpLTjHdXEd6MVlyekBmKAcjuqFmUquZloQpz2CygItnjkGxgaZPM9ZFE0acYyO2JdWEFKYTZLU7YRoQikCJyYh2IiIV4oxslKYLsCqA3u5AsOrIDSIqhZptJgYbPiRGy0bCrgINK6z/vgPh/SPyCh1cc9/D+y+l4wfsbaugasEdL6b+mFIoPcm7he8gdDSpf3MVWzuDUlzuyYSA8Vv8UfQ4DN7zE+76BbDzagT7bOzD44TLqeoGQT4aOH3D/xL5w2ve8Ns7B2X+QqT/ZR1voHF50TeR86ycU1ebyUvKlxLFw1+MmF3cQqWymP5EJyxhU20L3sY/ySXEvuvE1f+RC5j7aBiWdefCSseTtKmD82Bncap/LM4v2sj7593w6YTu9X3yHkQf9KF+fypopWyG/AgrL6XnH9XjcVXy76D3GTD0bZ8gFfXbzHpdS3TGPLo/s5Jndy3h59kmMnzuGIzPeJ3fDvXT68mqy75jOvbF5PDxNp1/BUV5YUk/bhPcZzTAGLxjI0qkq3dnDlxU3sadgJTtaRpByNwzAxdDYJnh9Iv2uf8X07G4/gQ9vreHiHQ58Z63je07lYt/3NCx8kMw5Ezl83SqeG6LiqJ/Hw0eXQNlIFlSfwdUjHqV40l08tSjEIDYw+XkP91wyDdfjR8k+2pHNqaPon7qcLOr4PQ/RZ00S3cbdxbNMwUWITKWRPl+ezAmxvZDeRNe7T6ZBhgLtDxD08GrKtQxiAxfzEZZ3L2bjZSfg19IpG6aRSgveyiyiNrPQbEqHzAazxnOGTAh790MxNvaxkhSAqB2sGnx1Jkx7Eu57CKZgEiqkzf1xFpbTlhFjpG87m1M6kUoLRymiDQ+ptNCbnVQaHfF6j9IidyS5zezwnvdRDzpe9AQLmYKr11b4/Dc6WP4BlAar1Ur//v1ZtmzZX3h4ly1bxtixY/8Rz/I/Qg5hoTrhtw1KGlF0s0sqoE2OYRVmwWhIEMMgLhlYkLEkijevsFEjh7EgEUp0g7vFPcQkgyY5igTslyWSDMuxYjokxZEFhCUo1JNwCwsRyQydkAGPsFBsM6iOKtRLGs6EB1eTDIJoBCSNDMNGirBQJ0eOhVC0EsWGhTzDSQSdgGQOzoWJs1+2oCDRJsWQFYlUw0q2UKmUY7RKZqSwTcjHkGYpQmaYR6cxoKAi0dGtoao6WsxCKOigKWDlaKuNDq1OstODbN9dRLo3hMViUOI0Qxasrih127KJhG1kFNXReCQbISQUS5ysDg34GlLwpLah6woOZxhDFJJp2LEImahkUBJ345fjRBFUEidDAl9bEjVHcwi3O8jOqyfS6qK91YU9qZ2+Q3bw1punEhQCmyShAVsDMr31JEo6NuJyhQmH7ZQdKKBrz0NkdKxHa3RjzW0js+s2Mi/cSmBFCcKQsGe3YUkNgTtqJqPFZCQp4bf1xkEz3zNyVEJql5HiiQI2ooAkkHQDKWYgLMYxwoMUsEBcNy8bEqLZiRFTkGxxLBkBs8vrtyHiCpJVR/JGTFavLiFCNmRvGGFIVJflHaN//BY6PrT276Hjr8hvqDHFixi+LoY8fyrYItzpncXZGxooXDKGk+86h8HhbfTv9SoP73mT8eIPBBQXxekbmLRqN4N/dwvfderE2G8jfHdOGIqOsmiiAlv70rDvZN7PG8oZfM3l78Lt79byHpeyN6kDN7zv53LeoenFmRQ1BvmE85lY+xkyArb3YWHxGQRWnsOrXEfy9wNg0iKmXjKM+xY1EBqyHRxhHnNN4bWB3Uhvgltfb2Xkgj6s+XEGO3vDLbOy+S44FpQ4r14LdfcvYsyTvaHjEaRHZvJJxxOYeY8bb72N23Ysh48uZpM2hOkz0ni+5V6294EOei23ptzPiKz3+GGkAl338fQEJw1zn2QP3cAd5KF3d1NDDrMKJnLVp37mrfySmdb7aSWFuNUAV4jDTz/DnuR8Gk/ey8WNK6FTGSnzbiCfSgi4UYiDouMgzHz//TxcuYiN2yZQM+MNHmifyyJuJGRTyaaeXuykbfJbPLrhY2YFFzCk49tc+yo0k8qJbOJ3i5O4bv1eZAQ3353P9Dl2rnmwkD63TIAx3zDnmnwydB+ZNzzMk+ptGCltXM47DGQ9DsK8eFkyGlaS1Ba8jSoNIgshg3vY15QXQt6YVyg5ZM7YNd38Ho4wbO5l5aUbzDAITYWGTkECGWGeeawWVI33qqfhTXhuD2Z48RzMhLiF/h8V0pPdxLFwM88RruxC6OuLMGQopBzZMGkPmWo1f7xI8HrjnahoOAn9dgfLz5SGP1/+DkrDtGnTeOmll3jllVfYu3cvt99+OxUVFUyaNOmf8KT/PdVF99KgmPivFjlqsnZFAqMqZJKEilfYSDfsOIQFt7CSatgSiWZWWqQIIUmjWYrgFBbcQqVJjtIsRWmTYqbXV8i4kLEJBZdQcQsVGxYsQqJSDlKptNMoR6hRwsQxu68f6gFWWJqIA/m6nX7xZNIN27F44yY5ymGlnbAURwYEAjdWNHTq5TABWTtmsbChHEtxk5EIJgIuogi8hoU83UGGYXaMW+QomcKCUxasbpPZJmLUShr+sIVgyE5tbTo1DR5kCQ7JMTYGZDYdScFp07BYDHJyG9BiKg1Hsqnd34GK8mz8bUlU7elIUmoAT3orjqQwSd4gucXVZBbXkp7fQHqHRm4c/w2PXbSJ83Ij9DbMbDmvYcGGRIpQyM/xU9SxhkAgife257F+fQ8CTR7cGX48uS2UHyhgnyY4KkcJSTr1cowKJcyedpmv92SzcnMRZRUZeFP8BNrcCCEhOzTo6AeLQLjiuE87gLtPJWppIxT5wWaYHtqYAiELks+KFJGQQgpSU8JOJAuTxBCyQERBr/IgGhwQUpHqnRjVyebtg1akFhuiLgmj1g26hKQkQiqsOpInAmkR1N51KJ1aTHavIpDSw8hpIXBqyA6NDZu7/HYHDD9zeOW/Wo5bGv7VdLzD+xsp9N1Y3nh6E5cOuJc1ny5gZDk8YZnKzQPn8pz8B14aMYgZq8MM09bxvraIvFGv0Pv2pzj9qYeYOu12SrYupHE4fHGunYWHH+XOrHu4uevD8Mn1TG/+A2heHmMqd3d/Gbb34eRXSoja4NZxQ3HTBzcB7o6+SRIBPs0ZyLiJp0LP3RSdcRjLiENctaWR107tBXfcy8QnX4SLGhm05FFunjCPaY/aKM6B4u6f8+FYlRWUcDqfsochTB3hZhoP8BKnM+oZ+KZ1DvIAWDtC416sGOcs5ZNzDB7efYD3e/fEfbCA09UvOP9NF3uv3IydKH+YM4LeWOg961JSW+De2Wcw4j3zVH4+lXznHM2ayyrpy1bkLSdQMXYLmTRi39STcaHtvNz1aqqv68B9z2+B1moTWeAKwfenwVVvMOi1U9ncPoH1N21hsqeNlyoe5I6C23AdLOFE+2rYlknFCc3Me6aKZ56uZALvcJ/2GGoM7jp7Nps4ja84k4tufY9MUvF8PpwTh82HzEZsRHjiduiUVcP20BBSq5Zwf/Bl0mlix7zPsKHSh21MYz4DWc9W+gIwkpUcoYgoNnruA6/PLGQPh86goYvO0eXX8/oMHRchRnx2KXXT3sb73BWktsCRImjI0TlxXRJVJ1VSTQe8+Dgr7yPaSKZ8QCMH6Ennw3GqzthF60UHgC7soRvPcgvB/Faa8g/Rc+cAtuePIOYNMeyPLobmzmN22wIUHc5fksSg7N+GcQkkLA3K3677X+rSSy+lubmZBx98kNraWnr27MnSpUspLCz8Bz3Rf3/11ZPZqQSJSjpuoWKWnH9Sk2wWsh5hxSEUgpKGX9JJFlaa5AhWIZNjOKiXw+QYTtqkGD4pSoowiQgyEn5ZIyzM4Ta7UNAkg1q5HbswUWXmnJMghIZXsuIWFqLEiUsmZiwmLISETJqhIskSXqGiSYJWKUam4UgEWxg0yBFUFJPFK2m4E/HCVbJOlWz+gEsVdjQMPMJKKNGxdgiFPKGg6hK6ZKVBiuMTEhVKO0lCpU3S0HSB1OSkIMugtHM1qlWjtC6dPUdTKclto9/AXag2DcOQCbW5sDmiHNxVgiQJmn1J5GsWZMXAYtNQ7TEaynIItLoxDskcOFBAk89BS8SC22rgi8qEEKSgcESO0iRHiOpOvN4AkiTo3OMwd5RUEA45aKzKYPV3J7K31o0qQZ3SToFu5+wuTXx0IA2rJJOvSDTrEk2G4OwB+yjofhTVppGU14JsiyPpmMWsJBBWAyk9DDJIjXZwa2YxazEQLSaoW9IlDJ8Dvc2JJRhEAEZYJe5zmsNtMQtSmwNZ1TEiKkgCFdD9DhR3BMkWR7Jq5uMAxCWwGQi7jrALhAJySDL9vhEJwyWQPHHkdhma4atw7DetZo53eP89dPwV+Y30yEyYdEcJKXNuZs3YJu58SocvzjGvbMigpUsTL/YazBtrF3HSmAfIpZbZD0D6bb/nLL6ktO87hPJaKSyH6Sn38MSS/bx36F7ovpd5QwfzcsoFjHmuhJ/2jGfGxQNwX/8MJ2i7uZMneLj+aS6aWwLlhYQru1BMGd+NUthl9Cb07QVmqttLNzCEtdz0mJfucy4Er49XrocreZNirYKD166hfOw2LhIfoWsOGsjg91MyWLDjFfwLZmMg09u7kmvib3LVN/Wcwxc8xy30YBedKIPdPTnpgTGsGAHnL29lTXwUudSy47N7uW5+CjdM7kf1nBew3v0g12bNZcMgyKqD6r2jOW1/FZk0svfQeTT0q6JAq8UmouwZ0M6Wrk7G+z9gEot4+YR+8NDvTWRB970wfBVs70Ng28l8c1MZk782PbZGQSUxrMwdNRAOF0NyGwVVAs7+ku7sofrZx7hIfYdnquaRQis76M3ig08QXHqpWbCOWMGT8jRuybiP+1qf5eHZGhpWbngZ7v90G9iiTLq9C8UcpoxidtKbvmxlMOvoyW76L0slc/EFaK0ZqE3JeH0wbI3ZxGxJhT5bFCI2uPZlhZO+TeaE7RD96AocNz/B6d+YlofURoX0k76gXssnjyqchFnDMPpVNFO4IZOzP7JBdQc6aPUYyHjxMZNHzW43sFkMIKaaXuGS7S7KC2FGZAGOMHTZDx9c8psdKqZ+pjT89fJ3aPLkyRw9epRoNMrmzZsZPnz4P/jJ/nsrijjG0Q1JcdxYcWF2YV2oJAmVFGEjJhnoksCBhWRhRZfEMb5uoxQ+1q31SzEcWI4FTSQJFadQCCeSzxrkMFFMPm9MMlBI4MPQiEkGLXKUFjmGIYErgSZLNSzkCJVkZPIMFZcwfb8GZgqbDQktsQ/JibS4JKEeG6RzYiFDOMgSTqyYXesM3YYdCZ+sscPSyt5EV7RdMjiqhKiSw4TQUIRErmHHIRSq41Df7KSlxUM45CDZHeJ3l65k+Bk/EYvYCIccBFuTEEKitclLXFfIyGglPTWA3RlBkgW2pAjWpAg2R5RQ0ImuKxQW1NG/zxG65ATYFxWsUwIcliO0YaLJZCQ6CpX1OwrwtXioq8git2sVXYftokPnKjzudnrm+Sk3dKLouJHZfjgDOxIqEt8RwAKc0b0OSRY0lpvWCmthM4o3bBa0KVHw2ZFCFgiq4LOBLiGq3GahG7YgJUeR7HFExIJk1ZFdUbR6N+GydCJVqcT8TmI+F/GwlViri0hjMrGAA2HIRKpS0BPFL4qB5DS7t1h1s4usGAhVgG6mqCGZVi5hF2bcsBXw2YiUp1HxGwVO/KyfKQ1/vRzXv5aOd3h/I03Meog5T17FWc915OzXQbn6FaZfdj791trwnbWOufvLoLwXgUu+wT13Mm/MqOH8T+Cp22HWT0H4/lQo9nKoMwxeB7gDpJesg/pypi+vgZ0x7r20N12yVnMh++g1YQr8/iHc02ezbd6znODYAa1eUodup+HtqRy6YhNrKgdw/0/fUnPfGO59vp7zSOWFRyuI3PcE9qpspnwIPceVs/6+b7ju/jN54/7hlEiHOEv9lHP1L3nmhiHcml/J1qkrUdeMILYOZp8JV496gk5P3Mnwalg1/C4CSdD7jNt57pQxzK2fz4xRV3MVC3hvw5NsPBfGVn7EbOU+hpIK8RZsD8zg0tlz2dl7BtV58N39qzG2Xo6t7242058zG7cjbTyRFWPzmKwvIjLzRZYtXI4rBJy0DqP3LuRZD8C4D6DHLqadfT5LKt4EuRQ6Heb+eR4oGckM4xCBwFm80uk8HITxHRjIjOk+fpj3NlvpR0vXNMKcROamAmZ0nMHos95h7vzecJmbom5LuZCtGF6ZqkURzkPgufUNmDcZojZ8Tz2EcdfTnFm8gbYbawji5jCd2Bo8maLRO1lDCYOXOzBGrcTvGcHiSaatoPdOiIxay+9uGcL2PpBbY0b8ArzScifW0VC6D6Re26nbdA45mXDf4ZVQmc/cq3MwCqqQW1Kh8yGe7z2MyREL29U+dOIwQ18vpv7qVDpRxnajHy2ljZRwkL10pxKDIG7sUZV1g6FP0prf8Ggh4eH9a0rD3xctfFz/tYp1DweVEEKCOGYBG8C0IdixHEtei0g6cUzvLmD6cDH9uhbM2GCXsGBLeE+ThEpIih8rSi1Cpl2OH+vqapJBJBEOYcUcfEsVdpqkCBoGLVI0cT3YsHBEaWe7FCNF2OiuuwhLOgFZI5oItgBQkIlKOhoGScJCoxwlSpxMbBTqZmcyIOkEpDhNcgQViZBk4JNi5BsurEKmVdbwSVHapThWZGyJPY4iSEUhhuBQRMbZnETfQTtR7THcGX6ayjNpDzlo8yXjD7jQNIX+J+2id4edOL0hrElh9JhKNGgnFrJRtbsjQb+LVl8y+8vTyMsIIQRYFIMMFNCdOJAJY3BEDiAjsVEJUBR30lNIuD1BGspy2LW1K6F2G33776O6PIdBQRsjbAopyY3sKEund7LOPr8Z9JGsCDyeANkdazHiCp7ieiRP1LQjKAKaHOg+J4o9jkiPIjXbTCJDShjCKkarA8kWN+0NgOSOIusysbAVhISsxpFViPiSiEdVLNY44VYXAM7UALGQHUkxcAO2/BbzfqIyiYRqhAXkVtVk+coJhm8cDCdmnLAOOOLU7y6gXv4N7VYc7/D+u+j4K/IbKHTuDxTefx0t/o5s7wPDT7sP17PXc/o7qfg98AR3gtdHxSXrOUgJP6V35qpJQxhu+YEuHb/l88HpvD+wI6f5NxAdsJNdZ1Xwae4A2vAwJ+866kbtg8wG+mR9yzVLrBRxBEnV4JXrSbl4CSccbKft1tdga19uPfo5q66oJPXbAVjzy3gjawy5N8/k4ckplH87gRmTC7AfzoMfRtGz2gd12Sw7OgHcAS6fNILBO0Kk0wTPTuG07+GllIvou2AEYac59JSXsZWUWXfSrdvHxFSTJnDp+wKqO9A5fR0zsqZxAy/T8vpU1IFrWPL0TqjNwZcXYkz9dqZ1mkLBzEl8UDaDFSNgfngmu3deTudDcB6fAVCRq7BibBtFHKFGycb++5n0YTsjR8/inkv6c5hi1sz5BlwhHvPexJK5h7jXdh+r6sbBeZ8Rn/4UjPqBrzgL9+w7mDKxFxP3ria/Ej6dZ6a6DXmllJXRMazjJPIr4Yb0uZxWVsZX0/axKzeV9U1nUaSZ3dKHmcU3jCGCzUyHSG8ipcZB+PHZfHljNUUcZSAbMJBxB0DZ2osT2M76gXCkYgTrToKsTmvZV2raFTboQ/j6DNjcH2JmeBVLz4bsejgx6wvkEcvpzh72DAgRdsDhdVcirnqTC/kY2eeB0n1s6y2RRxVr7AMYyHqGrtd58upM+rMZA4lkpYU8qtgaHkIYB348JNOGopvezT0tw36rw8XUz5aGv16O6x+qHnEvGobpiZXMxDRDgiSh4hKWY6ETMQxCUhxJQHaieLQkOrNh4sQxCPzs10WiVYqhJQrfrnoSsQTVISnRNZaRSBZW0oT92F9r4uvpZ5xZirCTJZzkGo5EFLFCfYLLG5DixDDQMNAkc2mTYgB0MBwEpThaoovcIpvDTSFJ54DiR0eQZ7hoSCSs5RoO0g0VFQmXsJBlOMgzXIkutImgPaz4MRDoCGrlGC1BKwd3lWBRdeoP5bD5p15s31HMpt0dSEtrZeipG8ksriGjazWOtADxiJVAvRdZFjhSgqbNoSmF/eVp/BiP8WK9YF1NErm5jQwrraNIMf8XcSBN2CnWk7k2Q+aiHg00tbhpakij+mgO6w6lc7Q+ifU/9USLK/QoraBH9zK8KX76FDdSF1ApshtMHVBFx8wQuR1rSc72kdG1CrVPLcIdx0jTzKL3Z7yFISFpEiIjAroMEQtCk9FDiShgW9xEjukykieC4ozR3pRMtNVFqN6LoSlYbBrxqIphSFhsGpGAAy1ixZXRhjUjgJTejlEUQrgT9hlhpuJhMUwiRCxxrCdeAMkAoYCepbFjfQ/iP0ex/UYyjL/27/5tAXxcv72OvyK/gb7hdPj9g1yb/AwXfgwL6x/kBH8Z9dlwRo8nePjhEPN8j1BwywzsRBm8vZ2fTlSh+x7G/ViNjMG42tUgZEY824uS7wsYu6WK7OXdmLX2B/ZRCmuGMW5+Hs9PUHnM/wgUHaH9/rnw00lUvTkDz/RZzLmyIzSlc8rr+YwbeAcNwU5ctXcTU7NmMuE5KxeOmcTcxWXw1u/gvM/46qQUfp8zGQBfXTceWFSLeHYKX9SPZ2+8F90tO7hh2yZapr7O5F6TeO5mOJXvyW6N8GSnC0jruIVB64EXJzK923XcoL1Kl/S1dJ40jS4HYMjjw6DLASgoJ4yTVd88wvz317H+1UVc9CHM++5b2Nmbw71CpLbAoQ/uYVXjRXy0ezbJtJFFHfOZxhtZp/MlZ/FIaA6P6vdSxBGGVVRARgN33+OB/ErakmG4/iNGTgOWJddxxJtK3AIRbxTZ4wNbhCtOnkz3uedx+as23rvUpCNc/bJK5gWL2U4f2jvVsWfvRRygC+lNsEi9geI/DOeFxVspqx3GXrrzYbcekFNLLLeJajpwEj9RTiEtpLKT3jyUPglX3zUYyOiuKBRUkGM7yjoGk9kArR1N28r5K33k1oA/GfaVwgOzobwAVvnPYY02iuX1l/M4M+iZsZzi3NVskAayIDrDfMP98UKi2OlANQo6RRwFQ2YkKzhCkUmU2JdKB6oBOO8DG+n1Ci7aaSkIEnXpFKVu+U2OlWMyLH9i8f68GMdPUP2jlYnpyf25aHWhJvywAptQyBAOXKh4hRnq0CrHqFBCaJJBtuFAQSKOgV0opAk7MmaQQbJQ8RpWUoWKX4rTLsUT1xlIwuTjZiYQY05hem4tQiLXcKImSAl5hhOXsOA1LOQaZuGbImzYhUyzHKVFihCRdFQhUye1o0tmYV4rRwhK2rFo5FYpRoMco6cq0zvuRZcEdXIYnxyjTdIISnGCkk6F3E6VbO5bmDgpwkYUnXYpTlDSOKy0s9PSZnqY4xIf7cjliw9HEQq4yC+op3u3cnoWN5DdoZ60TnXYU4P4q9I4vLY7O1aeQFuTF9mi03Q4h1DAyb7DmbRpMmrCzrHJ0soTG/N4fX8qR3VxzI5QqDspEiqRqIWyinQcdo09B/LYsrOQNKtBUXaQoo51NLckU12dSUtTCrGolbaAk575rZx4QhnJCe9vUpqfpI6NOE47jJ6iI2yG+UaIKWDXUUpaQDGgyWF2eBUD0a4Sb0pC/FyECgkRlxFhFRG0YsQs2Dxm1LTFESOpQzPOzDacGW3YkiKEfEkAJOc14yhqQnJFzcczQDgNsyqRBFJMRlQkI2rciCYHUsiC3GJBipvdX6GatoZv9v32SMGfObx/vRzXv5aOf2P8Brrwc434ly+iLXqBFydAQ2kLP/Vdzu8ehtAnd/Lj06/Q1NQJuu+h+62TqPE6KSyHm8dPIK/Mxsx7Gok8+gANZNBz0gCWnwKf3L8N29cdwJ/MN42nkLPwcZpIZ/Ki3sS3wTenduUg13O+rxffPLCW8ZMH0GsHUHESw6N7+dY7kAW+6XBSIQuedDHv7G5sX76IP9wbZuZ9DnJrc2lLhmk506l7Yh5b+8JDrU/ABUN4OOV7qu7MgJ0p8N6lfNkhh+FVfvJVaNz8/7H33vFRFPj//3PK9pJNsuk9gdBLAAWRIqIUFRE9u3L2ilgQUbE3RMSCiArn2dtZESsoSJEqvZd00tsm23d2Zn5/TOSa9/nc9353h3efPB+PeWR3smWyO7P7znte79frTrxOmJF0L3NvuoJZ738HdRnMa34bdl3I1YrOrJfbeYBH8c99nrfO8LKn+TFuWQCfTIERj45j8OIbeIvLKL72dF69WuDJW+CDCw0JpyWlmgNJOXQjm2+ik7nK8hI5VGMhSrkjnzVvLiY29T3EdRez85K93H7zi+AI8ugDp3Ln7JN5kI9w2UI8xV1cXwWLuZbp1/wOvpjEhulbOOnyB8jKbKPPzBdIlJuol1L4iBOxEuWVvS9Q36eVSkbzVM9pzIgupOkgqE/ex128h2tXAWTtZ2tyD4o5hIbIEbpTwnZ8eLiRRbSbHNgI4/pmBN4Jxj8zfpykU09czmDAag9hG6wsSaTNY1iPqTI8/1gTicRI2Z5FtGQ/jrQgt/MsSbSy8Le1nE4b8yy3sM9SQNol39ANSO5QoC6Tgz3yCZwU40vOZDg/8hVnUtzzJ7bXnEVmVhmfn11IfjkE0wTiYSfdbAe4aVn18T1ofnZm+Mt1XfxTOSiGj7ke2JCJo5Oq2agXQyiChqbrmDptybyaFVmM0S7ESNGsxIU/prCZkXBpJvI1B6qgY9IFyqUg7UIMVdCPaXYDgmLoejUTEUEloXMgLCxEydDsdBAhJMSxIVMlBEjWrbRKnf66CKRoVto7i2dNMLStzWIEWTcikCVM5Kh2kgQLDWIYXQBJF2gXFCpiZorNOm1xiYAgYNUlVPTOot1IkhN1Absuk6lZ8YlxGgQdVdBxdibPjYon0c0TJTO1EacrRPGAQ2iqxKGd3cnMqyMjt54Du4pJymzp7HKaSclrwJXcQUdzAke2FXP4cC5NrTYkUacChRgqJgxP4nZRIa7rSJpAi6CQrRmneGLA1jYTY3L8VDe6aIuK+NGJoSO32AlHMnDaoxQU1iCb4uiaQGllKnZbjO4DD5NY0EDv07YjO6JI3iBap1xA0ASEJjOETeBQDAsx1WTEA0dk9E7nAckVQVdFdM3wzNVVET0uEa13I4g6akwm0mFHi0uIkoog6giijskexZ3WRvLJR9CzAwiKgGbXICoiHrWhp0WMHTEsowdNaDEZ4iLxDhtU61jyWxHNQVSHhmYXsOw3sdZ0fNLV/hRVE1EF8a/W/SMsWrSIefPmUVdXR58+fXjuuecYOXLk/3q/H3/8kdGjR9O3b1927NjxDz33fztdHd7jxO+ugcN040h36L45iYL7rqacQiLP38XJuwLMbZ/DnTcV8uz1dj46DzLvv4FCyrAV7oXzPuarrxayfsWD7OoHt29fxXeM5TdFc2Hs99yXciurfrqLnnddRVPFEJ6+0zAqOP2pErLNZfRdMpyHFjUw6Qt4f1oTi0f2Ypz6PSy+jncG9qEy1IuZKbP4djyIaLQmAUEHF207TPWCeSw9B1ZfUsO2d+YbFdjsx8le2QPevZSZj1kY6/0Aeu9jeJ8lbB0Mu/vD/doTuAhA8SHmtz8Clii7Wsdw7ZXDufw5L1vffJ6ts1bg+Go0l3oXcKAnXJzzFOJz0xGvexkzClW5Atf8XmXF6XDlRwFOWQ0Je3Nwt8OkOX250PImv1NuZDHXEcPEwGdOZcDUGeQ8dTGnev/A7e828HzbQ7ByDC/Oq+DpuU2UU8Ce5jH0YzcN6TD9kUSej82EK17jpEdOx5/px765L0fmvcKrk1JIe/RaruR10pYOo7ZPK2YUzuQrnmQWd1oeZ/uTH5B+VKaUQj6rms6e5AwG6dv4momcdLiZocpWtjIIEQ0fiYaOlxK2TmhCQENDJIALJ36CKUG2DDGa3jVZsHeEjx/G6LQmGW4VbcEsgiWHsG3rxXl3D2HwRhMmYgRxoCGyl77Uk46NMDVk0+I2EepRRQAXESz4OnKpoICHeZC+7KExFW7hBXpZttPQ00cTqag2hVNYfZyPFrokDf8mDkg+I+QAAZNuBDXYO8MmgijH5AIhIY7e2TH1alZCQhyTLnYGRDhx6SaOSkFqpDBNYpQyOUi0c8jN1OnUEOl0drDpMlFBxaHLpGpmFEHDrsvo6Hh1KzZk2oUYTt1EnWh0bttEw+KsVYhixXB2+LkrHOv0EHbrxmP5RAUZSNDNaOgEBIWAoLBb7mBNPIpTk+kXd6OiH4tDbu0MrbB2yiZ8YpwETaJAc5Gj2nFgwquZSZJ1stJ8ZGQ10nPQASRZI+y30b3/EQpOPEj+KXvIzq2lcl++EThhj3JkZzf2/NSLvbu7cfBgHiWD95PuDdIRlRifFuMk0cppqocT4gn0jrtwaSZigkaSJhNFx4VAhkVjfFEbDS0ONA0iQBidXjYNpy2O0x7l1LPXcsIlqyjoX0qfU3cw9Y4PycxqRI1LqFETki2G6IgS3JOFtjkdQRVABT0pBrqAWpWA0G5GLQyjdI+gp4X4uabTwiaUFifBvVlEqpOI1iUQrUsg1JRApNWFKKlGklzETNXOIgDshY1/3NGcMeJJOroAQlREiIngVowcCp8ZpSKJeJML4iJaXEKNmIi0uNAjxj+5sg8ERSeyPZt64fjqd+GPwRN/uvwjwRMffPABt912G7Nnz2b79u2MHDmSiRMnUlVV9T/er729nalTpzJ27Nh/9E/4P4Gg6/rxFb/8F9PR0UFCQgK+997Bbbf/2e9mnTSZE34ydJk3vAzc/yh5910DzV72vPwiAJ9zNvfO0Xl1dBGnfQ8rx8CV9kWwrxevXmbhtEeHkzfibd7VLuPg2BpC2Jg3U4DBW5l/URZFlDKBb7DuL6D2vRlkWspg8FYWT8hji34iHqGVp/RZCB+dB5uH0kYiibTBsA2w6lTWLXyfEc8N5ru0fhRd/DhZN83G3HMXL0+PccOMbnw2xsM5jreNSK68Sj5KHsNG3wRyPTu55pYBHOkO9Wmw+8L9+PDwaNnvCT4/m6XPf081OWRSRwa1bKeEUayl/YNrSW+A/tpu3rmtmaOHxtDjEJxzZDdc8TrcO4eWRffR+PRTfPwbOPtzeOsymHMv7Hr5RSooIIKF1ZzCcNYT/mkktiFrufy6kYh3Pw66SHtRM9Xk0Hf+eBaN6cVN2stQVMrKr+eRUw2bZ63iEv1dhFteADkOsx/n3V1zuER/n6rTDpL72mlMv3IgI/iRnQyghO20kkRPDrCC08mnnJPYSA7VuCIKNHsJZrcB8KDveaZ7HiaIg+R77yT1oZuoNXvZQx/WM5xmvLiabLSmqDg6JJ55upYHH9FpJ8HYaQJOso5CahO0jtxLa10fkjL2Ej/Qh7E9X2T99ptRzHBun0c5SDGn8T376I2FKEHspNPAEbpRTgHdOEIUC1nUsJrRlFLEAHZQRyZu2tlPbyTi+FQvshTlxWXf/HOOiVAIz8WX0t7e/nelox07hh7citvq/PPfRQJ4Hh78dz9WF3/k59fVYX4AQfhjfF6B6qZAc9HcWVD+7LqgYJzqNnV65wIkaWZMCIQ6C+AmIYwFY1CtQ4gREwxpg1M3Gd1SBASgXTAS28KdRS4YARdpmo1ri31sPpjOYRT8nX66oc4BOVXQCRPHo1s6nRgkHLpMjRjCocsEOkMlrJ2SiKigEe0chIsL+rFgjJ+70D9LKjy6BbsuUSb5jzlQuDVjcqpcMuJqY4JhW+bQZWy6hKyL9MDE6JJKsvNrsDoiaKpINGxBUyWy+1QQj5o4uj+XSNhKJGxB00TcHj9lR3IJhc2EIjIHfRaGZPlxOcJU1SVS6zcRARJEHbMIFXGdejFmFPMYPshHpTDZqo00JMoFo5gfaJYYOrCM7gOOkJDdjCkhhOyOEK13Y0nvwH8onXC7A1d6G5JFQQlasCQHMGf50ENmwlXJOAZUo+WEQDBsxoQaG3pMQnDGjNaYIhpyhkYX4ToPmiaiRmUEUUcJm4lHO7vPETPxmIzFFiUSspKY2ULSgEpEV4TwoTRMiSFM/euJJ2sIcRBDgmFDBoaMocaFFjUhyCpKsxPREkdXReREo7AVk8LgiaI5NLbP/A2nrv7nHfu6HiEYe+T/+fPpD30exy79eQxlSI1wwd7Z/0+fT0OHDmXQoEG89NJLx9b16tWLc845hzlz5vzN+1100UV0794dSZL47LPPujq8f4OuDu9xYvxy+M3WMuQ45PX+irz3T4LuR9j08uu81Xwb0Zdu494PDxG8ZwFXf9HAZ/fvZv3JsFC4iQcvK6aaHPIce4mPWccl1tcYsjSL0z5MgkvfYd5F2cyYnsc5LWvZSx+m585gzyMfMG12BrUTdnPd8gqWPFHGvGfqEHweOHk9FJSTePofwOXnM8sZcOfTDL/uCvbc9j39d0MWNZjHfIO+ux83LKthzfzPOUf5kttOuMxwjJh/Bz8wmqfXLuUgPbFfvZD+WV9RlQfnPt6LR3d/QPl7s3GM/5hLnkvlOpZQc2Q0tt9fzMy2V0maey1990J/cQcvj+hH2/Yx1GTBwbMOQWYdPDMDUhtJXngJH1xoBC3UZcBFHxjyhu4cYQJfc8n7Oq/84Xt+u3srwzbAbyMfEFl8C7sKXfDqVXy4cT4fcR6xGS9w8aCZrNtzA2wvoeCSx3lpVgeXvikibC9h9sJ2mPIJ05xzyKuEG087jzoyea37yQA4CHIZb7Gbflz3VTUOgpzFF1zAhzyv3sFKxrDSOpy27CASKo6vRjHha2glCQdBtj7xMUvNE9jJAHRETmIjC7e9Rt890HOvxLnu17nnERMnf5CF7HMyfLmT5z7YQLPXiBT2V/WhZDuc+Ps+WKJQRR5qyW5ub3ybyjfvP+bvu5FhNOMlgQ720ZtCytjEieyjF1nU4CCIc8UwzmIZF61sophDHKIYv+ohfa+XidIXWIgexyOlk59dGv5s6erw/rPppSZQK4YJEyeGUWgqaEQ6LcR+TkUDqJACNIsxooJKh2BYiAUFhVDn75N1KxYkQkIcFR0FjRBxNCAqqOjomBA7E9IspGlmPj2QQpOuExJU2sUYR8WgIVFAROosWMNCHFUwAiQUNMyIOHT5WPqaBQldgBTNYhS6iHg08zFHiUTdggXpmM2ahEBj53NEBBWfEKNBDFMvGZ6wdl3GqkvE0fBqZjI0M1ZdxCFr2B1hNE0kGrKgRI0i2WyL0lqVQixoNeKEVYn6+mScriBOd4AOv5UEV4jqdgspss6ROicHKrxs8Yt8J7fSgUa7JtAYF9ABr2bCqosMMEkMsOmMk+2c072VbskRTjSLnJKo0i2nFVdCALMjgmyLYc7yGQEOgK6IWDxBvH2rEEQd0apgy/Rh6dkAOQFEdwRrRpsR6iBgpKS1mojXuYlVJVG3dBCNywbQsaGQSGkK0WYXwRY3elzC7IwQ9jmpL82itS4ZkzWGbFZIKz5KWv8KrPYI6AKxBjeRI6nEAjZMWT7DcUEFJNBcOrpNQwiYiO3MQAubCJal0LyliIPflXB4xUCaducRqUomWptIx8YCtNJExKDImnV9/x2Hxf/KX4dOGAsYRfGfLtHoL3+exmIxtm7dyrhx4/5s/bhx41i/fv3ffO7XXnuN0tJSHnzwwX/eH/RfSlfBexyYPuk0Pj8bFpxVyKOO21l6Xpxpk0+D2kz6sYuTvF9woCegmHmM+3j2iWZu/eYAi7kWVwBCrVlc+WgOFJXx4u6X2bHtStadDKevgGWV0+j/YU9+d4kdnr6T0uU3cspqGKesYuHKT/lw9yMc3n4B+BKZfWkf3kk8g28z+8EVr9Py3QVw7WJqM4FPpiDe8hx+XDieuBXzV2Nh5wCEaxcDMKr2CFumHOVh5ww43I15T7SxcPkyHpw0hBc//p73m6bxmeUMrmlaStgGtCZRcMIfePcMD/revqxYPo+7fS9zctt+ONCTzbNWIT5yH5z/By59B6YV3c6CJbuR9xcTWjsOXH6aItkEDw/koVeP0uyFTedXUXjjTNrGbGfr28+yllH8Lv80Dl+wnUf6nctA91qozGMVp1JPGh89sZ3qYTU8VPUawZmLSHzsZkb4dsOQLTzPrczmMfTL34agoat9ZPQpnG37gM1X7SWumxjaUM65I2YA8BVn0GtVOjlUo53xLYO36ZiI8QOn8JJ0HZP4gnrSENEMJeTEb6i5eC0yKgFcNOOliDIm/sG4HEeG169g5JiHkfrs5JOOKxj/dgr7L9yNSYGcamDLEB7w3sqZddvIq4TGVPhiEhzsCV/qZ9GGh/vHjOXA1M2IaCziRsbxLTZCxj8sxFAwcQEfspGT2EcvMu+5hY2nB8ihmqOnHsSFHy/NFEqHsPTZRjsJPLNs1fE6VP5Il6ThX05K59CZX4ghIdJdTSBNtx/rmAoIx4pKn2AksSVpZpyajIxAaucQWRwNM9Ixna69s/sqIWDr7ACr6J39XqgTwyhotAsqe+UODkqGp2ocw+P3Z9syGzI2ZPyCQvxPinBBh1bR2B6vZj02NCchYtaNIlZGNIpWwZA0JHRqYRM0I/jC9CdfhQoqAUE5NixnQcKrWfFqVpJ1mRQRrJ3b3taaQFOdl4aaVLZs7M9bn51E2G8n5Hewde1AXn35LHbuLmBbZSL79hVicUQJx2Ss1hhTp6ynIN1PgkWlIiZQIQdJ12y0iAotqDQJcZTO18mCwE5FpT0q4bTGCYSsWC0Kw088zID+pRypTuLHDX3oaPDgq0jFvzMHNWBBjZoI1yUiiDqaImHNbkV2RpCTguhJMXSrBp4oUnEruituFLuqgN5qI9qYQLjZjckaQzLFkSxx4mEz8bAZJWLCV5dES3k6bfVJaJqA3RXE7IiQVNBwrHtsdYVR4yKS3XDMCLc5UZuNMzVixJBQCFEQ/TJqlXEmS/SEURUZX0Mibm87GT2OIpkVwq1OQo1uzK4IYkoQIhIrI38einK8+Es5w5/alOXk5JCQkHBs+Vud2ubmZlRVJS3tz4fw0tLSqK+v/8X7HD58mLvvvpt33nkHWe6aafjf6Cp4/834J/3AHO6l9z5Dl7nuk2dZxwgWrvyUdRlF2OdOZ8iDZ9GeAEcvWc2cr9Zw++Z1PNTnfLa9vISkVpj3dAPC/Q9Dv10c6hel+y23cql3AdMXh2lMMQqh0auBsd8zZiWce/oNPGK6l5kDL8HTby3dyxVwBHl84zIubfkG25vnw/YSkie9weLqx7jJ/yZ0JDC738WcFNjN10xk/77z+GxYBjeeeBUr/ZP5ctMjnPBxDk/XzWfx4q3MnGNiWfgCHp6eyJbmM+h/+jOsHAM0e+l1+7WweSgbxvlZq4xFKCzD54FlQzKYO6kXfD+WcXxLKYXcIz6BK3s/R91u5t5mYUbBNOQXboKS7QRc4Mg+CCds4eYXQcHEo9yPhsj6y8r4oel8DgzzEcbGAxtWGEkVn59N9Ksp9Hj0QjZxIrN4kpvTHiBRbKHxvsVwyws85L6DkrVOkqc9giKYWDByIBYiRLHgI5HbN63nhVvgh7Te3Budz4LVHzOOb/lujISGyHzuoG1QOTsZQF/2cJBiSiliMFsJY0NE44DQg98eXk9f5QBJtJJFDX0bGnnkgp5Ulo3hzPk9eXfBBtaveBAfiTyz4itOOec22vBQkLKZr66uY8HL+1i893mm39SD+jSj0zt0E8QtKklCMzIqd/I0fdhDEq1kU8Nu+lNDNn6cjNjfwkf8hixquIP5+Ejkd5NTGM56XuUaPmcyX3IGFqJ0/6qYBtLozb7jfMR00uXS8C/nbCWDKjFEsm4lLMRpF2K0CJFOCzARW2dh+LPdmBHPawx5mXTDXcBPDLlTvBDHcDdQBZ1E3dKpCxaOSQpSNSsaho7TqkvoGLf7uaPq1k3YOju3Ls1EixBB7Cys5c6ubrFmxd45XPezPlfG0AhrnXZjgNGpFoyOpwZEBBUdqBVDx4plmy7j0GXigo5Ht6AIGiICbUIUEbDrEo2CQlQzOq/tikhjcwItLR4OHs6hvN5J99SQURzKcXoPPMik8VtJcEZxSDr76h3UlmeSnBBi875M3vl0ON8ddWC3qrQI8U55hdEl9okKPkHBL6ockQJUSxFSdRPVmk5FuxmLOU51o5Pv1/egojyTHnnNZKW101SbgtUTxOSKoEVlEEAyK5jT27HktiGlBJCK2tB7tBtpZYoAbVYj9lcCZB3NqSJ4Q4imOJIpjiUhhGSOI0gqJkeUQLMbX0MSbQ2JRAJWHAkBMrrV4EgMoGsi0XY7cb8NPSrjzmnGmhBCj4tGcIQq0rS1AKHVbIRKSCB2yGiVbtAFzAUtCGkhEs/eTfHUNeSdsZ2EvtW4s1ow2aNYE4PHYov9a7uxU27+tx8nv4SqCcbg2p8txn5eXV1Ne3v7seWee+75Hx9LEP7c3UHX9b9aB6CqKpdccgkPP/wwxcXHN1r5P4Wub4x/M7N5jGHfO/BnwuXe56h23Ya1LoktZzaysgrW5QrcvfYNmgeN4VH1YZJOAJcfrsp5mNzkk3hnzDgmbYK9Hz+I67yZXPy6ha+vmMhv7hnM3XOeJLtuKDefN5bLKzZDaiMpV8+FhnQGbMtl6Nn3EX30MR65F2y5ASw7JzH9Bwlp6u9hpZVXT83nuj8sZ+YFZ1HkSKKQ9WAL8ZuKn0DMIXl9HwrPeondl/TjHD5jVvPzzJVnMIt74JSlrDspgQOTmzmdFfRemc5Zp37A3JMvJCrkMH7mtwRxcpbpU6bdM4EXrtV58cRcTit+iffv60Z07ZOMGfkw1/wO5p/Ti6IvHibVA49lL+S+p2J8N9KMOvtDCtQV7H92MZoMkdYM7p8DDz40gAGO9XhTmgljI4gD4jL7J1RSFj6ftjPW8/wZfXlm08cQG8KLXzfAqPWkzr2Sr2ft4gR+onDkB2w6cCdDS3NILWqkN/v5nLOpJ419Q/fgHvogH0Yf5urfAUNDTN7dyhv9BhPGRhQrqxjDlR0f86O7H1ai5FNOABcOgohvXsreqWF6WTazz1TMAXpiQmFR2m+4lHcoeu9CHpztZjIr4fQDXPT4RJ64+AyatTMYz4cMm3E+j873YUbBXQ9S3EGizwiOiz/xAFU7H+Hk9V7eu9jL154JmFFoIJ0KCriNZ9nJQNYyitG9VnMrz7OVwYho9OQAjcNaWcfJTOQbSinkBH6iGS/iGV8wBBWxU7t53InLIHW5NPyrKFITOCxGaBYjJOhmzLp4zH4LAB0sgkwABbMukqxbSdIsmBDwC/FjAQ/ZmoN6MYxfiJGgm1HRcekmQhhOCyFBRRE0TIi0CzF0AWJoRAUVCyL9VTuNqEQEjTTNQgSNNjFGS+cQWYJuxica3cImMUJzZ0Fu7rRTc+qmYzHFKZoVZ2dQBkAUFZtuCBusuoQmGDrg9s4AC3OnbMKmy4ZTg25oliVE2kWFdhTsukyhZqKfQ8PjCtHUZqNb4VEKiqo5WplBu99Be2sCLncAqzOC2Rrl5LFbKK5JYffubkTCFpyOMDleE5sabPQwC9S1mzFh2Kkp6KRoJkKChl0XOSgHsOoSJaqdnulBUrztWCwx9h7Mpmd+Cw57hKO1yZTXJmCRNfIKamivSSbVHUK0xDHZo8gJIXRVNOzFEo3T6cLBBITOdarfQrzDhhkgM4ggATEJOSGMrgnEw2ajyAQiPgdK1IzdHUSNy1gd4c4OsIoWF5FtUWp255OU1YIgatiKG5BbQwgmzdDjyiruzFa09ChxF4gKqMlx9PRWBAVUHcSwgOAzgSKhhU2oHVZseYYTg5AQQe+wgi3O+k9GHfNaPt5omoCG8FfrANxu99+l4fV6vUiS9Ffd3MbGxr/q+gL4/X5++ukntm/fzrRp0zqfU0PXdWRZZvny5Zx66qn/6J/0X0nXN8a/mSLKMI+twV89gZ2rbuP0rTAx81V4bwQnJGxgR+gkPurejVNfhzd+C/GUVmqdSRygJ7lrRvHwBbfD1alE999DDVkUH4LghxPgjDfYymCyS7ZzxStn8E7xSAasHMknt1XxwMp1nLIadvoeY5ReRVJuC9OWH+bgjp5gzWZF9RkcMkOUbTDhQ+Yd3s6Pu2ZxwpC3mR5ZzIIX29jQM5HGOz7Hi5PwxjE4slczd9fHlG+fz9xwHdy5j+L1VzNqrZduR3qwa8kLjFvtYdyAGcQIU/P4Ippnf8rWqikseAyUJTfRUbaIlLdKGNxrOe9csIoasgnmw8Rez1C95w7O2VEB17/Cvm5zWHVxA+e/cD60nESvO2/jkzXP8fCDsHMg5DgOcDafU0Ueg1c7QLXxSeQSYqzgolNmwvIT0D4aDvJv2bNoEQeCaawaMwXPECihlNQ3J/D51EOcee1z8GVPTi1aRfjRJzjx/g8YN28gj8z8DenU84jlLvbe3JdtqIRxs4Uh9OQAXppJevsM5l7WjVltS0CK86r7fAK4uHX393CkO7trMvmNsp1e+n56sR9h3Qi2jTyKhQj7Z3/CIIqpIxMHQThlNXG5kG7ubYy/bSI7iqDbTx4Gbx3Ct+ONZLXtJZBRC58ym6kDltC271qKD0HdiZmM5gdWKGfg8cG6lBEEcGEhympG004Cw9jATgbSkwNMUr+kTsrglIN1HOnRDRd+ysnHi0wbHiYtO55Hy5/wS1HCXcbu/zQqpQ4GxRNpFM20CzHsunwsNc2qS8cG15y6iWYxQhtRbIKErMtEBKOQjKMRFTQsSEi6UdDKiJg0kVTditRpsxVFJY6OX1SQdQFTZ9EZEuJUdkbEpug2PJoJr27CpkoclDuMiGGimHXxWFRxRFCJCzqxzkL858Jb1KFNiOIXFBy6iWhnd1fu7EaHOr2ABQQSdQth4qRrNsKd8oc2IYqrM5JYRcOkyyRrFvJ1EzvFMNkBKz00KyZZx2qLoqoSySk+JFkjFjURCVtoPZhLXZ2XrKxGdF2ge7dqzGaF6qOp2Cwxzujhp7I2iXXxOMm6mQTdTIUUpH/cjQgkIZIfd+BCpHtKiGhMIhIxo8ZFWkIym0o99JEkzhq3jbTCWuyJAeJRE9GAjbaydCSzgiuzFQDRHjPif1usxpBaaQpKyIJo6pSFCDrqwXTsUh16VEYNmIm324h12DE5ooiaZsQBt9uJBi34WjzIpjiySSExpwlLkiFhUH02EltcmF1hwq1OxHKjEPbXJuFvTkCJmvD2r0QMiphUHdVlxAQLupGcJgYEhLbOdB3JCJ0QJB2l2YkpyweOOHjbocXC+zszwVL57z5UfpFfihL+f40WNpvNDB48mBUrVjBlypRj61esWMHkyZP/6vZut5vdu3f/2bpFixaxcuVKPvroIwoKCv6fnv//Al0F77+ZIA7O4gscOUEmNjVA715wqJgf79hE3oNXMfDkPzBQE1hwRTFXsBUXAd4JTucU22q+XihjYzBsuIzcy16kkFLsIz6m3xk7oczCZN8ufvxhPr7rP8VPDgfGNPPArBN47MZL6DZ/BRctb2NhvwvYqedSP+5jtkoX8NVYiYt5iuJHZnJrySBoWMH+pbPQvWBe8ltSTweyjmKOJTL5QzPTz7+QBTs3M23AQyQPgIebV4O3mZYn5nP1yKW8P2gy3Xt+Qf8fXewa7aNy6XxyqmDgpAUs4jIuzn2RWYsvZl5EpKTwY+bcex4XfjCOS1/dYET9DpvP9eoM7jp/Dltfugf37+fQNuv3nPXqVfS95QY0NO7kaXp64a6nQLQFSSCBlDcnknLKajYdupGhltX4C+C3vm/giftYOK+CaV+ECC2YRTEqmyas50Xfx7xaOp+czycw1PMNo0JfMV1fwDArdJBD6f2tXEkNpTPLeCBWDRELle4kowv63AgG3nYdPhJZ0zyFjgQYdtkLXEAH5YkegjgYyE4KKQOrlzWPfMcl1LMNN1GGGYNutm14aSb7qEB7dh376c2BQ2ejmGHfydtw7QV58yC+PdlIW/N5/ljk9tkDtgmfUlY0hSnvWfDJ1zI+sIlFJ5ro994gXr84n8dMd7Ek5Tq+YSKFlCKjUkA5FiJs5CRMxCgnn+1SCfWks6FHEufxMeXkU0cm1/Aq++gFJB/nI6YTVfzrITW1q+D9Z2FIAsCjG/lmChoCAg7dhEUXj8UFd3QWwwBHxSAuzJ1jaBj2Yp3FrLnTy1dDp1zyk6RZiAgqSboFAIsu4tCtNIsR4sRx6SYkXTiWxtYiRNBEHVXTMSGQoJsxdRbfISFOmDhhIU5EUEnULce8gSOCig2ZNiF6LNr455ALS6eu+GdbNYduIl2zUSn6iQgqUcGCik5MiJPU+ZiKYPwNYSFOraRiUR0EhDhpItgsKgmuMOGQlYOHc6j3WfC6YuRlt6CqEs3NCWRkNCObVIIBO+4EP+VlWZQ32olqAmYR9ukxAmIcqyBh1w3XiTYhTppuohmN/haIazqbm2zIwCmeEE5XiNOGHmJQiwdJVnF6/FgcUfauGUBW0VFiYQst9cmYzAq5JhVLageCOwq2ONEdmcT9ncl4VuXY+x/z2xBNcWJViXRUpOJvSkAQdVKKa7CmtROoMIbwADzpbWT1q0C2xZATwpgy21Fb7WghM9HGBFwZbVhSOwhWegnWeyjd3p1Q0EY8LpPkbaN6XS8yOmyYJ5ShWQTQdOQW4ZjAUs2KIrXI6M12BJOGoMZRQ3biDW6koAUxtx2t2UGz+MftP96omtiZw/fn6/5fueOOO7j88ssZMmQIJ510EosXL6aqqoobbrgBgHvuuYeamhrefPNNRFGkb98/H9pLTU3FarX+1fouDLq+Mf7N3LtsN9ZlpzNxmQw1WbyRN4aZk0ZyAj/xyg3w3TgVeu+njCJO3hGi/36Fod6vMNd6yXnuPII4GL4e1u28GfuSy9A+O4+nOx5hR6GbJ5vnM/iqaShfTOGGJSrl5PPR3C3UZMGp957O/eNGMq32U566C17iRi7p+JIB7/ZhHSN47jaBBTOM+OHvx0LQAeRUMXw9NN32DoPNG2g8fw3PX2tn0fUyF30A9Vkqm6YeYlv5eQSfepibJ03gok0VvJE0iZWVV1Jw+3ROXwED05ZT3t/PvNf2s3Hbzcx7fxvLly5kfd15vNQxi5xqqC8/CXrvg9ev4HrpRepJY3sJdM9axcmPnYojCF8zEfHNS7mZF7nmd3CK7RsWPNLCELZQOnU9lBYydNQ8OFTM2SNnwr1zQBPYq5TA6B948cALmGc9ytl3D+e1PfMZP/xBXNIVCQAA0IFJREFUMq592NCDVueQ6ThC8tgPaawawpl8xVYG8xHn8aX5dDArhLChbB5B+22/J4aZHKoZ732X803vkkcVOVRzmG6sYRQbGEbifXdAbQajao9QSR6DGmp4J3w110Xe5NshyazmFF7NHkfCtiKqyUEvPkK7G/bSh9RGyKoxitzGVCNSePy3EHDB8vFQvn0Kfpfx+2Yv4AhS8uogPrs4TFK1gwP0pD7QjaQGE+Gqnty+JMAe+tJIKhrCMX0yQAdujqy+mlWM4XWu4EQ2sZ0ScjjOYRN/ys/BE3+5dPFP42NLBTulZto7h9ZEwNHZ6TV1XpcRiaEidEYBp6mGbMCuy7h0E2pnHK0fozA2I2HWja8ZEyJtghFU0Soap9bTNBtpmg2TLuITY8e0tk7dhIJGgxShUYwandxOaYJdlylS3Zg6HzuMIb3QBY7FHtt1Y5BOFXRigkasM8bYcIOwGcNoukizGMGFGaduBF/8rC+WdQG105EiWbeiYvgHRzqL+Kgm4AuaCEfNtLZ4kESNrKQwLkeMuCKhxiVcrjBWW5SWZg82e5i2Fg+HjnoIaQIes0a//FaGWSQKVQcOXaI7RsqcVzeRKAgo6HwXj1KtCIwt8OEWBJKTfcSiZvYfzKW+KYG4IrN25Qk0lmXgTuxg9+a+bFgzCEHQ8WY1YbJHibfb0QNmiEmIljiyI4Jki6FGZeIRE6FmN1pcJB42E211EgtaCfhchDrsnVIInYSTSkkeXEZCbjPpZ2/HNaIU26CjmIqbICFqdIU7rFhSOrCfUIWU58PsDlOxu5DqqgwEQcdqi6CqEv5WN2pMRogKyK065sMWhKAEUYF4oo7qFIjlxBGscerW9aTs+wH4KlKRU/1GKpsGgsWIrP618D8Nrf2/cOGFF/Lcc8/xyCOPMHDgQNasWcNXX31FXl4eAHV1df+rJ28Xf5suH95/If+TD+//xGfCZDYNNVwXvh8L49PeRPr9VIJXfcBQNvO7/fOZUXwdfHgBX5tOI6ca+rbWwp3zaHzyWQ488Saj2naz9f15vHMpPHOnyuEiie4c5sZZ+QxjI7/dcIhdW66m/1mP89m+2SS1QrcjRmTtK0t+InbD7zHPv4UFp/XimgG3YN/Rg/0DI7zefCdBB2TXQEq39Yx4ajjNXqMIO+sLw1d42JAXKKKM2cFnucUxlw85n/zvC7kksAy+HQ/P3EGVNYXH1Qc5X3qPwBcXk3PWSxRzCNf0x8ERJOJPYffCV6j54vpjp/F7HjDu3m8X9DwIu/vBzgFwlcXwLBw87Up46i545g4i9flYR38DTalgC4MpBh0JzD1tEI4gXFoyk/WfzqNkygNkri0ypr8+OZd3LpLIooa8xy/jh9GwdUSYvj/ZcAxZzeVHV7Go8SGSBq3gIvVDFu5aTLDkEEf0YsYL37CHPlzMe3yz+y7O7/cArSSx6/vbSBj7KaNYg0Qce4udfclp9I4dYb+5kDoy6cDQd7WQRBQrHUcG0a/bpxzaO4XRP8D64dBQUsejbxzhjcKRbD4Rbn4RnH747MGdlAUGMNi5Gg8+jtCNtO/7cEnZJhYPGMqePuBtAUvuIVpJMkIo9BzOEj6nhmwSaKecArw046GNSvLoz24mlh4yXuycf27R+w/78F5Xi9v857fviHXgWZzZ5cP7D/C3fHj/EhkBl27Gq9mwIB3r7v48HGbWRRQ0ZESSNDOtYoyAYKSFxTuLX7P+xyGyuKAj6qAJRjH9s3xA1g0HBxkRk26UnRmalUOS/5hkQsHo3pp0ESsSrUKUGIYEwambSNOs1ErhY4Nzdl3Gq1uP6XxlRNy6mYCgICAYSWZCDFk3fHoTdQsxNLI0+zGJhYbRjTYhEhAM2UORZiFZ1slOCdLabkWWdbyeIJKkYzYpJKe04XQFCQbsRCMWQiErcUUmELLiD5opGVBKa4sHT2IHug4HD+ZS3mwnPzlMm9/MrijEBY1EXabAotEUleidHsTpiCBLKp8f8rJf7sCtm8lRDb8IKwK5Fo2WqMTQ7k0MHbsFdAF3VguO7g1gUtHDJpRWB2gCatiMGpPRNYFQq8uwDgtZiMdkwkEbdncISVLxZDfjHncQ3awhhCX0OidKsxPJFUELWpCH1sBhDx17s3DkNiPntaEnxRB8Zo7+4QQObu8BgChqmMwKadmN2N0hnKk+EkYfRs2MInaIxFM1dJOA5Df2mbhHwNSso/6YRc2mYmIRM8XXrwRJRy1PBF2g5LpLqBQ7/qnHxT/qw/tK1vPYRNuf/S6shbm+5tauz6dfEV0tkl8h5+hLOWcj4IJTNwNjf4KNl7JBv5D4wQtJemod87iD4Mk9eWjHUugfJHLqel7/aSF9n3idUZGfuFNYyNO932Swuptli0dwJl+yYOdiUqnh7Jkj4a6vYAu8XDieG7Jv4t21ixg1aSZ50o2Q1Ir58Tvh1gVMfPE57KkJ3J82jZKv4Ko94LjrQdT3HsZ+/+ekVAyhJtvMuKzfc8JpDQQ33EPzEC/Ft9zCgjm3QZuJ8xI/okfVySy+Mo2ayU08XOdh7YEHeWXnbqgbx/1z62hbdyODlbe59nk7Zy2zM/DsRylffj8XhJaTYarke8e1bC+BZ+4LMXeanaIRb5L/wVSkOISH21hZdQWDU6sI3rMAx6nLCLfnc+D8wzTTRh5VdP8pgfIhLcxq+pB52hxe4XpGT3mVzJ8yaRm5l+QFN/CHnv25VLmBH00nwuzHKXpzNgd62hg85BXe67iey584id8uupVF3AiqjKNkHVZk+gsf46adsXzPIYpx9lvPHvpgJ0zPsS/Sl72YGzzE0nwQtdB74alwro/0zAZyqeYtLucI3cilkoHsxPb9IN7KmILXBR//xvjHJ+DKYO5JGVxQ/DhJS2fz7XhjX8n7agAnV8Lgqz9g0xuLmLRVYc1wuPaaodwgvEQjE6l3pDGQVsoookPx4jU1sZ0SfCRyOisAsBDBRyK92U8+5ZBRx9GblpK9bNBxOgr+gp+dGf5yXRf/UuLotAlR2qQ/eodadAm3biZJt2JCxN5ZhKqCfuy0fLUYOGbpJegcS09rI0qKbqOBENHORDRXpxtDsmahVYyioJGsW451U626RKJuprnTpcGCdOwyGJ3jkBCnTgxj1SU8upNWMUpIiNNMBF0AF2ZMuuH52yoZ942ik6CbkXSBDozhJxVj4O3noI0E3dA0W5Dw6GY8mkw3TxSHTaEjaCGmihRkG04BHQEb8biI7HMjSRpKzEQoZEUQIDuvjrTceqIhK7GImUjYwltreyABHkFAFnRKW2xEdWiSQth0iRxZJz+rnQJBJxwxI4kaLW1OhiXH8LR46JsWoqigFIs1xuHDuXiTOthzKJ3EpHYAnKk+RFkFSUNIC0GjDdFvJVidTEeDB7M9isPbgSjqhDts6Lqhl7XYopTuLcST1E5CVgu6WQNJB7+J8i8G0daUSOGgw1gSgphazJDpx9HRgh6XUMqTUbbZ0VUJizOC2+PnyKFccvPqScloxuEJ4MlrJBawEdhQgLNfDdhjiO4oqqQjhgU47EEc1oYQEdGiMhkDyjGPrEQHhDo7gqTRuLH7P73Y/f+Dpopo+p93dP+RDm8X/1q6vjH+E/h+LEz6gpMAUuHKZfCRaQTrRsCySTDpuX5YS7Zzw08/8XXlFUw74wqeuh/eOXcqE+bA6qd8DGUT3gHfcyg8lui8+5jNbTx+xe30D+jc43yY8NgAF+Dnbp6EXQ+DWeEt5xQub2/goYzrebTiMRal38e5P1Xx1uqH2XV/K4/f9CQ42hi+3ox17BEiRR2ccvRNaNrP3FsuZtbDD7K1MJHB6g44fQXFb8/kuv4L2LPyMS696nbeGHMuv72pB48+c5hFd9TxNTaWvPwTyzKG8Bj3sSTrGSgbRePScYye/HvC712FFrETKK7j0Map7JtoSC+CO6/AO2AbjNmNIy7R9O1lVOfDoJmXsSM3kc9uOUA4tScPPFDLwkcamFm2hIO08QK38HE3G0/vWkDL9Le54JFp4BjKyVk1lOZL9Jp6N6N+yqfWW8tZ7ndpc1yChgUZFapzyCuqIp16Cinje8ZSQxaO567llNvmUPRTIt8NSWBEwyGuTXsRV5qfs/iCbpmHyZ62CLE2ncRaG+/un8cNkU9ZcKaJPCoZtaODbXEjvK73PiPsbcsQQ9Zw8Xuw/chs9g3onOHKrUYqzWHlGFhsfgHbtQHAyXtTFS7nPV7mBpZcp7H4Gok+u4dxdBw05ChEO1IocG+miVS+4gxyqKbhyAh6dfscP05UZF62T8VNO5cQOK67/jHiMohdLg2/BqKCSpMQponwsXUJuhl7p2TArss4MAa+zLqRzFYvhGgRI6TpdgKCQrJuPaat/Vmq4BcV3LqJsKDSLEZxaSa8nXKCSGcIBoBLk4mLZnQgLAiEMWQH7ULMcIMQjAI8LMRROhPSEjQTTWKUo1LoWCc5jOHh+nNCG3oMt27GjkySZqZWDBMTNBJ1Q38cRcWJSFwV8fmtCIKOSdSobUygPWgiIzmMwxXCbg93nsKPIgg6vjY3Qb+do0dyMFti+FoTCIctnJQRJBqTCYRkWiMyZSgMsYj0dgnsbrZQqem0liVhEaA4w4/NFiVFUrHZo+RkyjS1uDlSmkV+XgNpKW2kZjTR/6TdxMJm/C0JpPSrwtSjET1BQTPpqLvdRJtdKBEzZnsUSdaQbTFM9iiurBYsWW3E2xwcXD4In8+F0xWkdEsPis1xwq0uSnd042h1OhOv+hLHwGqjCI6LxHamInvCiBl+wtuziYfNdNQl4clpJr9vOWazgiSrxCJm2hs9RINWZItCe2Mipt0FJKS1klhUjzy+kniijslhuHeoSRrmEVUIEQnNrCN2yCBpiK4oezb2hV+LgwydtmR/IbH42Zasi18PXd8Y/6H8RlnKb37OAygqg3UjILeSE38YwsSxM8B1F4eK05jyCTy96gveHWNkbBfY9rPum8d4PH0hLHoaRI05E78hOPk72nFTRhEn3D2Xax3PYSGF8BO7aaYfO/ITGLwCHnkA7poGGbVJPLvoELNWb6RhdCV5q3vyuDaVR1cd5YfRIjNTruMPpy9m1Lj7KJ3zGI09tjK4x+203PUsfYs2w3sX89sLP4D7VsDvr6I/Wxjxcl+0GxYzaVkNk5ak88j4O1BvqCHWBGLDVXAqJPpgADvpNuwjJtCMhkhuNJ3vcBud2tJE3n1yN46N/RikHCVwy1ICNVfQkgLPn5/J9GszYOouelRFWOidxVFPIts8qUAe+x9YyYh5w5l+Uw8e5C7WMoqDQ4qZtXojCaM38d68Qq45auf2pFf4umg0WdTQ21fDt57R9OQARUolnPMYhzHRNqSU094fT+1FMi9wC09zJ6f6trLNU0hupIl1yx8h64rHSc18jxDrCR+aQuaqAbx2/TquLJ7O5/aZtFbncLgbDNwJSa0Qthk1Xk61od0t3pbD5MhyZvUcRO/dXpx+J6mN8NJNOvTuz9FpK1mzuIbtXIz7xB9oDp/OS/PK+HrmHn5oPg/BAcmtcDQri6Jue3ERIJlWvmYCQ9nMqG0BIOs47eF/gS4Yy1+u6+JXQXunNrcOI/71ZylEkmbFg4UszUG7EMOGfCwx7WctXWJnDLCChh2ZBM2EXTACJhQ0rEikaTYkUSAkxPGLcerE0J/EFhvDZj+HRxhuEcajG/66khFuIWio6KRpNmKCRrZmo12I0yZFcetmBIyhOT8KEVHFrsto6NSKIdI0Gy7dRAydSr+JVIuGPyZilXQUTaRWEUhVBZS4jNUWxWRWUOMS8bgRMgEQCtpoakjCnRAgv+goOXGR6spMGpsSCCsS6XETR6PQPc/P+T0raaj3kpNbhyDqBDociKKGIFix2iKkdW8ko8NO6eE81m3PRxZgnNdHxogDCJY4sXo3cmIQzRsDCYTdiTTvySUaNAp12RxHkqPomoDZFcaS6UNpdHPw+4EcPphP7/6H6D5+O8278qjbl8uBXd2JRCwIgk7V1m7k6gLxiImEoWWYMtvRAhZwKJgml2KrsCBs0LFltmEvaMLqCbDhs5GYzAopGc14u9UR8XX6I0dNmKwxQvWJhJ/PJqWkHNI7MB+wgqSjJ8fQrSpiiwmtxk3cZyfS5GLH3hzg1+HQAP8cl4Yu/vV0Fbz/TagyySOXwtpRcNJGHj4Y5JOJl3D2B5dxyeDbWeC+Apk4I9bB4sdOpOfidxh201TMosbS758ne+ybjNTXUunMZckba6mqGEn1g3sop4CBDXXcPBXu5C2sTzXgs5/BrDndoXcipgemQt/lPPpBjLZFzzOYOOKuvgzbAOnaAKiO8S0lnLRWhpFLuW3SWE5nBV/wJN08R+C8fGbMH0pwxsu8sW0xE3cZoQrXVcKj92eRkVLBfZtWMHfoaP5wYxKZZOH6cAJZW2HJdXDjh9DzxAdJvv0+GLqZW18ooPa5B1g4bAq/ZSefOeDK12FwVRM8+TR8ci40pvBEyRnc+3otW4dkUnz20wyadjUM2EmO4wDJ867mxJnvcM6GBvRRG1nBZExrh9H+2TAS/CrRxV/TShJPeM5iCp9QRwbbTSX8Zl+Q7uuSYOz34POQqdazThrO6azgRsd8Xtr8Chw5l4NXrCcHjdWcwjpGEC5uZlPQy9BXRkAwkZNycvjhFLjhFSiauBC6HeGz1ueIS1BQbnS20+th5gVDOPmLJPLLYWBbFTOn5ZKTtJ+iTweyGhUPbZyx1ERD2uncPmwOz0+4h1qSmXt0Ia8FpjF2xMM8ygNo+/tAr500kkp/djOqogpq+h3vPfoYcVEgLgp/ta6LXye/JIWw6TJO3YSnswtsR0bUBToE5Vgn1i8opOgWfIKCVzMTENRjyWy2zgK3XYhh1SVEhGMuDVZdQtE1VEEnikqOaqdFjCECpZKfBN1MtuqgSYwYkca6QEBQOSoFj8UGA8d0vm1CFAkBBY0kzUKhaifW6ejrFHUkQccs6qg6WAWdApuGEpdwOozurq4LCIJOXDG+Yt0eP/52J0rcRXllBmu3FrJbixMXNAYKZqyyTmtcI0+QMJnjhAJ2nI4wkbAFmyOCwxlC00RaWzyYzArRkBWrPYLH4yfF5SLBGeXA/gLSfuhNxuAyLIXN6H4LQqmL2NFEOsrTEAQdyRRHFHViYTNK1ERTZSptzYnoOjTUewmGLBQW1uBJa0O0xPH2qcYraaQU1FOxo4iA30F1WTaNtSk43UG8R70kF9ZjckYQylTYbUH3BrDntSBIGnpcork0A00T8aa1klZYh2tANS5RRw+bIL8DocMEMZGEFgeBw2mUr+xPXJGw2KKkFNUhyBq+ai9WVxhRUtm5uoTVMQVMx2HH/ht0dXj/M+gaWvsX8o8Orf0raZn0I8mr+8J7F8OTd3Mn87ntWVgzCi4peJzy92bz9OwoLz53CGQV5DgP3ZDGCNZxWts2Nnwyj8arP2f43WeTMmUJNKZSNWkHuQ9dzavjsrnydRBdPjj7c6PrPGIdy0dbOAUj9MASMCHHYZjnG7q9MIGeB+GphVUM/jSXM7fW8e1j6/ih6XymvgG9WhvYUJTG52dDcco6zrp7BCmjPobVp7Bl7keE37yepFZoTYLiQ8Zpf0+b0QV2qSFqFzxJ5vK+MHgrc1vmMmvVZtbYTmTY1Jsw3/4k9c8+xZrlj7FlXCs9OUACHZzDZ7SSxLeM5/KHirj5oRTcTRb6pqwijszFvEc1OTzDHUjEWbDpXfYPbUdHpLdyCL/JRu1Tz9Ljynt4LOV67ntco232SyQGFPhkClumHuCEvUF487dw3kcsOvEENASCOMijEg2R7a1jufxtWDUGRq6BsiJD2pBRB0PLG2jS0jAr8Pytxns69jv45qo68jZmMOUT2NsX3pmq4uiQGOBey5G6kcRl6HYYAsN3s0fvR0I7PG2dxiLrVUzka9rwMOjDIr5lApXnb2Yka+i1rPs/ff/7R4fWGq7x/eLQWtrvPF1DIf8Af+/Q2r+Sn7vATt1MqmYM/CToJgSMTq6O4aUb7xyKAxAQ8OhmGoQQADYM7W+0s3vr0c0oaHg0EzFBIyjEaRQjx+zMpM6ENkeni0OHoKADrUIECzJ6Z99ZQCBLs+PvlDvE0SiJJ5ApQ5IzRlJCCE9CkMMVaQTCEqIIGxWFbpqFk4sbyc6ro7UpkYrqVNzOMCkpPiRJxe934HYH0HWB2toUDte62afFsesixSaBakVABfJNOn27N5CU3I7dEUIUdUJBQ2eb26MSQYCm6hRkk4o3pxF3Vgu6JmJJ6UDO6EDPCMFhD+17swk0JiCb4+i6gKpICAK0NSTS2phIY2MyvnY7yYkB0jKaUWIymiaSktFM99G7sfSuB0EnvDOb2h0FpPeuRo3KqIpMLGhYzCX3qyJ0NIlAo4eaI9lkFdWQefFm1PJEjq7ujb/NRU6/cgRRw+yKYO3eaARZmFVwKsaZmpAEMQmtzU7cZ8Nf5aWtxovFEUEUdcr2FiBJGg5niNZmD7/dYfmXhE78o0Nr8xNf/sWhtRltN3R9Pv2K6Orw/h8jednJxoUzv4K1o3iapcy7eDLhnlW8un42/b2QUWHhh9t2csq2DvA7eajuM2Zm3MGBiovRhsD0HVVc+6TOEnUL3LKQLyblcNOl79C9ewb130zlwCNfcWpgGwRcPJk1lbvfXsXzl92IJWDiHOfbfBS+jN9UbWblLa08zhjaSebMMTNgxRz48HyuOX8O3985liYOMGrG2VRfvZmdDCDFepTfnZGFW07mgpuu5KFF1XRflUO3MUsI0kz/T/tT23wmrtM/BluY33MV9+3zs2/PBcz6zSNwaDpb5+8l5elFvP9sDQ8/fhUXXPkAF5RZaCwMkrpsKNqyl3n/Zph+5CvKH3qDF98fathPNNloS4mjIZJFDdN4ATMK8aGVKPTmBW5hCTfiarCx867l9NicTzxFgu6HSCxNgvcvZPnsLYxbnsi83Ou5bu4MqsmhJweoIYv+7GYdI6gNF5KQ1MCH56dRsh02ngRRC0zo8zSJ993Jlrw0mr2Gc8PIjA8Y17SD2Vfdhhs/acM2s7p1MttLwNEhIWogrh7JiaOXsrNiMvuH+4gH+tHPuROfJ5HZ3E8a9TzLbajIdJz/IQ5eZwKVBHAd3x31L4hLfy3ZjavHZ1u6+OdwrAssRKkW/YDRBXbrZhJ1K6malTTdZkgbOiUPMsKxYTcwtMPxzq6uiEAMlQ5BwS8pOHUZj24ipKuYEMlSbUQFnaNikLAQ74wtlggLKmYkVAx/3gTdTBgjWtmpmzDpIgFBwYxAZnIIi8nQ/vraHVhMKpomsDGo0y4qfC8HCB1KYYJsbGNKkh9VE2lq8qBpInZblJqaVNLSWklNbeOn6gTK5QAZmp3vNAWbKJGrWVE0gUjEQmtLApKkomkiwYAdhzNEW30y7uR2UnKaSOpWhyBpxNptuHrWIbii4I4htBouDIKgEw1aEaUQ8ZhMJGCnuiyLzTvzyEv3U1BYQ0KCg5S0ZkwWhY42Ny6Pn8Jh+7F0ayJemYggq1izW8lPCqDFJZp25NPe6KGmMpNIxMLJjiiJYw/gNmlkRrZR/8UAyl8diRI14/c5KRh4BHdJJYJZRWu3ovpsiK4IgqBDRELzGp14dAExzY85s4PkvvWGA7hJBw0cy9vxDKkAe4z1j/+G9l+I2j2eaJqA9hcShr+83sXxp2uMsAtmHl7KA8u2c3XLUk7IXEpq/mb20IfQazfxxOgR8M1E5kUe4EBPmP7dfjZtmcYS5Ua2SQMgp5ooFlh0I6OU9Sy+FrYyCF65nqVnSpzXbS4PjR7DrYsUTDFYVXMZj98HHCpm64FLePS1MgavdbDLk8cdiyKsOb8BL82UUsg76lRm3ePBRhhLVRqfnJjNNY+nMmzcw5DQztCPcxg+5nGGzhtF0Y/psGUI20tg+ujzoNnLfUsaQJXpfc3tsOlEbpsvU0sG1jsfpz2QRaSukDsz76Dl5dmk+qL4J/3Ae4tX0X83UFSGBx+HL9rKj87+LE05icSDqfhx8iZTacGLHye1ZJBBLUtmtINihpps8paMA2uUi5/KgV39YO5dcOsC6tZeSPDLC5iZfRsJDRa+ZTynNu2mG0c4sHkqIhoJtgZ6s4/6DJ1zP1O5KfUh6tNg1bY72dfb0O5uPa8CKaMaO2HWfD2HxxfVcNPtxSTRQv0Z25j9OAzbCEO2GKEVFiLE86uJhD3gDFDRMYBbZ+TiD6bhI5HLeZsJfEMJ24lgIdfXQe9lRcd5r/xz4tIvL138dxEW4jSIIQ5Irawx1bLeVEeZ1H7MKSFBMxuev5gxIxFBRdaNRDiXbiIu6KiCTppmJUUzI+gCjs5AjDoxcqygBUjWLLSJsWPyBaduIlWzoaKTrFtJ6LQwUwSNYtWJTYDqZhvBsJmjDW5a2+3IskZrSKJZjCEAJiRqxRib9mfgcgURRQ2X0+gGxxQZXRdwu0M4XUESEjtIMRmewyKG20RYUKkTYxzSVEJhM6KoEwzYaW3xkJrejN0RIjG9BbsniD0xgCDoaDEJQdTBEjc6p4pI9EAa/sPpWJP9eDJaqT6YS0NVOnVVafh8LmRRJz29BYs1it1hDB+aLAp9Ru2k16TNSPYYetB4nbSIGTVgQYtL1P9URGtdMiaLQmp6Mx0ddrZ8M5Taj4YQ2ZJDdH8aFkcUb1EdNneQlKwmTI4oRGWU6kTUDhtqhxW1xWF0dtVOPbesoXuj6MmdXdugqTNsRiC0Ph/ZooAljtbo5J01Pf/du+X/iqYJhqzhTxatS9Lwq6Orw9vFX3Hdsjrjwrgq7l0GeIHZj1FwDTBgJ1uSe/FF88s8umolNCdz3a0eNvSHfaapTPwGlGs3si75CiZvWM9bJw3DkXMADnfj0qQX6M9uxFPOBEeQ23veQMvvX+b8K2/BSpRnVn4BX0+EE8ZTkujlol37CVb1YsvzfrTcarbmmjl3rYtXuIHBI1PIO+MlnuU2Tp/5HcU00WOFQsmUB2hc9wikN4BiRtsylNKXniVr1i2IDKdDTSL/hnt5bsxKXltoJh4YQbK5jjaPSAceStiOdNkWFjCe3iRzWt1eMjNqaSEJMnyoOLiG3yHoOtuFgSTTykpOZeL8u2nHTVLJdnoPuh2UMIfKoUdjFTse+4iBy4fz226Pw+ARhj6hI4EZRzZCeACpp5VzXdEs5nI1GdvT2FDiJpVGHlwcJ3f9Q1jzoMNt+A7nVYL2Uz6aCJ41V/DOpfBO0iBypAoUxpO7Pos59xgevZoIF+fOZTslhLFhViCGE7O7g0fvdyOrEMXCBoZRQAWrGIOGSKnHy6+r3AXtF1zJtK4O7389cfRjA3HV+EH6oy2aWzdjRSJRMyOJcRQ08lQbMjZahTgBQcOEgI5OSIhToDpRBJ0mMYKKTosYPZbO5tbMRkgFRkhFSBDwahYKNDtHpQgCENB1WlUQfBY89jitATOWsIYkgEkXkToT4RI0iWpUGhuTsdsjaJqIokj4Q2ZyshvRNBFfawIxRaZbjo+GsiS2yh24NBPDdCdmUcdu0ghHTASDNlJSW4hFzUQjZgoGlBKPmlAiJhxpbVgKmhFsCnrAgl7kRzOBGBKQ3RGsMZmOylTqSzOJx2VaGxIAsFgUSvpWYzIrKDETug6KYiKtew3uk0uNF77GTazeTbAuEV0TiIWstNR4iUXMJKa2UXkol5YWDz17l+Fwh/A1eoiGLCBAcl4D1hQ/6entiJY4qALxNgeiNYYasqB02LFYOtB8NkRPGDEQN4rfGOh2FSwaxIzOLn4T9iHVqEcTQNJQgxa+NzUet/3xb6FqoP5F11ntEov+6ugqeLv4+zhlNTOOANiYdnQph5dPht5+CNt58n549PVSSqYNZ+sg6HH3FaTIdVA2kSE/ZvLNnXv58dmPWMUkolgpmLQJJ37CuAm44PvlL5DUAif8ZEiLLxyyAvNX47hnai8SUo5wFs089OkuFmedyQ99IGsbTPlUR8iJsiXqYFLBenhjKpuyshn6hxFcWb0f6s+mad5copespvtBJ1voSzGHcP8wBOGcz6A2E1C4xTmHDY+lcpLi5y3TZVzJ6zSSioMgYewsz+jHuKqDNOcKHHRnUEEB3TiCJoh0kMBRspj0wAkwPIZv+/kknzMfl98JiT4m5S2kbd00Bm7YA542bs6azYuTZsIPo+HUVWALMzN7OvMqFnFb/v1czHt8VeKgCB9Hon148V4fu+Yv4Oovc5h95nBG8iUnLz2V2lg+ix+p5r1BZm6/N43vnvieS+bmMndWDN/w/Ty843tuG3gFIhrr187C0wa9E6ExBY70VIniop9nJxUU4A+mUew4RBQLv+n4lrfc51BNzq+v4BWN5S/XdfF/jz+1RSulHWQ6U9SsiECuZsWmS8QEDUEXyOgcaqsTw2RoNtJVG01iBKlTHpGoW3DqMm1CDIsuIgqGrCJZlwmi4RcUwoKZMCDoAk2qSMhvwiXrtEQl0uxxskIWfIKKT4yhiBoiAs1tdnqltKJpIk0tXpITQtg7B9G27stH1QVy0zqwCTAo7sYlQIojzqGAhEWV6NejDqstgihpZObUY3cHCTS7QQBvYR2SJY6QEkK3qwgCaGZABN2qg6DTeiSDmtIs2po9RGMmjlSkkOwJk5nRQnp2A6Ko0d6agMMZwuEO4SwwCkm9w4IaslC7rYiKg3m4EgLIchxfawIpGc2dg28agaCV3bu6k5bio/KoF0nUsVji9OpdRkZBHVZXCEdmG2rERKTNgS0pgOSIYi+uR7ApaD4bJEUgKINLMdwkgjLImtGpDplB0tCdCpInDHGRlj05+ITo/7R7HBd0XUD/i6G1LpeGXx9dBW8X/xDdey81Lkz8mkd/AvrC22OKGLMK7n1SZyiV1JOObT/MKP2co0UR7pyWT/nCdlIPJtL02hM89GQU+81wctIXlNx1Fm/N3860h1K4P2sezWcovPTlF7CvN2/MHMz6KRYi7OSdE/uz5ODTlOfPZFm/MUzjOt7iUk6/4z22cB5Dfd/S7oGEm+aQsjeVg1/eASNf5YTbz+fLO9zcMPQ2drz2HLtvWU01BbzM9TgI8q1pHAVUsIZRjOdbrt67kf19ND7gQuy5YQQ0wtiwECWKBQ8+HASN+z7yI+OV76meEKXooMb77deTUA0TB84hcfz7YFLgw/N5sforKPEQm7AKc1U6ZNQaDglPLOS5EzZx+NpWJvMZAVy4t/Zhy/wP+B03k3VmDY/fI7Lwgqv47Caj0/nMLDs/9EsmYoET+AluWYpSsQAFeGKgBW+FE4CyQiO44ouzddKpp8/ODDoGVJC4egAuCeQRqymklDoyqXQn0YYHEzEgdJz2rF/mlyQMXZKGLn4mICgEBOWYFlhGIFGzkqRb8WpWLIikaTY0oENU6BAMzwUHJsOlQdA7vXtVgoJCturAiUAQo3ubocvUo2JBIIZhEKADMaA5LKOjUSuFcOomgoKh8d3rczDYEUZRZOKqMSwWCVtobk4kGhf5QQ9RWJVAD1ucdG+QRE+AjOx6hoattDQnUtzvMHmn7iba6Cbc4sJki6HGTNjTfMhJQbSgBcIymjeOXhRG0EEzgaRAqMJL9aEcjlanc7gqiYAikpMYISe7kcRkH7IcJxy0oaoiFlsUb349Up4PQiaCBzIINrkRRB2HM0RzQzKDTtlGr6KtyI4oez89CV+bm/pWOx0xkXV1diqkMCWqg76ZfoJ+Owe29SAx2UdG2IKuiobdmCoip3UgeCLorTa0kBmh1ongiKGbdXRZR9QEdKuGoMeNwlcX0O2aoU0Wdb78YCxhof647GP/E0aH9y/WdXV4f3V0Fbxd/NO4pmkp9IUly4zrN48bxvB6aBzjJ3vmTCILpxF9YSFMegyzAtN4gTfVO2kngeQpr5KHl9se6s5zC3bx/HSBZfEpTEpdy0ZlJFM+gRWnw5Lnavlo+Ex6OiCAC+2GxQx++RkA5J9K4JNMtvRL47SnpzPbv4Dz73oBdqtwzmfIOaOox0njLR9Qe+hCSoqXomBiPcPJp5zz+QPrGU4bHj7oM4aS35fQcJVCM16yqCGTOlpJIoVGWknihPeL4LztZK/uBe4SRv3uMl6bCleubDJ8ww5dYFhI2MJw6TuQVQPVOZg3e8EVgHUjaBhTTtLi23F9NYIasjiBLWiIpAxvpKd+kBP8B1jongrxfHrvh0lfQF7/ZTChnXdOuYzig1ATmIXHWc05+S/wzZFbaGsuJJABvSzbaSKVDcOyyKwRCDoy0AfsxoSFfaObSKceAQ/76Y0TP+0kcC6f/HrS1f6EXwxa65I0dPE3iKPTJBpd4IOd/xg5dRMJuqXTu1cyCmFdpFmMkqDLRAQVMyJm3YKOzmExSosQJVWzslsKoQMnY0MSIKCCy6ri0CCiiNQqOtmqnWbR0AOLCOyVAtTXpgAQDJvITA0RCNgRBJ30xDAXIRCKxrFbFCwWBQB/hxNJ0ijqUY7dE8S3LxuzO4xsVbDntBD320AwAh8kdxit0YnojaI5dQSlcyhHA10TaG1O5Gi9h6gqMLCwhaLulWT3rKZqXx5BvwOzxYj6FUUNR0YbWFUImBE7h/J+li+EQ1Yq9hSQHZOxJwbIHVhKelEtqbuK+N0PvWgV4yRpZqwi7Kt10R6w0rNbLQnJ7fibE3B524nUJ2DLbEOpTUA5kAGAOSmAYDUKW8FnQvfG0JwqCICoIkSMN070S52uDhpbmmxg+TfuSH8nqib8gqShq8P7a6Or4O3iX8aLyzu7wMuGwqg1WJedzu+ugZlP30de5n5slDHnh29gd3+2ZI1kUvVyJoW3M3N6H/qvTiJr8otM5wqenQbWrFJOSZrPwimLyCtZSt+schyP38bXLy/lW25k4WvbSL3yK0qH7OS0xy7mCfttPGy/wRioe/Fplr78NfWksWXpY2RNfpFJxc8QxsYbwRsZ7/iUOBLNeDlAT6JYOZ0VNF21kztooAM3tWSSQS0pNBLGRo9YBVUXhalgOKNyqpmvzWTGpKVcqfhhShCaUsGkULnpAvLunWXYLQQdLBg4kukf1/DReSLFvQ5hw4zr49OJnPcVJyDxRMPz3Jt2Kys4nahg4YC7J4n4+GTeBsbOOIMHH4YSp4cDTZO4cx68eJdh9F+wNocBb07jq3ug714oLYTqnBxO+MbLoWLQsup4etlmnugzGa2wgjgStWRwOitoJZlGUthDH2RULviTBK1fC7/o0hA/PtvSxX8mP3eBf0aWBBy6iSTNilOXjUJVFzAhogg6Hk0mJKm0i8Z9clQboc7T1ioQioq0KyJZbgVZkQh2DsSFhLjxOIJIU4sbuy2Gw6ZQ06mh7VFYT2ZWI9GImZ925jOgz1Es1hhVlZl401pISm1FEHQ6mjyk96xCEHRsae1oERNaTMKW50OPS4iuKOFDaZgVEbGvEW8saIAI4TYnOQU1dOtTSum+QnKLqrG5wgiihjez2UiJs8VI6l6LObPdcFAo96A0udAUmY4mj5EW5zTS42Q5zuaVQ7BYFPK7VxJXTLgTO7hixCGcrqBhHXY4l+y8Oqy2qOEf7AqjaQJKxET9gRyS/DYSetRiloIIsoqUHARbHAQdrdaNKLcTz1AQI6BLOiTGjAo+KiBoAtHNOawxNf07d5m/m66C9z+DroK3i38rC79bCgONy+Zl48Ea5dpHMniaGSzkMoo/KCF9P6Q2wu61N7NgXSkP3lNEVk0Re5iHt6SK5urJWPp9QP9+9/G5/hhL7m1ia+7JeN+EohP2M/vafK5iDou5juqmQdz+8r2MIE4HCZgnN2JG4Z2GO4ha4Nwv4JSLv+ZLaSI2whRziHEHq1jTI50PuJAXO+6GBtjTvS/PcyszeIY4El8vW4T/vOVcULsORAczcqazcvsCfJO+4txXiolf/3vWMIpTR0w3it3e+2DTiUyv3winH+AcwshtLgjbeOi8fjzUsI4H024mL20zjmeuY3pBBUenNLOz6XTmuKbxmPVOfngE7nPcS+qHo2Cjj/vv9KCFHcx4Bgq6L+eJJd2II7Pdm8vZn8OePkaxO2An7NYy+Do2magFLGj05ADNeKkjk40M40Q2U0YRt/ACMOp47iK/SJekoYt/NscG4qQY5VIHYAzE/RyO0SzKhiOEbsKui1RKISrBGGbTTWi6gFPWMUkaiZioEDTaBQWTLmISRIZoDiwWP7l5dfjaEsiS4xT0qESJyQTanYiixuiT9xGPyyiKzMAT95CU1YymiTRXph7bTrMniK5IIOhYs3wga0Qqk7EoHUi2GP6yNBwRM6YejWDS0Oud6JpIan49zoxWEjNb6GjwoETM+JsSiCsyFluUtOEHEbP96C1WwodTiYfM+OsTaW/0oOsCrU2JhAJ2gkEbJnOcqrpEDvhlsvZnMqTPUTbuySYrMYLTEaGoezXhiJlt23oQiUlkpnaQnN5Cc50XmyNMWmEdjnQfgklDSm43QicEHRwKxCQiNR5sjihCqoIQEtHtGkoqCKqO3AKEZTqqvdSIv5Ko879A1eEvTzh1SRp+fXQVvF0cd5Ys+xwYxTSqwF5FwrrJDO35BuwcwKZ7tlC4togDI5s45asUOGM161257N99IVX98jALUe6fnsI9GbdgVxTWmYZxHi9S9Gl/zpzyJWtS/GxgGNnUcHngU8qdKYhojE77gB8ZQb/LnuflnxZTMmQJ++mNjEqwx1GqGcJZfMGNtme5u/ujuPAziS+oJ42B6m5s591F8lE7f8gewQUfx1m6fxaTz5jBrOb5nLtVRX5V5dT0ekjpA5V54G43zsm/dzHtopvKPOh/7kO8kT2Wh9RHeTC+mLNfgsEDv4GyS+Gq3/NK3Xzm7PyQOyY8wf08yheOs0h97DruvzqfR3s/w7CMAsbfMIW3LoOCWgzpxX43Aw4bMcSqDG0eI8Diwg9g5wAIZvloVAqJmUyEsSGj0ot9uPCTSiOLuZaZHDzOe8Rf84suDV2fXl38k4kKKlFBpYXIsXU/D8SlajZMGBKIdNWEXQeP3Uguy/dEifsc2ATI8URRNYFkTxsALU2J5BUeRTapSHKcpOwmevSsQUqIoCsiSpOL2m1F7N3Wi+6qRGphHd7cJuwp7Zg9IaMwFEC0KIiuKGq7lXjYDI1uLCl+bKntCLKK3m5BsMaJ1SbQVpeEKOkIkoYoaoiyRrTDgt/nxJ3UQdaI/YiZfpB0UEVEUxxds9Ba68XX6kZTRdrbXdTWJ6JqAqnJAWRJI0WE7aqCpyKNQT3qKatKYU+zja2ViTglnbyUEFWtVk4Y1EDA50JTRUzmOErYjCCrxJpciB1WzBntCCKgiGjJCrZTy8BkyDIAhIiIuUxCr3OCqKMGzLTVeI/DHvH3oel/nbTW5cP766PrK6OLXx1D05eCzwN5lQxdlspQlvLth5Np9sKlgeUc8hRTTTcsDcOY9hb0GvUK8QwFnplBfNYmHARZPCWFIOeSQS2T9x9mca+R7HH2pR03USxc8GhPTq2B8MsKNwy4AebM5OA9H7OXvnzLeC7dsRdMMdx9fk8MM+c+1huGrweTm20jBzCo4wifZQ9h7F3j4JFp5FlLmce1zP30SzjFRuMl35F61Gz48A7ealgKjF6N/7sprBthyHpfrn+IvOyP+faTxTzcfx6RvTP56MYsMk56l5OXnkIvJ1CXyTMrv+DgqSmczefMuu8e8rbBAukO0lnOjS8ZzeMtI8pJpRBLxI0jCAkdULLdeJ6XbjRC74IOwOehZzXE+wUMDTQChyhmt1rC09LtPF3zLPwaC94ul4YujhO/NBBXKfpJ0W0UBZxk6lbSbXGSZKOl19BhxiLppCbrqKpAOGKmujITb0obJouCqkiGDZegI5hVTMlBlKiZjKwGAu0OtMOZJGa0okZMxHx2RFlFssXQFZnIkRSUoIVQixtVkTE3JCLKcQRRR6zyYkkIEahN4mhFFonJPrIHlBHx2bG6QphtUXRNJLGgHqmgzfC5jYhoQQvRVidK2Ex6txoa13pZt62AKlUnKKgMcwjUNrqJxkSimoADiVUdKhenmDh1zHbcye3421woURORsBWnI43G+mSaGpLoOeAwkYCN5Jwo0VYnzWXpiLKGK8WHPaUDW3EjJPiNYrfJjN7kQMhvRzdpqOkKpLQhVVvp2JbPax+OAHPZ8dwV/iZ65/KX67r4ddFV8HbxH8F461IIAKvGcDd7ob4Fzl4Kp2WCLczs5peZe848RnGYt7icfuxGJs4GhnFHr2vRAm40ZxAbYa542suX92+jgHKijOWcvRUcvOdjivXD9Ghug5osyKmGnQM42VFGS34H2n1P8Cy3M6PiY3rSwI8fvcA5Rxqg/yoq5y1k4A33MND/MdScydFpn5K9qQDSGgh+ex6Oc96GzUPBFsaVWsqZ/qPUT13BxrLHuJCNJIo22DmAOffA+c9NoDIPDk+ZyyUNG2gbq/A802mK5tDNspfU/V6avaAJ4Fg/Du/wJkoLUyj44npKz9JZ8orCI/eaeODNCpaemE9rkhE+MfZ7yKwFdwd8dg44gAgWmvGiKA66lcLz1mdpyQ/DtuP8Zv8CXZKGLn4t/OlA3D6pFQCbKuMRLCToFhIx0yNmJ6ndTlZGK1ZrFG9qK97sJtS4iMUZQTCr6DEJwaaAqJGc00g4YKO12YMr0Y/JGiPqtyOG44iyhkULItljtBzOJBY2I8kqskUhHpPRw2ZM9igWdxh0KN9VyOGydE5KbTFkEIlBHOZ21KgJW24LQo9WiIjorRZQReI+G1pcovVoCnu29qL8aCIVqn4sZrklJNOm6eyVgkiSQJFqJ4LGknI7IyqGcNbp24hGLDQ2JNPYlEBTu5VQXKRfvqFFdnvb0TWRlso0IiErZqsRLiHIGroGYo0NYjJ6RDZeF4uGZjOeWwyI4IjjOaGM7eKvyznmT+mSNPxn0NUj6eI/k/R6o4iszoFDxczdsJQdy2dSShHn8gkFlLOGUYhoDGc9qc4yCqhg7q53+fHOjdy0YTsH6ImFKAcHhkigg2eEO8Dlh7hMe3IcPjuH2FP3kby6L7N5nBlHP4DqHOw3PEPSVU9T6kqD33xMXsEqw/8r0Qd99pB92A4xM0QtOCa9D0DVrHehoByu+R2RzaNJuukx+uyBVYyBsz8n+OM4hmd9SN8rZrB5Sg1P6bOgNZkgdtJp4CrLS9yC4VeclLud8cuh+/A3mXNTAtctMYZVltzuZ81wE0E7LOuXz+kr4OL34ZWyuSS0w4i9bbw5FW5cBI2kkEoTrUaAJ2O/B8UEC5ctP45v6t9Glf7o1HBs6Sp4u/iVEBbi1IlBDkitbJDredtSztMdPhbs97BhRz5HDuVRvi+fWNhCR30i8TY7WsgMURk9YsKaFCAxvYX8HpVkDyjD7AoT8jnoaEgkGrDSUZNM68EsBEEnrsj421xE/DZki4JsUbC4Qpi9fkrX96b2aBonD99D74k/YcttQQkZtgaOkirEzI5OGYNArDqR0JFUAkeTaSzL4GhZFoGQFZNJR0WnWVSICjo/CB3sk4K4dBMu3USzoNAuKuSrNo7G4dNvB7FjZzcEARp9VlpiImZRp6ImgWC7g6aaFA5t7YEns4WcgUaHNhayEvPZUVscqE1O9FinE4MuILRYkI5akBpkVI+GkhlH8ESoF37lBe8vLF38uujq8HbxX8PA/KWwrCfQExcwg0NcP+ksjgQkbM4mUmnky/45dOMIezZdze31X0K6Dwp9zOYJ8iqBsnOouuhHXmidz7wnp2NuTYL6dObsfge2j4GoFa5bQq9V6WDeD/t607ZzDM9dVoyH4dweOAJ+F9SnQdAONdkQtpFbl8mOllMZWFrItws/p4F02HwihxnGubsrCNlg/MEK2DOWxrOzuPw9oGMsr9sGcnH+HOpJYzaPMbdtKQ/WTOakA23cw0S2LzrI8Ff68f3ZQbaXuJnxDLx1OSRN/j2fuq9ix5hWOriTF+fDPS/HSSqDukyIYqU7R2gmGXPQwduXG5v9a+zuguHQ8FcuDV2fXl38Somj0yCGaBBDbASoBmeVg6yN/clVHfQRTAwubqC4Tylp3erQVAF3RhuhZjcdNcmYbFHsicaAlmyOU3coC7vbKPhURUI2qcTjsuHg4O2g6XAm2pFMVEVm4Em7yT55P3JKkGh5MnpcItLqxNxqR3RF0WvdxENm1LCZltJ0VEUmHpMxWxT21brQdRhgi/OhYuiYkzULbt2Eio5VF3EiYtVEkgUBn64T1gSOtFpp9aeR5IoRa7eQYI+Tnebj0IFCTHIcJS6jrRUoHnQQTZUI+RzYEoKUrighf8ReLEkhSIyiyxo02NECZkNjDCBCZHs2tWLwOLyTfx8qv9Dh/Qcfa9GiRcybN4+6ujr69OnDc889x8iRI3/xtp988gkvvfQSO3bsIBqN0qdPHx566CHGjx//Dz77fzddXxld/FfzyrIv/ux6/Msp/O7ln4jdtpOvKSJMP0rw8vjqN40O7Yl+cj8+gXl8xeHzsiiylyJuGIa+fDzCPU+wp9BB31mXw11PwdpRxBffxDsvb+fhNzugqAxKh7CmbTKjrMuhLpMvk07izCMH+U44lQE1sKF7Pya/1kHj4RNJve4x3lh7H3w8leZsqOrhZHvbGbwkXse0qc/jfHEg9wWf4U7fPTytzuJI8n60SV8y+t3JkFFL306LtOocWDC3Fs74kk3POrCEr2WwbRsVYwqY94ZM6KeR7BwA3v0pdDsMzV6wNDvZkjgMdztEk4L03exgV7/j8x79Pai/IGno6vB28Z9EQFA4KLVxUGpjBUA52MpyKND60DfuZkhSjML8BlLTm3EldqDEzJitUTyZrTgT/UiyRvWhHDRNxJ3YQVJGC6KsYnKFESWNYLuTtII6HCntoAsE92bSVpmCyRpD10Q4kImrsIFoo5uoz0nDkQxCATtma4xo2ILZEuOsEQeorkojK7sRthWxMyzQIcaRdAE3EgUWHbOkYjGrmGUFVROIqyKb2yXq4jrnJAbZ1Woh4jdxoMNLqgRhVcAu6awt95D7UzeS3FGyMlqpOJTHwNHbMad3gF1ByYwjBUBwKIiShu6OI8RBDMO6D0cTFX69xtsqf93R/Ue29oMPPuC2225j0aJFnHzyybzyyitMnDiRffv2kZub+1e3X7NmDaeffjpPPPEEHo+H1157jUmTJrFp0yZKSkr+ob/lv5mugreL/1PIZy7lhmV/sdIWhmAidD+CnlGHsPoUGPs93Vd2g2BPWD8c4ZzPKC0U6btXgyfuoVzKo+DuJ5EPd2PanMkwbK+h/XWEGOX6klenJHL1rB5MbIPyvB6suriBET+m0ewFwmGcftifb+W3G7+DCyt5ZtjVLFkyiIxrH4D3L8B1UYCfbt5N6oN38PTAL3m2eC4jkl9BfPNStk/dj+X3fbh0+V6+9l/ARHU5nLGPN/oN5lDDSMZvhFsmv8BQNrE1NIwdF8PVA6djWbyAyjxYdUkdRVQbnsMWN303O6g/sQpv9V9/oP5a+MXgiX/Rp1dFRQWPPvooK1eupL6+nszMTC677DJmz56N2Wz+1zxpF/8nCQtx9kmt7JNa+UMQLHskknZn011NoKdmZXBeG30HHMaV1IHZHiY5vQVJUvEW1mNJDKJGTMRDFhJzmvB2r0VTJOJhC0q7nfZqL621XtKLagl12NFUEZu3g3jIQjwmY3FEkc1x7O4QcUWi8mAe7/xYTI0YZVIgj8EDylG3F1IRNXNACpKn2mmLilQKKlpY5GSniFnW6Ne7AvblU9thxu0KkiolUaGquJGwyyrtqoRfhdEFPiRJJTOrEX+7kz5D9yJZFdq25pM4pBxTwIzmt6CqIlJ2OygCks8EATMfbS4ES/nxfrv+Jv+sDu8zzzzD1VdfzTXXXAPAc889x7fffstLL73EnDlz/ur2zz333J9df+KJJ1i6dCnLli3rKnh/ga6Ct4suwjYQNdg62DCWGfu9oQ3utxuqc/A/+yCuJRfhYgsc6g+fnkvBiZv5clxvzqzUYNQa2DrY0P8WH4TsGq7+tD+1lmQyr15CwbKzeLziVSg4j/6TPyJ0y/3YU6rIpA5aT4WsGpYoN4H5YjK/6w0rx9AtVyK5NYXGh1/kwHs3426HEzbD/VOLaVYyKLHCYs8FXGd5k6rR5dS8+iA5u2HzJVF677MwKbqC2aPHkZVquDNU2ZPxNsMLt0BWVQZtkQyieWDSjU3PQOChHUuP9zvxN/l3ujQcOHAATdN45ZVX6NatG3v27OHaa68lGAzy9NNP/2uetIsuMGzR6oQgdWKQNQD1kFKbQzctgR6qnZL0IEOG7iHU5kSNmdBUgXC7g9T+lURbnGhxCdkWpWJjDySTSlNDMiZLjOaGZFLSm3FnGkN2emekcFySCficdLS6+fTHHpRKQVR0PvQJDNzYnV5pIfBZqFVMuBBJs8dJ1QXCikSpX0BDp2xDMYWJUUb2O0rV0RTyUkKYW2wcVXRqohKJkk52Uhi3K0iPgYeoPJiLyazQWpuMUp5Bbr9yhMQIKCJiagAtLYoGiK0mkHWQNDbIrcfzbflf0QHtF9YBdHR0/Nl6i8WCxfLXcXGxWIytW7dy9913/9n6cePGsX79+r9rOzRNw+/3k5SU9Hdu+f8tugreLrr4S3YOMH5uHAaAqyYLLn2H1IpUcAR5fnI+t1ZvpZBS3rXcySXV3/Hg9GQefs0PZUWG725rEpnNMXYMjTDwnQT4/Gzaa3uRN/831CbCB6fm0nvJfIZKmykfeZSsmxZhPucPsH443Pc4Qz95gL7930VjJ08OhZrCKF4ycOInZjIhal567wP9x8tZPnoTW69WeOntdZz6hszzZ43kcLdxLLwnANcuJlh9B5/xIIdmg6cNqnN1+u0U0ERIaDfq/eyNOfxqBbz8e10aJkyYwIQJE45dLyws5ODBg7z00ktdBW8X/3aaxDBNYpgNMrzeBpav08nWutFDddNflhjc5yiCAPYkPzX78hAllfLDeSgxGZc7yJaN/YhETeiaQHJOM2ZnGGtCkEBTAkrUxKZ1AzlS52RARoCikJnSdjM2AXzo1LbYsEga3TQLCtAclkm0qJglDSUu4kBgSEEbWdkN7N+fB0CSx08kKtPaZiHbGcdiUunZs+r/Y+++46Oo0weOf2Zme5Ld9EpC6C10kCYIomDv5dRDvbMe6onoWU5P0bP37tl7O/WniGcBUUB6770mkN422WTrzPz+WLImIQlJSMXv+177OnZ2duY7a3bz5Nnn+3wpLgqeL8LhYsXKfsQlFTL4rjkEtsehl1igexlSVjjyITnYhsakQlgA97akDl2/Cw1neFNTU2tsf+CBB5g1a9YRxygsLERVVRISEmpsT0hIIDc3t1HjeOaZZ6ioqOCSSy5p3MD/YETAKwiNMX9y6J+37p8NGPiCSxg9+XPuYjKlREFFAZzzLWwaCJVhrB1gYtjN10HvnWD24HhwBvw6ibAF/eh/4puMMmnQdzupNz6H4dZnKHr3djQZXB/ez7p7F/ILA+iPRHr3+Zz6+mQW3NCbWAq5a8VCMHUFt4On3nQwnL2s847m0bGTcFshP0ml53YFPGbeds4k1gcxxcFOawW9S0nNjKRy8G6i83rSM2UhI2afxHfnqlxbu9SjA6nq0lB7W1txOp0iayJ0CF5JZY/iZI/i5HuAbRC1dSCpWgQRmpHemhW7DIqkkx5vwxFRSXysk/jkApB0Ah4jWsCAYgxQUhBFdmEYBRrk5YRx7sBseikqzrJwcgsjqPAolPoUHAadvADsQ8XtMRBv0pjUvQRnmZWdWZEoikpiQinl5VYKS+wADOlSRmSki8IiO72H78Bsr0BSdLSN6QwdvIc+U9ah7o3GkF4c7BxRaMa9Mx5zcimSzYekymDW2LN4AG6pY68jrhLsbFF7G0BWVhZ2uz20va7sbnVSrSWKdV0/YltdPv30U2bNmsXs2bOJj48/6v5/RKItmSA00/1z1jFljoUn5izh9Tnf8Y+b04I1A5GlEFnKsP0lMHwNM/46CFKzWBw+BDYM5uk7YNS7/Sk6YQ8snEjWfx6BHnu470k/cSO/Z+u9XzPtfZkIykkkj8tvG8nIqQ9zAV+zjqH8lHkdOB2suW4tXizM41Rmme/mny+VEZ60k4v5Lyf/CiuGGxm7FNYOhytyfsGggkKAM/8HZrwEEgpZ7j2JheeWYi/u2DPAqro01L5B8CvD6jev19ui596zZw8vvfQSN954Y4seVxBaSonkZaNSyBJjDu+a9/KKcR/vyzm8WhDg411RLNzUhe2beuF1WVCMKpWlYWRt70pRfjQ2s8oAR3CJs0e3RTBvfRrL9kazp8zIIZ9Epq6yQvNShkZXDJgAp19m2d5o3D4DPZKdFBRFoKkS/oBCVqEVvyoz/tQVVFZaKCq18Mzz57Lxl2HsW9mHgN/IgJPWo/kUSjd3wflbL/w749Dyw/G7LOhVX+fYvehhAZYv7cCzaQ9T67kB2O32Grf6At7Y2FgURTkim5ufn39E1re2zz//nGuuuYb//ve/nHLKKcd4NccvkeEVhBby1JzfYAJQHA1hFcHa3j3deX7lJ6w/o4iBt99CuQbd98DG8nH0vGUchBfwbfq5HBhYxmsLP+XtpCvpwUcwII9B6HzLORif+w991kbT46XLeQQr/3wUIj8YhZtd3PeMG2KzoPxPvH2xHT/F5JDMqJ3wxnPbuP31csYtPoG/XXwydickbonF+rdnOfH1mSRlwwu3gsNcyn1LFrb3y9eghro0NPYrw1mzZvHggw82eJ5Vq1YxYsSI0P3s7GxOO+00Lr744tBEEkHo6ALoFMkeivCwXSlmLvDufgM99o5hYMBOrCTRM6ECWdYYMXQXsUmFTPYr7NnRjT0HrOi6xHqXRKkcIFIzEK0Z8Us6u/ARixGvrmFCZkOZQpHLSqxmxK/GUOlVGN43lxET1/DVR1NY6VToa5QY1q2EjZu7sb/UzBmjdpMGlOxOIjyhlOL98dj7HwLAXRqGqdCNMa4cOSKAVGHgyxK9w0cqKjqqVCvDqzetEa/JZGL48OHMmzeP888/P7R93rx5nHvuufU+79NPP+Wvf/0rn376KWeeeWbTBv4H08F/jAShk+uxFyrCGDInDCbOhuJookrHM2ivi/dfWsfoJ8fjHriby17vSf6BK9l9G1zzi8yyk42MOZjF8GU70S/axdvD/kJWXCQ3pd7NKx4XP113Ejs2/JlYBXbHwHnmn0nNgk2udOx70vnfGTD0k348d8MWUuYGg+wyB2wdoHPANZM7D8G//wWy0Ytemg5saO9XqkENdWlo7FeGN998M3/6058aPE96enro39nZ2UyaNIkxY8bwxhtvNGvcgtBRuKUAm5UiNitFABhKJMJ0I4n5SfRQezHIoOAI89O7Wx55BZGku8PYoEvkyT6G6laydRUkGQsSsZJCXFiAvS4DaZKJ7MPnmHryOlzlYSz4bhwxkRVkeOzs80rEu8xUuA2cNnIvXo8ZV34kCaN3IRlUrKnFSOE+9ApTcBGNboVIsW7UMB15d3hoNbuOLMCRX5c3pwhj5syZTJs2jREjRoQ+dzIzM0PfLt1zzz0cOnSIDz74AAgGu1deeSUvvPACo0ePDmWHrVYrDoej+Rd0nOpUJQ2PPfYYI0eOJCIigvj4eM477zx27NhRYx9d15k1axbJyclYrVYmTpzIli1bauzj9Xq55ZZbiI2NJSwsjHPOOYeDBw/W2KekpIRp06bhcDhwOBxMmzaN0tLS1r5E4XgXXcx5+myYPJ+r5hTTp99s7i55na03/Eb8Lffxr4eAOWcxZrWfoi6VUBTLB4vf5Iqbx2LxghsrSyzDCKec2MHzyYj9lTPOms5Pyik4yuB5ZjBoE/xp4o2Uh8PotwfgtkJx3wIKYyGaIuLD9/LkQy40GXpuabierKOo6tJQ+wZN+8qwb9++Dd4sFgsAhw4dYuLEiQwbNox3330XWe5UH5WCcFQBdJySjx1KCd+bsnhc3s+/3Nn8fZuBlwp8LCTYsSFOM3FQV0lXZGJ0hRzJzyq5kv96KtiglJOrwik9ijnz7MXs3pnO14v7suhAJGsORJEYW0miAoVlFmwWFaPJT25+FAe2pRNwWvHlRJK7rDe5Pw0Eo0p4SjGoMnhldCPs/L/ROCVfe79UjaAf8T9oWoYX4NJLL+X555/noYceYsiQISxatIjvv/+erl2DEwJzcnLIzMwM7f/6668TCAS46aabSEpKCt1uvfXWlrqw40qnyvAuXLiQm266iZEjRxIIBLj33nuZMmUKW7duJSwsDIAnn3ySZ599lvfee4/evXvz8MMPc+qpp7Jjxw4iIiIAmDFjBnPmzOGzzz4jJiaG22+/nbPOOos1a9agKMHvSS+//HIOHjzIjz/+CMD111/PtGnTmDOnA8/sETqnxSdyFcXASGxTZvOfs1NIpAvO327kjBvv5qqfdzPnZSsD0Vj9/QP0PeNZttOXifdPhr/dRz5xfHsO2CrA+P7zTIyby0/f/IfvLtYZu1hi0yB49uAr/K/LYOaXnY8xOxZHBGSkLMeWO7rV2nu1pLbs0pCdnc3EiRNJS0vj6aefpqCgIPRYYmJi65xUEDqA0Apx/L6Mr1U3EK1bOKjZ6IoNky6j6BJRugkTCmNSXISHuXnt40kk2wLIQJEUYJfsY2Ougl0L0M9vpMhrIj4nDl2XsNrc5G/qyqHdXdi/L5mR4zaAKmOIdCOllINHwbDHwv99Mwbk/e32ejSWio5cz6S1ppo+fTrTp0+v87H33nuvxv0FCxY06xx/VJ0q4K0KPqu8++67xMfHs2bNGiZMmICu6zz//PPce++9XHDBBQC8//77JCQk8Mknn3DDDTfgdDp5++23+fDDD0PF3R999BGpqan8/PPPTJ06lW3btvHjjz+yfPlyRo0aBcCbb77JmDFj2LFjB3369GnbCxf+UG6cc+jwv2bDnDEAbNl9Lncn/51lOefTf68bvjmD5Q99zwVfnMivF1vpbd4EOweyrT98NGk01/Isl346k96XPUgZF/Af+1kUEktFGOzv60VCI50AmyYX8NicxvV4bE9t2aVh7ty57N69m927d9OlS5caj+lNrMsThM7OLQU4JLk4JLtYbQADEhG6iVjNSroazqGCMH45ZENDpbRSxoNKpG4gXjWgAlP75BNhr2B/ZiJGQwCjwUBJUSQbN/QmMz+cP1/xC8kjdqO5TOgBBT3TDgYNyaTyrV521PF1BKoEcq1GCio0J8krtKJOkNupn9PpBAi1C9q3bx+5ublMmTIltI/ZbOakk04KNW5es2YNfr+/xj7JyclkZGSE9lm2bBkOhyMU7AKMHj0ah8PR6AbQgtCS7t42G+ZPZkz8bNiSQf9es9nIQFANRFPMrbenEjDAuqEw+Dc7/Z+dytB18Jj/AeyLB5JENtfel06SkkXsITP/vN+KARV/aVx7X1qjqHV0aGitldauvvpqdF2v8yYIf3QBdEokL7uUUuaZDvKYtJ9vzZksMeazweDEAGjolEgqfSMCpKZno+sSXZIKyS+ys+GgnQOZiQwZuoOTRu1EMQbYOW8oSlwFhmQnWfMGUb45hb1fjGKnUtLel9soAYKvS82b0NF0qgxvdbquM3PmTE488UQyMjIAQgXbdTVuPnDgQGgfk8lEVFTUEftUPT83N7fOPnbx8fENNoD2er01WiLVXmFFEFrSrDlrIQzOnCPDxIXc/sFYyj1xfDgN1lgHsOQKuPID+PgaN93oxc6Ht3NI70vXlP08ek86YwngjmzZFl6tRVWOzOi2ZR/ezk58NgmtKYAeXCADNzsOB6nhupH1Hgtf/tyD3mo4CZLMVslLGhAbU0Z2ViLbdiditXkYeNYKiHWj7Y4mtvchrD0K+OyVCwiEpsN1bC1Z0iC0nk4b8N58881s3LiRxYsXH/FYcxo3196nrv2PdpzHHnvsqG2PBKHVjF1KBDD9ENAFhmfC5vJzOZlfOYkFzOcU/rFqIf93QipDf0wncH4Fr8z58WhH7RDacmnh45H4bBLamkvy45L8ZMnlbDAUhkohdukmMrdF010zY5LAVRbGwRW9SQ/3IEe6UWw+0CXWFpmhc8ypRUNHqxXg1r4vtL9OGfDecsstfPvttyxatKhGjV3VhJLc3FySkpJC26s3bk5MTMTn81FSUlIjy5ufn8/YsWND++Tl5R1x3oKCggYbQN9zzz3MnDkzdL+srOyIHqGC0JYyeswmYw7AOC7BDSSSQC4R57/IT0wBdjR8gA6i+kIT1bcJjSM+m4T2VlUKUSJ5yZLL+QUw6wqz19pJWT2SIZ9MZMqwA6T3PoCmKuxT3O095EZTJR25dh9edFHD28F0ql8Zuq5zyy238PXXX7NgwQK6detW4/Fu3bqRmJjIvHnzGDp0KAA+n4+FCxfyxBNPADB8+HCMRiPz5s0LrTedk5PD5s2befLJJwEYM2YMTqeTlStXcsIJJwCwYsUKnE5nKCiui9lsPuqygYLQ3sbNiQFiGNRJgl2AgFxHlwaR4W008dkkdEReSQ1NiFtpgDe2QMymnsTpNnI6Qf/dKlodSwuLDG/H06kC3ptuuolPPvmE2bNnExEREaqndTgcWK1WJElixowZPProo/Tq1YtevXrx6KOPYrPZuPzyy0P7XnPNNdx+++3ExMQQHR3NHXfcwcCBA0NdG/r168dpp53Gddddx+uvvw4E25KdddZZokODILSDhhaeEATh+FG1QlxnoqIjiRreDq9T/cp47bXXAJg4cWKN7e+++y5XX301AHfeeSdut5vp06dTUlLCqFGjmDt3bqgHL8Bzzz2HwWDgkksuwe12M3nyZN57771QD16Ajz/+mL///e+hbg7nnHMOL7/8cuteoCAIdVLrKGkQAa8gCB1BQNJA0mpuQ6tnb6G9dKpfGY1pCyRJErNmzWLWrFn17mOxWHjppZd46aWX6t0nOjqajz76qDnDFAShhYkuDYIgdFQiw9s5dKqAVxCEPybRpUEQhI5KdGnoHETAKwhChxdQ6ujSIDK8giB0ACLD2zmIgFcQhA4voNTRpUEEvIIgdABqHTW8qqjh7XBEwCsIQoen1dGlQROfXoIgdAABdHSR4e3wxK8MQRA6vIACisjwCoLQAQWzuSLD29GJgFcQhA5P9OEVBKGjChyetladCHg7HvEroxVVtVErq6xs55EIQsdQ9V5oTIvB6kSXhpZV9frruredRyIIHUfV+6HJn09wxKQ1Ee52PCLgbUVFRUUApF1zXTuPRBA6lvLychwOR6P3DyigiC4NLabqs6nS/0Q7j0QQOp6mfj6pko4uibZkHZ0IeFtRdHQ0AJmZmU1683Q2ZWVlpKamkpWVhd1ub+/htBpxncdO13XKy8tJTk5u0vPEwhMt64/y2QTifXu86YifT3405Fo5Xa2ZOd5XX32Vp556ipycHAYMGMDzzz/P+PHj691/4cKFzJw5ky1btpCcnMydd97JjTfe2KxzH+9EwNuKZDn4navD4TiuP4Cq2O12cZ3Hkda6zuYEWGJp4Zb1R/tsAvG+Pd50pM+nQAsFvJ9//jkzZszg1VdfZdy4cbz++uucfvrpbN26lbS0tCP237dvH2eccQbXXXcdH330EUuWLGH69OnExcVx4YUXNvn8xztRBScIQodX1Ye39k0QBKG9+SS1zltTPfvss1xzzTVce+219OvXj+eff57U1FRee+21Ovf/z3/+Q1paGs8//zz9+vXj2muv5a9//StPP/30sV7ScUkEvIIgdHieyjLctW6eyrL2HpYgCAI+yY2Xyho3n+QGgiUY1W9eb90TRX0+H2vWrGHKlCk1tk+ZMoWlS5fW+Zxly5Ydsf/UqVNZvXo1fr+/Ba7s+CK+FGxFZrOZBx54ALPZ3N5DaVXiOo8vHek6TSYTiYmJfNr1yK/zABITEzGZTG08qs6vI/03bm1/lGsV19n2qj6fcnMfr/Px8PBwUlNTa2x74IEHmDVr1hH7FhYWoqoqCQkJNbYnJCSQm5tb5/Fzc3Pr3D8QCFBYWEhSUlITrub4J+lN7b8hCILQhjweDz6fr87HTCYTFouljUckCIIQ1NDnk67rSJJUY5vZbK4zWM/OziYlJYWlS5cyZsyY0PZHHnmEDz/8kO3btx/xnN69e/OXv/yFe+65J7RtyZIlnHjiieTk5JCYmNjcyzouiQyvIAgdmsViEUGtIAgdUkt9PsXGxqIoyhHZ3Pz8/COyuFWC2eUj9zcYDMTExBzzmI43ooZXEARBEAShHZlMJoYPH868efNqbJ83bx5jx46t8zljxow5Yv+5c+cyYsQIjEZjq421sxIBryAIgiAIQjubOXMmb731Fu+88w7btm3jtttuIzMzM9RX95577uHKK68M7X/jjTdy4MABZs6cybZt23jnnXd4++23ueOOO9rrEjo0UdIgCIIgCILQzi699FKKiop46KGHyMnJISMjg++//56uXbsCkJOTQ2ZmZmj/bt268f3333PbbbfxyiuvkJyczIsvvih68NZDTFoTBEEQBEEQjmuipEEQBEEQBEE4romAVxAEQRAEQTiuiYBXEARBEARBOK6JgFcQBEEQBEE4romAVxAEQRAEQTiuiYBXEARBEARBOK6JgFcQBEEQBEE4romAVxAEQRAEQTiuiYBXEARBEARBOK6JgFcQBEEQBEE4romAVxAEQRAEQTiuiYBXEARBEARBOK6JgFcQBEEQBEE4romAVxAEQRAEQTiuiYBXEARBEARBOK6JgFcQBEEQBEE4romAVxAEQRAEQTiuiYBXEIQ/hEWLFnH22WeTnJyMJEl88803NR7XdZ1Zs2aRnJyM1Wpl4sSJbNmypX0GKwjCH8rRPp+EYycCXkEQ/hAqKioYPHgwL7/8cp2PP/nkkzz77LO8/PLLrFq1isTERE499VTKy8vbeKSCIPzRHO3zSTh2kq7rensPQhAEoS1JksTXX3/NeeedBwSzu8nJycyYMYO77roLAK/XS0JCAk888QQ33HBDO45WEIQ/ktqfT0LLMLT3AARBEBri8Xjw+Xx1PqbrOpIk1dhmNpsxm81NOse+ffvIzc1lypQpNY5z0kknsXTpUhHwCoJQp7b4fBJahgh4BUHosDweD9aIaAi463w8PDwcl8tVY9sDDzzArFmzmnSe3NxcABISEmpsT0hI4MCBA006liAIfwwej4c4qxVXPY+31OeT0DJEwHsUr776Kk899RQ5OTkMGDCA559/nvHjx7f3sAThD8Hn80HAjWnQFaCYaj6o+nBt/JisrCzsdnto87FkT2pnY+rK0AiCIEDw88kF3AbU/tTxAs+5XC36+SQcGxHwNuDzzz9nxowZvPrqq4wbN47XX3+d008/na1bt5KWltbewxOEPwzZFI5kqBnw6oHg14h2u73GL5TmSExMBIKZ3qSkpND2/Pz8I7K+giAI1ZkBSz2PtcTnk9AyRJeGBjz77LNcc801XHvttfTr14/nn3+e1NRUXnvttfYemiD8oShGI4rRVOtmbLHjd+vWjcTERObNmxfa5vP5WLhwIWPHjm2x8wiCIAjtQ2R46+Hz+VizZg133313je1Tpkxh6dKldT7H6/Xi9XpD9zVNo7i4mJiYGPG1qCAQLBEoLy8nOTkZWW7839uywXRkhpemNZhxuVzs3r07dH/fvn2sX7+e6Oho0tLSmDFjBo8++ii9evWiV69ePProo9hsNi6//PImnacjEp9NgnB0zf18aglH+3wSjp0IeOtRWFiIqqp1TmKpmuBS22OPPcaDDz7YFsMThE4tKyuLLl26NHp/2WBEMtTM6OpoTTrn6tWrmTRpUuj+zJkzAbjqqqt47733uPPOO3G73UyfPp2SkhJGjRrF3LlziYiIaNJ5OiLx2SQIjdfUz6eWcLTPJ+HYiT689cjOziYlJYWlS5cyZsyY0PZHHnmEDz/8kO3btx/xnNpZFKfTSVpaGrt27ToufmkKwrEqLy+nV69elJaW4nA4jrp/WVkZDoeDyMn3IBlqVsnpAQ+l8x/D6XSKGrmjqO+zqe7pNoLwR+UFnmvy59PdHFnD6wEeB/H51IGIDG89YmNjURTliGxuQ5NY6uuvFxERIX7gBaGapn6NLhlMyMaaJQ1aEzO8f2T19/40IwJeQahJlPkcn8SktXqYTCaGDx9eYxILwLx588QkFkFoY7LBVOdNEARBEBpDZHgbMHPmTKZNm8aIESMYM2YMb7zxBpmZmdx4443tPTRB+ENRDMYjAlxJV9tpNIIgCEJnIwLeBlx66aUUFRXx0EMPkZOTQ0ZGBt9//z1du3Zt76EJwh9KnRldEfAKgiAIjSQC3qOYPn0606dPb+9hCMIfmqzUEfBqIuAVBEEQGkcEvIIgdHiSoiApyhHbBEEQBKExRMArCEKHJ9dRw4sWaJ/BCIIgCJ2OCHgFQejwFIMB2VDz40rSxMeXIAiC0DjiN0Yn49fAHdCwm0RHOeGPQ1ZkZKXWz3zt+4IgCIJQDxHwdjI9LnsZZ9a20P2zb76B+6b2oVe0GUX0yhaOU7IioxhqBbiqCHgFQRCExhEBbydTPdgFmPPy68x5+ff71phknnzkWs7qHUukWUEWQbBwHJBkCanWD3Pt+4IgCIJQHxHwdiJzdhYfdR93UTa33PgQt1Tbdsb06/n3mf1IsxsxiTSw0AkpiowiShoEQRCEZhIBbyfy56v/1aznff/qG3z/6u/3Han9uPP28zmnbzxdIowiCyx0eIpBlDQIgiAIzScC3k5ibW5lix3LmbWNe2ds495q2yZc81cePqs/fWItWEQWWOhgZEVCrvVzqYufU0EQBKGRRMDbSUy64B+tevxFb7/DhLdrbrvsjpv4x8k9SY0QpRBC+1IMUh0ZXvEzKQiCIDSOCHiFen369Ct8+vTv9y2RCTz1+A2c3TuWKItY5UpoO4pcRw2vLEoaBEEQhMYRAW8n4A7o7T0EADyleUdMiDvxL3/h8fMG0CfaIrLAQuupo0uDKD4XBEEQGksEvJ3AmhxXew+hXovffZcT3/39fnTPYdw/8yzO6B1DnNWAIkHHCNeFzqyuSWt67RIHQRAEQaiHCHg7gRd/3dPeQ2i04t1rmTF9LTOqbes75ULe+NsYMSFOaLa6Jq3Vvi8IgiAI9REBbyfw03/ebO8hHJPtc79iwtyvamz7850388/JPUkMN4oV4oSjEhleQRAE4ViIgFdoFx89+TIfPVlz2xcfPcJpaRY0g6V9BiV0WHUtPKGLhScEQRCERhK/MYQO4+I/38uiHD9+DVx+DU0HSQsgEsCCQZExGGrdRMArtKEHeJAHeLC9hyEIQjOJDG8Hl1cZaO8htKlJtiLKP3oO14X/JCprJQWzvyQ8JRZTag/kASfii0hCQUOXRLDzRyLLEkqtrgya6NIgtIO6gt4HeaAdRiIIQlOIgLeDG33j++09hBaxZ/6L9Jj893ofX/2/5+jx26t8WWjn4V1jGfi/7fxpRF9OtNvIWb4F5+eLSTt5Dc49h9B8AdLOOBFjWm+0nqPQTTaQDaIbxHHMZJAx1qrZlZpYwztr1iwefLBmsJKQkEBubu4xj0/ovKoC2PqC1tqP1xXw1t4mAmBB6HhEwNvBFe9e295DaBFJOatC/5ZkmcK/p1CyK4v4u5/j2z0u/v7ZeuZdej4XFW9njPErYpRu7H90JZnuAJHd4uh57gnol/8L86PT2fj+aspzysleG+yHFt0tEoDEYSkkTxiKedx5BGLSRQB8HDEbpCMCXtnQ9AzvgAED+Pnnn0P3FUUsoCI0HMw+yANNLmcQWWBB6HhEwCu0OtfPD7Oh0gp8yP8+f5wzL72b3JXb6HrFJSgFu7kg0sCF59k4+PLjlO7OpffV51K6YTPdzptA6dY9FG07SPmhYso+nMLI775m5dsnsXNlNlP+eRoLHv+JJRvz2V/ph+WH4NWVwOtk2M2MGJlE15MHkHDJNDSLA80WhWZ1AKI3cGdjNMiYamd0m9GlwWAwkJiY2EKjEo4nD/BgKLitvb22uvZrzPFrH0MQhLYjAt4ObFFmWXsP4ZiNunwa7+72UeapxDX/UbxzXmHr+EoOLNhHTMYqKn78kTM855ExIIE3+nbFuS+frO/mk78pF1PYNmyxVoxWA5qqYe9iJ/Pem7AYZE5/8mJ2fP4bpd/9wOi/Xcr+tblYZAmPFgxlN5d52Tx/P8zfD/f+LzSei/rH0ufCIcSdOBrd6wFAOvkqdFm8FToyk6JgMtTKxjYjO7tr1y6Sk5Mxm82MGjWKRx99lO7du7fQKIXOpHoAWvXv+oLSxgTBtR0tKBZZYEFoW+K3fAd29p/uae8hNNv6H55j38jxjLUnEBE+hf+dezNfBDR6DU8iqmcs3U/tg7/Cw85vNvDL1RGsvG8+a5PCsEZZMdst6KqO6lPpMmkIEeOmgtnKnqeewJXjxK/qvD39Y1QdWHAqn7l8ANw6Yxyl+wp4/esd9Y7ry62FsPVn4PevtS/q/x5j7r8QzeNBUmQMF9wBkiyywB2IqYEMb1lZzT8MzWYzZrP5iGOMGjWKDz74gN69e5OXl8fDDz/M2LFj2bJlCzExMa02dqFjOdbMbHOfV1cAXHubyAILQuuRdF0Xv9dbSVlZGQ6Hg9zcXOx2e5Of7xh7UyuMqm38+N8nUK44h007iunX1c62A2WYZImLHj2XDW8sIDwpHF3VMYYZMVoNlOwtRTHJJI/qRsDjw2S30fP3xCzur2+h4PN3yPxlC6pPJWdrIdmeAJvLvC0+9nO7RTLi5klEjp8EaRmo4XFiUlwLKSsrIzExEafT2aj3RNV76LoPlmCyhdd4zFfp4s0rxx3xnAceeIBZs2Yd9dgVFRX06NGDO++8k5kzZzb6Go4HVa8r3A0c+cfB8ay+0oWmqh6MtmW7MhEEtyYv8HiTP5/uBmp3j/cAj0OjjyW0PpHh7aCcXq29h9Akn3/4CA6zgdMuuYun9ixGueIcep83jK6l5bgLSsnNdnHm4xew7ePFDFz4C47KHHy/foZy9i3sLofU525hbNY4NqXtJmLYKPwHtvPjVTdw2iV3AeDbtITMX7Zg72In4YR+lD83F/fB1in5mL2vlNm3fw18TZRRZkIXO33O7U/SKeMxDRhNILILujkYfIkguG3UVcNbtdJaVlZWjV8odWV36xIWFsbAgQPZtWtXyw1U6HCqd1moXrrQ0ES1qv2r71tXWUNLBM5NJUohBKF5RMDbQZV41PYeQqPk35TEwTPvJDHMgMOdx09sIfzEVNYtO0TpiwsY8bdxHFxaTN8xKfjLKvGUenDsWsCamDEkbdxNrydvo/K9PyFNv429CX2RVn2Db8iZeFYtI/nx63C9dhVS2gCKP3kFAFtSNIcWbaSgsJI9FX4Apl/an1c/39oq11fi15i9rxSeX4rlxWU4jDLpNiN9ByfQdXJ/YidOQuo+BNWeAIpJBMCtxGyQMddT0mC325uVQfF6vWzbto3x48e3xBCFDqK+ALSpdbgNlRo09hhtRZRCCMLRiYC3g7pnTusEcMdqxZxn6b/zWxakTGVisonNl1/MmFduCz3ee/J9LB2wku9v+zMX730Pc3w83b4J4HryDArmzWXMUzey7p/PMPzhGbx3/oN0KV6Na9VCVoz/O6fkbCZv0SLiuw2ipMhJ6ikjkJO64573MYUb9xCWYENXNaJ6p2D9eX/onK0V7Nbm0XSUgMbaUg8rFhyABQeQ+YFuYUb62s10GZ1Cj7NPIGz0qWjRXUQpRAsyKXVkeJu40todd9zB2WefTVpaGvn5+Tz88MOUlZVx1VVXteRQhXZUO+taO/BrTF1tY7VHdrexRBZYEI4kAt4O6vtX32jvIRzhP2/MwvKvK6kcPYCTvG7mT32VvDIvdE3j+Vfv59reJk55dyf7vl/Fvc9dzoYXV+F3B6h4YyZzzrqH0964np1vfYHtva95c38Jfyn+nqmPTiOitAsTs+ahR8VjirBB8SFUjw/ZHoMWHof5zOswr9lBzqosds/dhyxLzM2vCI3LbpApC9RdAmKUYNqp3Xln7t4WeQ0q1Jrhqwbsq/AHs81f7wje+BAZmBRnI+PMnnSZOBTbiWcQiE4HgwndYBFBcBPVVdKgNbEt2cGDB7nssssoLCwkLi6O0aNHs3z5crp27dqSQxXaSX2dFqoHv7WD4Ya6MjSny0JtHSkoFkGw8EcnAl6h0VbtL+aWnd35y1l/4oV+Gie/ZWL1rLcpnvsKpooCVpWZeeSre+l6zUR0WcGVV0HAEyD/++8wmxT+m3I+J/fcQLzDQK8MB6WvbydlwC7Wm3ozyFGM/+Aewrp3Y88r/yHhhH44N29FXb0Ob6mLwq25lOe4cAU04mJthOVXEG6QyfOqNYLd6q3JAPw6DPnoPe559n4ee3xBq7wudYXaGjC/oJL5722E9zYC72M3yESbFK64/STCU+KIOO1PBGK7iyxwI5gMUh0Bb9MWnvjss89ackhCB1JXZrdqsYjaQWxdz6lrcYnmBKpH67rQ0YhSCOGPRAS8QqO9/eiLANw1qQfWyX8n55oYbLFWsm+fRtfHXqPi9CnE9Ipi+2dLGJyQRNr4HuRtOMiBX7axo9TDlUteQEqMQf/1A4wDRlOemYf++Tt0tZjYt/0AXU4ZTeG6rfgrvJRfcA/hXzxCxJnT2f/kg6SM7UnZwXWUlXooyXFRoepUqCpnd7Ezp9rkNatSM+AF+Hv8hDZ9nepTFtAoC2g88u+qlmifMj7GypAzetD94tMwZYz5fUKcaItWgyJLKLJ0xDZBgJqBWkOLRzS0vbHZ2Ib2a8mSifYgssDC8UwEvEKTjbvt/6j89na2zLydvledQf6ydSyecAamMCMrf8vikDuA0foN0b0T0VUda4yNwd0cVOQWseXTdcT1j8VT8hFj3noYtSgX987NVOSVk7t4LZIs0/tvV5H3/AysY0YCENU7FUtcNIppA327RZJ3sByAF5c8zd/H3cEzn93AY1e+hVvVKPG3bXcLmbozvI31W5Gb3z7cDB9uxiJL9Aw3MXxYIl0n9ydmwgTkHkPR7AnohmDTmz9qEFxXSYPajJXWhONbY1dKq0tjg9VjXWK4sxFZYOF4IQLeDqjQ3XE7NEQk9WDHJRVEX/kRntJkeGgTYMD5yFXomkqPNZvY+ulajGEmbEkxSMpBupzYn4RhHmKvv4vMBVdg7+LAFmvllwvvQFd1oub/TMSSq0mcOArd52FH96n0GJ6DEpuEb8X/MEeGk7NkA6PuPIttnyxi454SAOb/+WEAbv/T66Hx2Q0yj218j5v6X8lgh5kNzmCf3liTQqGv5V/XlgyvPZoeXCGu2oS4cIPMsEgL/Sam0ePcMVhHnoIa0zW4RPIfqBTCKMsY5ZoBbkAWAa9QU+2yherbWmPBiaYet7NlfOsissBCZyV+Y3RAn23Kbe8h1Ourl25g8I9JfPLKraFtpvAoXCf9hV0f/cC/B9zE5PnvM+e650n9uJwZE+/ly4e+x9EjhbWVduIHJmCJsRM7qAcnPvZnLkycxInn3kH359/l++4XYxl0Ir0cMqbhU5AsYXgLi9j83q9o/gDZSzbx229Z+DSddJsx2C7ssHO6OoBg2cBDQ/8CwAanl9uuG8bMG0fwt9wNbfo6tQSTLFEW0FhQWMlrX27nzmnvck/GNN7oMZnFJ0wi94EbkBZ8gLFgN7KvEgk4Xr/kN8oSRqXWTZQ0CPWoXcJQOxCumsBW/X5Dqh4/WteHxo7rePNA6BX9/SYIHY3I8HZA9854tL2HUK8pF90JwAWLvw1ti0rPIO9vl/DZ7J3Ef3sR+tIXefCOrwBYcnkki7+NJveUWxl+cDHyP//FUi2VyRfeCWwKHUPyVWAzmilLGYovoBNdsJ/CH74jf90eBl43lX3fLmbDT3sxyRJOv4bTr5FhN+PTdHa6fCQNS4QDTgDyvL9nctNe+BjH2JuYPfzENnh1WlbtWmSNYEC/uczL5q1e2LoInlpEssXAYIeZ+H6x9P3TWMKHjUHvOggtLOa4yQKLDK/QGNUnodVWu1VZXZPL6gtoWyuAa6kV3zpigClKIYSORgS8wjHL2/wbw0jg7Nfu56P4VWR/+QXvvvMwr83dyZ6nnsBf4aerJxPPlpXs/W4Fo595lpxrYpCuepAPN+Zyo3cxJe8/g+38fxG+7Wf07iPQnEW4DhXQ49wxeAqKcfRIIq1XKRP+9xMfdBmC63DgB8GFJ9YcbjtWu3Qh2xWg/NcnuCvmhHZ5bVpa7S4UANmeANmeAORVwIIDwKekWg2M6hZJr3MySDz1ZAzdBxJwJKNbggs0dLYg2HA4q1udXxEZXuFIdWVuG7OyWvXHWqJ+t6HjNPd4rXWMtiBKIYT2Jum63tl+93UaVets5+bmNmklKMfYm1pxVK2r56TzWHtaPuqJV2Au2ouev5+CH75DkmXCkqIp3LiHzEV7GfvSHUjdhyAVHEDtkgGbfkEfcQ6GPctxrfiF8NP+zPa77sDRIwmA8DtfZNeFZ2GwKiyYf4B9FT5U/fcaWrtBxqpI/OOtK3l7+sdsK/fx1yndCUuw8fM3O9lW7mu/F6WFGKVgmYPvcMCrSBImOXgr9qn11hP3izBhkiV6pUTQZXQXYgZ0wzF2AlLaALSIuDbtC1xWVkZiYmKT16p/d8l2bOERNR6rdJXzl3F9xVr1zVD1usLdQOOWYu7s6gu4GlvjW98+HTXD2hm1fwDsBR5v8ufT3YCl1mMe4HEQn08diMjwdjBqJ//zY/ev32D/FWBpaJv7yxtANlDw3/dIOmU8hjALsiMGzWDBvXoB4dYwtvc+A6lMJW3zMkq2HUBWPkH1qRjDrER074Jh7WwqCyvZvbeUBLPCTtfv57zjltE8/dJy3CrcMe1dANJtRt6Zu5czk8KZcmFftr23scWuMcNuZl+F74hFKFqbXwf/4XNaDtev+jQdV0CrEexaZAlV1/EfHl6BVyXFamD7wXK+e28D4YZNFPu+pme4iXSbkZ6TutLjwpOwDj2JQGQXNFtUh2uLZpSPrNkVNbxCU9RX5lBf0Hu0RSoa2t7c8f2RAufGdtRo/yBYOF6IgLeD+XRzfnsPoUW98eYs9kREkjF1BlNvvI59vxbyfxXzKfrhG/RrHyX2lD+R9+Gr9D77ArSKMgKWMCLSEshduY20U4biK6+kaMMOYgZDjzMz2PD8IvZXqqGv9hPMCus+20iUUSbcIJNsMbCixIPDKBOmSEz57F5uO+ke/jVrCv+eNfeYr0cGukdZyPUEqFDbr5uGIgX/OFJ1PRTsykC3MCOqHnw8s9Ifyv46/SqJFgOKBIU+lSijzCG3n8xKP8u/2o7vi23Emd8kwWwgY3giXU8eQMzESUhdMzpEWzSjImOstZRw7fuC0FiNKVdozAISLRmgtsSxOlPQ3Nx2cSCCYKF5RElDK2pOSUNnLmdorNJZg4l9fDelT41H6jaIPfffjeoPEJEWj2I0YIoIQ9M0Inqkk7toFc4DRQyYeQ2LbniSvLwKEpPDWbWnlP2VfqDm0sJVfXGNh5N/0SaFPK/KiEgLq0s9xzz2Y+2725qqsr5WRcIV0PDrwW1WRQr1JzZK4DAqOP3BYN2vQ5RRDgXG0SYFVQeHUSbBbCDGZiR+YBzJo3oQPWwQpv4jUR0pzW6L1tyShq9W7yasVklDhaucC0f0FF8ZNsMfsaShMZrbwkxoXy0XAIuShuOZyPB2IHmVgfYeQpuInLWBa/75d/w5P7EzfQpGjx+T3UrClFMp/PVX9v+8kW5Th7Dlze8wWAwMuOM6vjv/ARQJrIrMV5sKsB6esDTYYeaE8akUbi9mwYHSUGDn1+FvF/XltS+3A7RIsAsdN9iVCWZ7TbKEIgUXsHCrOm5VwxXQsBtkFClYAlG93tciS4QbZHI9AUxyMFCONimHjwPlngBsKqB4Vwna+ysxWt/DbDcTnhRObEYqidPvJuBIafXrq2pLVnubILSkuoLdhkodhI5BZIGFxhDfCXYg5z+7uL2H0GbefvRFoh7dwaizZzJsawIZy+2sS5uKv8KDNcrCrm9W4y3zomsah3pP5aR/nUGeVyXbE2BklIUUqxEIfq2/d0U2kz78F67DWd4zk8IB6HvLVe12fW3JIks4jDIOo0K4QSbapOD0a/g0PTSxrSwQXIXOreqhPxYg2Posyx0I1fuGG2SKfSo+TcenBQPmUrcfTdVQTAqSIuEu8bB7cRY/vLQYye9tk2tUJKnOmyC0tOrdZOsigt3WI4JUoTWJgLcD2fL9F+09hHaTOGgifk3DXVBKt3NORNc0VJ9KebaLxBUfUZlfEspiAuR6AiSYFSyyxJIiN2+fdndowt//clz0CDPi3bOVu/8xof0uqo0EA1Md5XC5gk/TcRyuaa693LIG9U62q9qcZjMSZVRC20yyhObX0FUdXdXxV/jxaTqqrqNGJrf25QEcuehEHW3KBKGlNdTXV2h54o8JoTWJgLeD0P7gldSFO1cx+cI7iX3hUwxxKZzw4r8Y+rdTiEgOZ+t/viJnxV5Soiy4VZ2xF/WnX0TwK/tsT4BEi4ENTm+NzOXNn97KnX/9kMefWtSOV9V6LLIUqtk1Ha7TrWpZZlUkVB0KvAGch4NdSyO+/vdpOk5/sASi0KdScTiIVnXQVA1N1fCW+Sj3BCgLaCRbDKHJbK3NIEuhxSeqbgZR0iC0kdolDYIgdD6ihreDKHK334z/jiDgqQAg5aRbQttWdDvEtsUHUSSJ6BgrPU/vjXV5Jq6cMvoNS6R7mZeFmwpCk9eqZy61w8eDYBuxqkUqjhfVF59wGIN/twYD36q/YXWsiowroGFtRGBolIJ1z+EGOVQGoeo6Hg1AC2ZzvSqew5ldt6rT95w+bda1oa6MrsjwCm3hjxzgHkt/YkHoaESGt4O44p1V7T2EDmffkoPERlmxKhL78yqwd0ti1Kw/Y4u1Ufzy5+zaVRLqNlDb7Ze8RrrNyCt7v+Kzf77WxiNvO1UdFkzV+vJWTVSrqmn2aXqDPYNlCNXwqnowqxtukEPBs18nVMJQ1f3Cp+n0/Oe/Wu26alNkqc6bIHRmLRlMt0Zg3phAtiMGu3/kP1KE+omAt4NY8cmH7T2EDsX58EgmzjoLU7gRS4QZp1/FFGEjc84veJxeJm77hMFjUjDJErEmJfS8DPvvLZZUXWeLuSdv73m5PS6hxdVVllBVggDBiV2qHlyIoqpDg6r/HsxWV/2Nrx2+bznc4UE9HOAGg9zgPsGev1S7rxOISmvR62uImLQmdARV09lqa26AdazBYvXztnXgWXXuhib4CUJHIgJeoUNy3LcK+xmX43F6OeGOqSSYDWx441dSTx/PwBeepWDlBgbffzPjkyMY7DATdvjr7eqlC1nuAK+mDOa5N9e212W0KE+tQu8wJVi7WxX4VU3oq2opZlWCrcjqUru9mkYwq1vV2qxq+eIwRUI+fEwA/+FyBqsio5tsLXVpRyVLdd8EoS3VF9y1V5azvc5bvYyhvj8CjvZ8QWhrnS7gXbRoEWeffTbJyclIksQ333xT43Fd15k1axbJyclYrVYmTpzIli1bauzj9Xq55ZZbiI2NJSwsjHPOOYeDBw/W2KekpIRp06bhcDhwOBxMmzaN0tLSVr46oYrr54dZ9qfp+Cr9lGfl4TDKRCSHg6ayYfqt5K3NZO19LxDbJ4ZsTwD34dTjzZcPaOeRt50KVa/RZkyRpNDEM5+mE21SqtX0Hp2q66HMLhDK8GqHH/Mcvq/qOhkpEQ0frIWJDK/QUTQ3yOwsQV5DbdmqtlVfcrk5OmIZhHD863QBb0VFBYMHD+bll+v+mvrJJ5/k2Wef5eWXX2bVqlUkJiZy6qmnUl5eHtpnxowZfP3113z22WcsXrwYl8vFWWedhVptqdjLL7+c9evX8+OPP/Ljjz+yfv16pk2b1irX5A78wVs0VHNomgPXT/ezdMoF7NtZDMCm91cD0O2M4Sy4/UNiM7qQsyEPza8S/8lsnH4tlMnc8NNeZIILUlR3+/QT2vIyWl1V5lWpVlPr9KuEG2QSLQZUnVCpQ2Pf5CV+LVQWEcwQS/h1/fD937tCqDr0PmdAmy4zLMug1LrJne7TS+jMGspkNhQcVn9+Z/BAtZC3rscaui8IHVmn+5Vx+umn8/DDD3PBBRcc8Ziu6zz//PPce++9XHDBBWRkZPD+++9TWVnJJ598AgSX+Xv77bd55plnOOWUUxg6dCgfffQRmzZt4ueffwZg27Zt/Pjjj7z11luMGTOGMWPG8Oabb/Ldd9+xY8eOFr+mxAk3t/gxO6t9F/0L7w/vkj65dzBL2S0S2RhcDOHlmV+RMDCOom2HWFLkxt7Fzr5TTuGkgXF0CzNxxegU3rrvdc7fsZINzppdGZ55dWU7XVHLizLK9IkwE2cOZnBVPZgBrerB6wpooS4LblVr9OpwVcsQw+81vFWLV/g0PZTpVXWdpDOmtNr11UVkeIWOrDHBIXT8SWrVj13f8WtngOv7d3tp7/MLHddx1ZZs37595ObmMmXK77+MzWYzJ510EkuXLuWGG25gzZo1+P3+GvskJyeTkZHB0qVLmTp1KsuWLcPhcDBq1KjQPqNHj8bhcLB06VL69OlT5/m9Xi9e7++BVllZ2VHH7Glg9vwf0Ynn3sHf7p/BpStu4rJX/8y+75ZRnuMKtR6b98sBEswKDqPM8u/34Nf1UHC7c/kh+iy/kq9ua88raH0mWSLXE8CqyJjk4M9PMAAEkyyj6hpuVQuVJjRWVS/f6sFk1QS26plkVQdp0Cktek1Ho8AR9chKnXsKdWnOZ5NQU/Wv82t/td9YLZ0Rba2WYPUF63VlfmuXN4isr9BRdboMb0Nyc3MBSEhIqLE9ISEh9Fhubi4mk4moqKgG94mPjz/i+PHx8aF96vLYY4+Fan4dDgepqalHHXPCeJHdre21h57n8xmvsPXDX1n1wx5MYUYUKdhjtsAbYEWJhwKvyupSzxGZ3Cq1SxrGx1jbYuitqqqkIM+r4gpo5HoChzO5wWCw+nLAroBGhfp7l4WjqWo3VnWs6sGlIoFbDWaOVR3Gdo9Eszpa+OoaJtqSHZvmfDYJNVUFe/UFfvVprYxjcyaLHev5al9L9cxuW49HEJrquAp4q0i1vurUdf2IbbXV3qeu/Y92nHvuuQen0xm6ZWVlNXHkQpVZ+Z9SsLWQASOTSRqeiFWRQkvoQrBjgd0gYzfU/SM89S/DQ+3Kbr58AL8Vudts7K2lqktD73DT4RXQdAq8Kg7j72UNEAxOq1qRNbacoeq5wSzx7xneqoC66riqrjP0b5PatH4XQJLqvgmNIz6bjl3V1/XtndWtT1MD6/rqjuu6Vakvu9tRAl1RziA05LgKeBMTEwGOyMLm5+eHsr6JiYn4fD5KSkoa3CcvL++I4xcUFByRPa7ObDZjt9tr3ISmK//lMaxp6cw4+0FeufIpbhryj9CSuSZZCmUjywIaZYEjQ7owReLJ55dy80NnAPDyJ1uO2KezkoF9FT4y7GZGR1txGGV8ml6jZrc5C5BVtTSrXRtbdcyq2t1in0pYj54tdDWNJ2p4j434bGoZtQO7xgZY1TOhzdVQ94S6xlbX+avfr6/uuPaktY4SzArCsTquAt5u3bqRmJjIvHnzQtt8Ph8LFy5k7NixAAwfPhyj0Vhjn5ycHDZv3hzaZ8yYMTidTlau/H2i04oVK3A6naF9hNYTcfI9KINOYv/ib/nL6K7MifkFgFiTQrcwI37996/gX5j/0BHPr1pVbNbdc9pszG0hTJFIsRrobzezv9LPtnIfyZZgGX5VwFpVc9vUN3bVam3VW5OpOocXsAiWMzj9WoMrtrUmWfq91KLq1tyKhldffZVu3bphsVgYPnw4v/32W8sOVjhu1Q5cGxsMNhQ8NpRprb1P9bKKpgTPdZUj1HWe+sbdWCLDKnRknS7gdblcrF+/nvXr1wPBiWrr168nMzMTSZKYMWMGjz76KF9//TWbN2/m6quvxmazcfnllwPgcDi45ppruP3225k/fz7r1q3jz3/+MwMHDuSUU4ITcfr168dpp53Gddddx/Lly1m+fDnXXXcdZ511Vr0T1oSWk37iORR/+ho75r3AlIvu5MUuV3DGaT2oUHXSbUag2lK4JfntONK2VdVqbLfLF+q/m+UOhALSAq+K069SoeqNLmWoUr0rg9Ov1rhVLVNcVVJh6D+65S/uKFqqhvfzzz9nxowZ3Hvvvaxbt47x48dz+umnk5mZ2QqjFo431QPAuoLF5gR8jV2+t/ZkufqC2KOdpyq7WzugbolgVWSDhY6s0wW8q1evZujQoQwdOhSAmTNnMnToUO6//34A7rzzTmbMmMH06dMZMWIEhw4dYu7cuURE/N4o/7nnnuO8887jkksuYdy4cdhsNubMmYOi/D7v++OPP2bgwIFMmTKFKVOmMGjQID78UCz/2xb2L/6WqNHjSMHJGdOv57bSb/GWeTlhdArh8b+v7hWmSDw37T+h+/0iTEccq3e4iYmxNu7/9+ltMvbWZFWkUG/dYIkBoaxs1WITiiQ1603tP5zNraqTrgqiq7ZVT+yq0W23pHCV2tnd2hPrGuvZZ5/lmmuu4dprr6Vfv348//zzpKam8tprr7X8oIXjTu3Mbl01rS0VODaUla2+X32P1aX2CmmC8Eci6bou+mK1krKyMhwOB7m5uXXWzGk6RI27qR1G1rkYbXaWf/Egxn9dxZvvbzjia3WZmpOzeoQZ2VPhr7HP8/MeYMapnfMD3lgtsKvqiWtVJKJNSigYrR4I+5v5jq7qw/v7JDXtiGMlmBWuPrieJnY8CykvL2Nojy44nc5G1ZGG3kN5eUfsX1ZWRmJCAllZWTUeM5vNmM3m2ofC5/Nhs9n44osvOP/880Pbb731VtavX8/ChQubd1GdUNXrCncDR75WQuMcy6prtTOuDe1b1/ma25KssQF5ZwyIj/2PDS/weJM/n+4GLLUe8wCPQ6OPJbS+46oPb2dTV8xgi0ulsiA4g9oUHoUW8NH/1LMAkA0SFpuJ7D3FZAxLJi/fRY+0SNasOYQj1sYtZ/ZjRLId/+FMXze7QpFXJy5QTKEhmhjZi6Ekk0DmdsqHnINJkbFUFqAbregGE4ozB9njxL3sR/wVHsLP/ktoOSvZU45eUYpWXsqK+PGkOsyklu0kM6I3Kw6WkR5pZYQhD3X3GrSKcirGX4k7oFNYGSAjbwnOXhOp9OskGLzoioFyLfijZ1Zkyn0qBlnCKEuEe4vxWGMAqPRrRJpA3jiXzMdv4Mcvtx2eqFTzlav99X3tYBdgxqkP8sqeL9AsDiRNBV2jPKob4WUHkcsLkBQFz6ZlGJLS0T0V3Drpvkb/d+wXYWJbuS/4OlUbT7rNSLFPpSygYZEl7vr3GcT+9TY4tAPJYOTmIdcf9dgyEH64E0XVKmhVpQfFPjW0dLBJDmZ/m1rKUF3VcasvVeyv9ffwfft/IuzUW5t9Dl31Net5kq4j1RpL1f3aLbYeeOABZs2adcQxCgsLUVW1wbaFgtBUtQPPxgSi1R9vSla4JTK0jckKd8Zgtz093mDIK3QUIuBtJxKQVxFAMVkwRUTjKy9G9XmwxSQTcLsIeFyoPjcjLrqYj/86EqdXpaDCh9Mb4IxUExWyleWHyom2GNnUJ46kcDODE8OxGCQilnyEIbkb3oVriJRlvJWVmEpdSCPHULJqGQXrd9Fl4nYKN+7BZLchKQr+CjeeojIie6ey9ePlyEaZ1O0HKNqRR0RSBIrFhKTImCPDGXOxHcpVnEvn4wAuOutKvEs/wAv4Sssoz8qj6O1v6HPFqSQkpaM6i4g0LEGf/wPSCWMIHNpDREwisiUMtSSfyMpy1MpKjLEJEJOIoeAQksFETGIaut/H5sdfZeeSQ6i6zsgoC/MLKpv1mgfieqIZLMi+4PMVSSLXkkxYRBfMioRFkkAxgbeSZ/77N9Y++y3/XXHoiCznc9/ewW3nPB26XxXsJlsM3LP0JSrWLEZWZKynX4XsdvJI/0vJ9gT431PzGb1lP599uT0UVAJMjLURlxTGF5sK6hx31UQ0qFrmNxgE/z7RjCYvMlGX6sFyVeeH2tJunXvM52kOSQsgaYEjtgF1ZngbPFYz2hYKQl3qCm5bO1hsKKA+2mO1HU+9c8WEOeFoRMDbTnRg4f4SVJ8Hk82BuygbANXroffEUzm0JbiEcXmxm1KvSmapmykJGhXmSJQDKwhP7IPNaCLFbiLTaaCw0seeEg/JESYi47ugOoswJKUjW8OQbBEYD+1hy9Nv4i6qZPD0M5DDI0k4MZLSLTuxpyfir/CQ8uer0KNSGH/qmZQu+AmA/E3ZlOeUY4u14inxEJ7kI+//Psd1qJDusx5HCnhRw2Pxl7swxcQSfsIQbH2KSLowBq28lEDBIcp37cWWn401PhIMRsr3ZxMhy7iy8ynPzCN+RF+8JS68JS7CNBU5zA5+H2pJPq4tm3EeKMMV0Ei1BiesGSWa97W9GkCSfKAFkHQdS6AEixZAl8yU6eEYotNBNiCpftQzhtF36s1cfcW5WKIsvPnxltCkrW1vz65x2Ksnp/Pe/P1ccEEfljtG0uuiCUSYZPbdPo0Fn20m2xMMzFaXelhdR4s0V0BjUT3Brkaw/VpVWUO4QUaRpFDAq0hQ7FOPObtbXVXJiL+OjgxFO1e30FmaSFODt9rboNFttmJjY1EUpcG2hYLQFC1RYtAc9ZVE1JW9beyyx4JwvOt0k9aOJ7IE/U+7iGtuOJNhF16GKTyKO249k7NOTGfgycPpMTKD9O7RbMgtY2RKBPqWhYRV5hPoOoxnN1awcG8RJR6V9CgriixRWOljd7EbOSo+GDQG/OiqSn7ySJyjLmPA628y8vN3MfUegnvCVSDLRA7ojaeoDOeeQwBoYTGUdhuH78oHibjqbka+/gQAu+fuo8e5o+h6/lTcRWXkb8rD+cXrSP5KkGS8pS50TwXu9UsxdumJHJWIIbU3puFTCE9NxNS1F56iMio3r8YcGY5ssxN58hmk/vUazOPORTYZCO/VA72yHN3rQassJ+eH+ax5+VcqC914NJ1Cn0rq8ESuODk91K2hKSTVj+T3BO9oAXRZCWYOVT82g4zsduI12EKriBVWqkS8/X/s/Xk/z2z9CAiu4PbW7F01jvve/P1cPTmdvnfeSrjJgKbrKHqAfT/vZW2p56jjWl3qOWqwqurUKF+oyr5WTTBrqWC3IfUt8tEWJE0NZXl/v6lHf2I1JpOJ4cOH12hJCDBv3jzRblBosqO1GGtqj96maszzWmISncicCscLEfC2k9yKAB8sPcDtFw/kiqEpXDapB0POOpN+ceGc0SeeQakOMrpHc9WYrngCGlG+IuQ+o5B0jQ+3lrIhs5RP52znypeWUOL2YzcbUCQJlzeAVpSDd9tq5IhICPiJkdwUuQN8cVCmPCyZyl4nsbPIgzz5agwnXkjkxKmkXHYZAIbC3eiAV9XRzOEUxmYw+P13GXfPaYRPvRxp7EU40pPwlnnZ8PYiAPKfvYeov9yF87QZWKdcgT+hD2gBNFMYkr8SxR6NZAnD1iUJU1QU1rR0TH2HUdl9LO9WdGevpSuRp1+E5qlAiYzDuXkrmruClIsvZPyT0+h+SjqxJoWMQXGEJ4TR7bTBnH5Gj6YvF6xrSAEvkuoPZnI1FV0xgRbAVJ6DFPBiK9mPFPBwsNxHN4eRdMXF/LwK7hzwZ2Tg2vnPcut1w2oc9uKBcQz7/BOyu4wlzCSTULIN48GNnPTKdF5c9hwTY23cNfPEY/p5qVpZrfpiC25Vo9intkg5Q2Pc8/KlbXKeOmmBum9NNHPmTN566y3eeecdtm3bxm233UZmZiY33nhjKwxaOJ7VFwg2t0dvc1XP9NanrvZpjV0MQ2SDheOFKGloJ3kuPz0Twkl1WNGBgfERvFlQwbM/7+K+0/uydk8xB7bls2l3EUazgc2HonnitF4EdNiQtZNeiRHsibWSmuJge2EFRllmQnoUmU4PkiGC8sx8jGeNQTeHs7vUx6L9JXy3PptRKXa6Ve6hd0wfnllxkOtHprA9Yhhj5Sx0SaY4qieaDn5NJ9sVICHMQAkxOK57CL8k49cg5pxLSd+fw4EFe1ALspEVmTzJTmapFz2yCwnFe1Cz9yFZwyA6EWPvIaiRqZij4vHtXAeAP3kQxZUBxqRGEm1R8EUMwhQWwwE5nvTk5Xh3rkO2hqFExdHjhr8QljKHua8sZfPigwx27CS9q4NCX9MyfECwRhfQFSMBow1jRQGytwJdMaKbw5A85VRKZnYUOkkMM+IoywmVMgDcMiLYVaNq2eJ/fnYzyDIV5kgcgFmV8K/fAIB37OXYXNkMPL07Tzy7uPk/LPzencGnqUSbFNyqdrhDgx5adKK1nV9xGvB+m5zrCFoA1MCR25ro0ksvpaioiIceeoicnBwyMjL4/vvv6dq1awsNVPgjqd0Xtz3O39Ryhqbu0xmILLTQGCLD20425JUxtkcMmqbz9ooDzHhrJbHJdm6d3JNws8I9Z/ZlwsTubPhuNm6Xj4UrD3KgzE+2y8+CZZmMS49iSJ84YsJNlFb6sRhkdB36xdqYq/THPuNpdrlNrMmtJN/lI7O4kuhwE9sLK6mI68vcPSXklLpZn1vBoTIvAUcyWkQCLy3Lwqfq7Ctxo+s6BjR0HbyaRLFHxbzmG3wpg+l690P0PHMAvkGnETf9PrYXVpJiN5GYvwHVkUxWn9ORwyPxJ/anJC6DFU4TBQlDMKb1RrKGYcjfSaJZo5vDhMuvsanAjRYWgyRJSJYwjKm9kSKikCOiKF+9lLDEGKJNCnFmhc1lXj5fnxeaLNZokowuK6BroAUweMuQ/B50k5XyiC5otihKonoS5i5kfJqdQ+V+Vv51Js98ci0QbHdWpdCnMu2qwfznytfYOHgaVlnHsvJLTIqEoe8olEETsTkz2XTj33jpw83H/PPiOTyJrKqGN9ixIfhYc9uQNdXSD9sp2AUkXavz1hzTp09n//79eL1e1qxZw4QJE1p4tILQsJZY6OForcyOVs5wPE1YE4TGEAFvO9he5OWLVQcZ3zUKs0GmT6KdpLRIbj61F/3iwugVbeHE1OAkHC3goyTPhWyQ+XF3IasOlXHjBRmU+1QuH5HKn4Z1YeG2fLpH2+hlB5tRZmB8GHtLfewqqkTTdTxqMDDol2zn2005HHD6GNXFzmXDujA0MYwJXR3o5nB2eKws2pLH6uxyCiv9bCmoAC2AzSjj13QSS7Yh9x4Jqg8UA8m3/BNNB80WRbTVSJbTyypzP17c4GR3cSXfBboz65d9/HdLAZV+lS+35vOrdQhKXAp59h64NANeVSfJFCDNbqYoYMRulvFsXIwS3wUAxRGDfdzJ2Lp1x2I1hBZbqEuU8Sg/zrqGbjAFSxtUP0p5cJU2zRaFWZGQPOVIgG6JwKfqLNxfzNA532IZNRWAzMpgu7NzujrIsJt57s21DO7moP+vz/FN15HcOvl+wityCUSnURmezKEXHmX1wqxj/XEJqardrVoNzRVou6V+LfW85m2matJa7ZsgtLPGBI21A8+WCDaPFsweLfvc2JIGQTheiJKGdvDttjwObCsgzZ+DYk8iy2nkugndMMoSFT6NBBuYSrM4qXccm047n4F940iKtFJa6ef9H3dy7Rl9OT/sEKojhbd2+uiTFMGqg6WMTk7B61VxelUOlLpxevws2FXAuRlJDEy2o+k6lT6VCp9KH6OTLrYAlbKVr7YV0Cs6jGWZJURGmCms9LFsTxEzTuqBKptYcbCc8akRBOJ6ku83sivHzcCEBOySD6szi7L/e5PB515NTmRXthdWUuTysTyzlGSHhQk9YjhU5iHVYaGw0k+szUSObSRWRWL5wXIGJ4ZjL8/EvvYXik66jn1FHkaPOAVJ9aMZrQQObgVAjojk5DduQbrxZb7fX1rj9QxTJCpUnRL/UTJ+koyka8iVJRTauxPnP0R5dA9sgQqMfie6KYwIrRIUA7IkcWbvWFafdjofLTlImCIxLsbGqhI3U396lfyvPmHCxn28+vlWiu/6igWFwVZn3ww8i/G3T2b3nHV8tORgi/3MyFBjxbOq3r5Vj7X2pLUbrx7Mq2tb+SQNqJq0VnubILS3xtTstlYmtSqwbUwnhvrGILK8wh+FyPC2gyHJdiZNSGeBKxKLItMnNowSt59cl5cP12RhkCV+KrVT6vHjiLERbzfTOz6cpTsLCXdYmNozhkB0OgB9Y8M4e2ASS3YW8sOeUtblljNvTyFmg4ymw9R+CXSPtjC5WxRDk+z0iA3jqfm7+DbXgCsskYLKAGv2l3DHB2vYll2G1aRglCVcngB3z97CD3tKmL0ph50lPp5bXciiA6WEmxU+2ZSHRzLjsnfBW+pCs0WRoJXSJ8aG2xcgJsxE/7hwthe4+HZdNvtLPaRHWokwyazOLmddbgXdo4OTzjRbFO5D2SRlLSUx3IQaHodaXoJuMKOkZxDIy0TuORzd72fUP6ZyepqjRseAxmY5Ja8LXZJRI+KxGWVezo0jx+UPTmLTAki+CpBklNJsIs0yqXmrWb+pgCsnpOJWdU77z7XMfPxcVlx/N58+No9vZu/kspFJKJIUGo8iSTx095wWDXbh94DWrWq4D2fsq2qL26JDg+XJdl5Wu4UmrQlCa6mrTKE1s6fVa3cbUyLRnA4SgnA8ERnednBKt0hGpQRXRHMHNBRZIspqJLfcy6AUB59szmdcWiSHyj3sWbeffZuykQ1GDCaFiSd25afdRYzq4qDcJ7Emu5TECDNXjQlOutlf6qZblA2nN0CU1Uiq3UKlX6Pcq9Et0oTLG847hRU88+1WvuriYGLfOHJKPZjMCsPSoxiYEMEP2/K4ZEQXXvxpJ/uKK+kaG8bWfBfDUxx0jbTQTS9knUHGp+nYDDL2P1/PPjWcTKeXlQdzWLenmNsmdCOg6pgUmStGpWEzKuRX+PBrOil2M5EWAw6zQkzpbkq+eo+Ax0fpgp+ItvwKg09A11S0bctQouIx9RzE3ll3s/3bHRT7VCpUHYcxeH6PpiMD0SblqJPYJE1FrixBcRXgT8xA1XQSw4zoWJHLC9BsURzwGkmJ6Y5p+wL0+G78bfmb3NL/Sp7679/In3AtqUN2csLUc+j65af87/lFVBa6WV7spuzw0r4t2Q+3NlU/sl7XIks1JtW1lj5Tbmv1czSkoYUnBKE9HWtm91jaktWu061vGeLa94+nrK4I3oXGEhnedqADhe4AlX4NVdPZU1xJUriZ63sb+VO/KIYl2THIEn5V55xzBlO4cxUHV/4PWZJIibZR5vGzp7iSXUUVLNlZiNMToH9cGD9sySW/zMtvewpxmA1U+lV6Wz3kV/hRZDCgUe4LoAY0AofPDXDooJOAT+NgcSXzdxVyQtdoVmeWoqkadouBfnHhLNxVwAnJ4aTLZRxU4ugeZePH3cWUelXWK+lYjTKyLDG1Vxxnj+xC/uHlfa8dEk+qw0J6pJleMTbGxEoMijGi6xDtzkELi8GWEs+Wj1egqxprX/mZig0r0Q4vnCFZbLhWLuLAogPIsoRfDwZ54QYZx+GaXQ0a1bFBM4ehhcehm8IxVRYxfWgsEeXBpYWVymIkXwWegI7BW8aafzzBRwPP46b+V3Ll5HQMU66l0q+hmcL4cPzfyFu3j17pDmbvK62xMMTSYndr/MgAhIL72tvagq61RR65Aapa900Q2lFLBI7NOUb1uty6AtnjKaAVhJYiAt524D8c5HaTiukSJmE2yERZDUj71pLvCQa6eS4fqQ4LXWPD8LlKiOyaQdaaX9mVW860IUnE2kz8si2f/XuLibIa+Xh9Nj9+v4nPv93G+gOlJISb2V9cyZvbgoHx11vy+G6Pk49WZeEsqiTgV1E1nQXbCzCZFZJS7Lz/+rf4AipWo4yz0sfWXxdzy40PseaQk0m941B1cJmj+WFXEetzysgscfPS0kyueXUZD/+8m5tfW8Z1b6xg+e4ibv98AzkuH3JFEVFWA+VejQ255Ty+spB/LzqIT9VZ44mmUInEOnwS/S8biS01kTEPXo512n3II05H91RS9MM3LH/iB/wVfsp8KlFGmR7pDtxqsCdtqtVQo3tCXS4eGAcEM4JKWQ7oGnLODhRXAbK3HHJ2EYjsApJM3/3zkHSd4R+8wRn/nMoN5/ch9pNv+XqfB9uzt/BwjzNZUeLhjdm7+Hx93u//TduoU0L1sFOu9f+tZUp8WCufoRF0re6bIHQgTck2PhgKW5ueoaw+4ax2DW9rToYThM5MlDS0A5vqpleMDS0sHGX7Ik5JG4hSvBvdZMEgw8B4K6aSA3xcbOPnzcGgqrLoEP7KMgrKvNz4301cMrILUwck0Csxgik9ovhuYw6ywURZzn7K4sL4dV8R3oDG50v2Y7YaKTxURkWZlxEndCEyLozSggpKKnzYrUbKit1kbTuA3+2ia2wYvWPCWGYz4crbD8B3Sw6wOimC0V0cFLkDXNM/gpVFOv/4ZB25+4rIXjsXm/0KAj6N3RuXYo89BYBit59f/WaMcrB92LtL9hPwqVw5vhtJ4Qb2lqrIkoRqiybg8YKmIUdEUuTVUeVooret5tDirbhcwedXdWgoyXbhMMoU+1SsihzqnlBdglkhzxvMAC7ZVULvcBNyZcnh1mQG1NRBSL4KdKMNKaE7+CrRwmJ48/R7GdA9Er87wP/tKOKK0SlY7voz49MT+fI/y0PHbC9RRhm3GizlCDfIuAIa4QY5VFLRGs5e9zWc+XirHb8xREmD0Bm0Zt/b2ssYV21r6kIXTTmPIBxPRIa3HRiK9tI7bwWG/avReo5GW/0DmTGDyEsbiw6U+zQyTSms2FfM2N6xRHUbjDkimqQhk/n1rbc5sLeY/nHhXO5Zzp3ju7Kv1MvJ/eKJ7xpN1yEZvH7dCQxOtPPL+mz2b9xP5o5CKl0+fJWVHCqoIGtrJnnbN1FaUEFRafAr+KikBEacfwYJYWYe+mkHxS4v/U+7CABruAlfQOPnvcW8sWw/AaONJQdKkCQJk81ClxPOJCbaBkByxnDS48K47MRu9Ii2MSlWZWCCLbhAQkDjkjFdySnzkF8ZoMTtJ2bXfHwL/0vJjmxcWbk4168nZtVnJO74EUNMIopRQZGC7bgUKVgjO+jSgTj9Gk6/ht0gM+VwC7fJcTbO7hL8d/XANNsTYKfLx96nn0ANi2G/pSu6yQaKCc0SgRoei+xxAnD9voWU5bjYll1OmCKxaEMeL7y3kX/PmsvIoQlcOiShrX5MakgwK4QpEiV+LVTG4FaD9cKtGewCJN84u1WP3yhaAFR/zZsIeIV21JilhWvfb0y7sPrUl3lt7KS1Y9FRs74ddVxCxyQyvG1I04PtxvSKMjAYKUk9gbU5LiZMvJKfN+WT5rDgMBtJdZjYmOfitxVZ7F0yF4MlHFtsCtaIcOwpvenVOxazQUZO7YNBC/bb/WTpAWzhZronRQDw4/Z8UhMj2L26Ave+PMLiUgmLiqA4t5zwmGiGnNgXq0khO99FwK8RHmkhKszEppwyRnaPprTSz4wLM3g/IRwAh81ITpmHLQdKOVjup8jlxRJmwhZuwuv2YzLI5GxdRVhcKhcMPoEe0TZyyr30tZQQXbmPCfE96TNtGKVelQ/XZPHuqiwuHJjMga4TSY/vStSWvciyjL/SQ+7Pi0g+7xykMDsZjz9Ir/W/sfT+z3DmVlAW0Njx9dZQT9pt5V7WlnrIsJuJT3fgyqk44nU/u4udgF+l+99vpcIWR6qvDGP2PgKRXfDZYjDogWCPXsWA75sXOeWFP/PV9A9QrXDti5ey44ulfPfLfpasyW2zZXwhmM11+oNBrbtWJwoZsCoy/lYOdgGcWdta/RxHowf86AH/EdsEob3UlVmt69919eA91olqxxI4N4fI+grHAxHwtiF3QEOJSsUVnkKE7gEg1WHho035vPjlJp7460jm7ylEkSVSI62MHdmFzDXhnHjJ2az+aTnWCBNJ/TPwBbTgSluRXZB0Lbi4RIWPEwclctWIVCr9Kt8v2sejVw1n155iivNchEdamDQ6lWWbcqks8+Jy+1EO93GN72Kn0uVjUr943vtxJ5NGpuDyBHB5/KTE2Fi96hD+lAg2bcjBU+Fj1o87OJBdxqUTuvH9+hxyMkvpHh9G1+FjKM0twqNqhBllukdbCFjSMJTlo2RuICF9OD7VyLThqfy6rwijEjx/vr0HkT1S2D17Ob3OH4sxJZ1AwSEsA0ahlhYiR0SSleOiQg0uo5vj8oUCXkWSqVBVNpd52bwq54jXXAbCk8IoOlAGgG3vUiRbOLpiRK4owux1hfb9vsdY5ub/HjBfPTmdz2Z+wdpSD/f+6xQSpkzBt38bd0x7t7V+RGqMu6qvcKxJwelXqR7zOowyDqPSql0hAJ755FreeXJvK56hcXS/D91vPGKbIHR0dQW+TQ16G+qz21BnBkEQfidKGtpQmFFmY4GbDzbksrVcodit8tmGHF6dvRWLzcSuogrmbchh0fYClu0t4r9vf4OnNI9f3nkfSVbYueAnwuxmukRbKfcFWJKvcdEn23lj/m6MZgOn9I7DpEhYDAp+b4CPV2WRtXk7AU8Fnko/v63NpvBQOTlbN1Jw0MmB/SWkJkYwpGcMBqPM2gMlFB4q4Z3XZmM1KazbV8KezFJkg4SzqBJPRTDA2H/Qid+r8trnm8jPLsNV6uGHhfvYvehHbA4HO/JduPwq3oBOsU+CiFhUZxGyuwSbUSbKEixTOFjmYVN+BRaDjGKz0fWUIXiKytC9HpSIKNTyEgCW3fUm+yv9uFWNKKNCj3QHqq6jSMF2ZA3RAFdOBTtdPnRPBbqnIlTHi2wASUbbsZINt9/H3PwKEsy/H89sN3P1nIe4+fIBPPnwz/x9/J1tEuwCKBJk2M0kmIPLKadYjaGuFBZZwqoE63cV6cg3cbKl5f6O7ft9Sosd65hoWt03QWhHtQPMhnrdNnYhiPrU1eO3esa3OcFuZy4J6MxjF9qHyPC2scQwEyNTHNz/v21cODwFty9A9radlOzbQO6e8SgmK7qmUtY3icqC4LK0WsCPYrbgrywjd18R28PN5JR76R0TRm5OOf17xTA4LZKNueWEmwz0jrHw1PWj+GVXAb3HDELXdDwVfnL2ZKFrKuU5eyjP2cPoK67E5QlgMsjYo21s3ROcgCbJMmv3FOOp9OF1Bzh5XFdWbMrDXe5jwoR0tu4pIi4hnEM79hGf1gdd03GVerBGJWK0KJR7AnyxKZdIm5HJ3WNQw7uRYNiBbrBQ7FHJd/koqvAhSxKTu0dT6A6QfDhbV7hpD47R41BLCpAdMahFOWRnlRFnNjB2UhrdTh/Byqd/wqoEJ28dch+9jtMSZSbzYBmSJQzJEUcgczuGtL6g+tBNVt654BEyK/28ULYOJXM9N2f8BYDXv95B73n3oUht14WhOreq4dN0cj0BfJpOnNkQ+v+qx/w6GCVwGGSsSnAiX7an5Wpb8zb/1mLHOhbBkgbfEdsEoSOoK/g6Wo1vYwPU+rLBx1Ia0dQxHItjmagnCC1JZHjbWJxNYUCcjavGdmV81yjOGZBIZdEhTOFRDJ/QD3dJHjnr55O9t4S00WcBYItLxWCyYk/pjc1hozC7jIe/2ITTE2Bgn1i6RNtYvruIzQed3Pv1Zv63s4g9JZWc0ieeYT1jMFmNVLq8VBRkUbh9RWgsa2fPITennB37ign4VPasXA8Ee652iQvDEWVj5KBETAaZDbM/I3P5d2QWVeIsrKSwwEXagO4AeN1+Mpd/h7skl/IiF++8+SNvf7QCRZJYl1PGnhIP6tAzYftSnJ4Afk1jbNdgv+F0k5vu7n0Yz/074RmDSZtyAp4dGzAOnghJvShYvJxouxlFAk+Jh8UPzkE7HOxB4yZsfbGpAJMsgcGAZgrDmNwNKeAFXUPylHPNd//m3Alp3GofGgp2R0RaeGnta0x78ExOGJ7E9ef2IuxwCca53SJb6KehblVLBud6Aqh6sDuFT9Mp9qkokoQrELx+1+H+v1YlGOw6/SrhBhkZQn2Bjxe66g/V8YZuqgh4hfZVu462ehDaUDDalH651bO4dZ23o2c6RbArdBQiw9sOrAaJM3tGAZAcbuDAd7PQdB2jLPH10GSuv24DB1f+j9FXXInzUD+cWdtC2V5TRBS2yDj2LvmZO8NNuF0+lha7kQ0Su3/9hkFnX8ob83YRYbdwSkYCX/x3GV0zemAyG/BXOGuMw+cKlgyMH5zEmn0lDJ4yhswdvche/xurVx1i6PBkNu4qZPfyNcFxxySTuaOQstyD6Foqe3+bTcqI01F9bhSThdjeI9E1lS4D+yNLEnsLXMSEmxmbGonsKaNszQpS+51Bmc9AlEXBZpSRKstQHckc9BgwDjyPlIS1qM4itt5xO1G9k9n0wSomvvBX4t+aw7rFBynxq4xMCufQwTKc/sZ/pe3RdPz7tmLsnoEaHguahmZ1APD1+Zdx0m2TYP7+0P5/zlrBvkqJhOtPosvVGskFGxgwM5MNj7zJkH/dyOzxdzb7v39jxhp7eOW4KGMwwK3qUuFWdcoCWmgpY79OaOJaht1MoU/FrWqNXm650wj4g7fa2wShjVUFmdW7IzR28Yf6th2tA0N1dQXUHb2OV2R5hY5ABLwdgNUgAcGU3KUD4rhoySssyizjhORwfji5B898sYmtP34JQOH2FZjtsdi79OaM4Smc2jOWd1dmsnFfCQcjE/BU+ph+dj/+88N2Xn5vBVrAz/6NOynaubrOc5cWVGAyKFw2Oo3PV2ahBTQCHhd7f5uNJewiUtOjiDv7JOAkls7+hZjEcLRAMkX7d4aO4UiIJnejh9LMbag+NzbHJByxNhasPsRZJ6ZT5PaT5VcYed3DZBV76R+hsq5EZXCCFSSZPNVKquJit8/Kzqgh9GY9lYWVLP9pMbEmBQJ+Fi7IBECRJBZtLQye1yiHJnbVZ7DDzI5yH1O7OlCLcjGm9sa/5Bvk027ggEunhy+L/ZV+Ftz7v9Bz7AaZ+6OG8uD/zeSRi56rsYqb3SDz46J/Nvm/cVMYJRiXEsHsfaVAsPewT9NDk9ZiTb9PVpOBgQ4zVzx3Cc/87ROKfWqLlV9UBdUdge73HzFJTfeLgFdoH8ey0ENdSwI39lzNOV/t87allu4RLAjHouP8RhNCFAkmdbUTZpS5qF8sy+6fRMmSVzi08CUuu+Mmhp59Bi/881z+NCiROJuRYWlRPHR+BqddeT6Tx3Wl3Bfg4pO6021gFyRZrjfYBTiwdA7vvPcr/9uQw9rvfiFz+XdohzNn2+b+H4WFFVhNCoWFFYw992R6p0fhdTlDraokWWbwwESiug3GU5qHv7KMvb/NwWAMTv46UFjB6kNlxIcZMZUdotIfDB4HJ1hx+TU8tjhUXSdXD6eHNUBiuAHv9jVofpVBwxMZcG4fijZsJyMlgh5hRlwBjWxPIPTV/tFscHrxaDqz95ViHnMWWmQSMy96mRnhA4n57EG0QzuZ+dMj3P/v00PPMckSZQGN2855+ogli8sOn78lVO/pW1WCYJTgwqGJzDkc7FatKGdV5GAvY13HJEtYD5dXmGSJTU4vX93+BXnemp0cINi/t7lv8n//NKuZz2x5R5Qz1NGmTBDaSl2Z3ZYIYOsqXWipkoWW6PnbnHOKYFfoKESGt5OQJQg3yvzngv41tms6lPsCaJpO32Q73/yyh73do7lkZBd6p9hZ2kCwW6Vo52r2dE0LrawGEJ6QjitvPwc27yF3fzSKQSHMYWHNumxS+6fhqxhMZdEhdE3jQG45F1x2ErvyhvPbu++hH549P3FECvllXmavPcQlA+LIVxPpFyajS36M+TuJVn2ouQcw9zuNeNcBnLPfw5qUgBIVT9KIrsSP6Ivm81O0ZR8DrxzNyhcX4FY1ZIKBXpMzmeWF+GJ78ty3d3DbOU9z34yvgK+O2K12kAvQL8JEZqW/xUoFrjm9B2//sCd036/DsEgLm5wePluby5T4MJYXu1GkYP1uhapjOVzWUOxT8Wg6YYpEnNlAsU9lf6WfVKsBp19D1XXcanAltmDdb/DnBIK1yatLPY0a4yP+E4AFLXK9x0xTg7fa2wShjTWmlKAx2dT6yhWasyBFSwaVDR2vNbPEouxBaG0iw9vJyRJcPyyJMV3CuWt8V768fTzPnT+A33YVsnhFVqOPs2Pe/9W4XxX8DpkwkG4DE/FVusjcUYjFZsJsNXLxFRMZdfE5dOkdixrQ2HKglLOHJtNr0rlEJPXAVephaGok3ePDuWtKb37eW0qxW6XCr+HFiBYWw95nnmLL028Stfg9tv7jH5TszMJbWIR77w4STx6HZAnDU1TGpo/WsvrlhfxaUMklZ/XCJEsU1xGU1mY3yFzUP5brzuoJgB6ZhE/T+fjKlxv/Ah+WWelnYnxYi7xh7rhldI1gt8raUk+NIH5YpIWxsTb6RZhJtxnJsJtxGBWiTQpRh/vwutXfs9zJFkMo2K1agc2v1+wwsfZwsFs1Ma4hj9/9ZLOvsaWJSWtCR1Rfhreu7dX/v77MbUOlDg1lXVsqI3u0oLO+xTRaQntkoIU/FpHhPY7IEqRGBJvzv3BOXzinL37tVHJcfm77v80U5LnYMPuzep8fnpBOwOvGU5oHQFz/sZS7vJitRgyWMLSAximjUkmLtpFZXElKlJVhQ5PZctBJuSeAqunEp0VSsDcck9WAWZG594QoZF85akoCckURJUoMWeV++vqK0PwBEoZ1p3DVeuxpsVhiHBjDLAQ8wZ65ksmCJcaO5/CkrQy7mYEP3M4Njpf54cvt7HQ1vPBAWUDjy62FsLWQK0anIGkq4c5Mrtz9Cxf89wU+vOtrtpU3bvGCClXnfzmuo+9Yj7HRVpYWB5dxfvql5Ufdf4PTgyJJhBvkw/W7OtGHJ7KlWg1YFZnlxW7KAhrpNiNuVWNViQeTLDW4EEXVY1XLE4cpEqoevG+RJbqFGRv9mrSpgB8CypHbBKEDqStgrD2JrSm9e+s6TmO3N3WcTXlc1AILnZHI8B7njDKk2Y18dfVQFt01nuIlr5C14CUeevYe+p92EQC9J58PwNV/O5/e4yeGnluwdSnrv/uBRW+/Q9GedRTu2cDB4kpyyzwMTLYzqnsMbp9K9/hw3D4VVdO58aTuxHXvzgXjuyHLEpKmotqTUJHJlaMpcgfobXCiHtiKJcaOYjFhDLMSN7Q32cu2E/AEgy1dU9EDfpTwCOLTHawt9TD5ryPQumTQ595/8tfnLg61CTuaWJPCx8sPURiRTrk9jQpzJOGX3sb1n97Wsi92LZPjbMFJdxAKdhsr2I4sWK/bO9xEuEEOBfiby7wU+lS6hRlDb+A8r4rG74FsY1Woeug5Hk0PBbt3zTyxScdpbcFJa0feBKEjamwGsjnZ3GNVVzBbO6BsicCyJa9B1AILLUEEvH8wigR2k8yto7uw7P5JOJe+wvKHTuEfj/6Df07qzuvXncCka68J7e8tC3ZEcBdl4ynJ5ayBSXzxww52F1ZQUulD1XRiwkxcNaYr47tGs2RvESndookJM3F2mhnZ7UQpy2FvqY8Yq0KXCBPoGlp5KbqqUbLtAAaLCcuwSSSO6ImsyHhLg5lU3VOB7vPQ/0+j+cvfx5F2820o+bvxpQzGdv5NXH56j0Zdc6FPxShBrCsTd0DDoki4jHakky4HoHe4qYVf5aD9lf4664Ebo6pUYXOZl/heUUQdXkbY6Vcp8WtsLfOywenFqkhkVh4Z+B3rG/t80+XHeISWpQd8dd4EoT3VFdRVDyiPFvQ1tg9vS2rpet+2OE9jzykIDRElDQKKBPdNTAegf6yFb/46DM9VQ8mvCFDiDjB/TyGfz91FWWE5lX6V8Egrbp/Ke+/9QvrgPrx/3SgynR6emr+LYelRdI0No9TtZ12JhNmQRH+LSkVJcPKUuWAnvtXzMIy/CBYuo8ukoZTtz8W3eyO6qiLJMgaLCdlmD05KkhUsPj+GMAu5H7xO7PgTMZrMVCQOostJA4j6ae9RW5NVUcOiSSzdwRtDLyfWpBCdGEaUUQ4Fl1GNaHPWFHsqmpeBNErBzGuFqjI22sq3K7JxBTSsikT04ZZkVVnZ+ibRHetVVLXB6yi0gIrmDxyxTRA6ovoWi6jdw7cxLcdaI3Csr3dwU4msq9CZiAyvUCeLIpFmNzI4wcrMsamsmHUyG144h3P6xPDZTWM4b0Aij991Dvecn8GeEjf7S92M6x1LuMVAXJgJq1Fhf6mbN5bt5+t9HlZnO5ECHrxL5xAoc1L87jOEJcZQtj8X1edn63++whLjQFJkLAmx6D4PWmU5mqsUSZGRFJm4yaege934tq7CVryX2DMvbFR2NtakMCHWxvbrr2Lznffi03TOn/c8Pc8cQIlfC02Aa4lg91+zphzzMaommVlkiWxPAKsikWYzMiHWRrhBpluYCfvhFdX+KHRVq/MmCJ1B9QCz+v/XXqmtat+WPG9d/27pQFVkXYXO4I/0O1M4RiZFIswokxxuYEiClYv7xzGleyQjk8MZ3SWSKwYl4jAbCDcZOFBUAcCUfglM6hbJmNRI5IoizIPGIckyUSNH4jhhDLqqYgyzIhsVPEVOPEVlSLKC+1A2si0CJSoOxRGDrmooSV1xj5+GZLaQZU3D03UkvfrHNjjmf957MqcOjqf/ad157cvtvPbldraV+3hizHTef34xUH+WtCkuG5kEwL9nzT3mY1VxGGXOv2IgV980hiuy1pG08jf6JUdgN8i4AhqJlvq/oDmWN/ZLh1ruGlqK5g/UeWst6enpSJJU43b33Xe32vmE41tDXRsa2relztva7cQEoTMQAa/QLDrBrhAQ7A/cM8qE3SRzcf84Tk538M9J3ZnULZJTu0cSW7KTQaYSNGsUksGEpf9wKnZsoWT5EsyREZgjw+lx9glIioKtSxKVB3OwxEWDrCCZLMgRkRjDLBAIEF6Ri2QwYTXIKHqAqO6RDY7z0Ud+4dNVOWQuPlhje5Y70CILSCRbDMiAp8R7zMeqLc+r8skHG7AlxeD0qgw1FLI/r4I/vXQZlwxLxFfPBLUwpeFODUfT/5Etx/Ds1qH5/Ki1bpqvdSetPfTQQ+Tk5IRu9913X6ueTzi+1LcEcPUM77EGoc1d7KK1HC2Yb6njC0JziBpeoUXJUjATDIRWA/PHdgfZgFKehx7woRbm4K/wULozi9hBPfCVV1Ky7QCRvVNx5+RhS+uCZLLgztyPJT4O2RaBZDQRyMtELisiUJRDXNFmAlm7MEXYGjWuqmV6W1pV0Pz17uJWOX6eV+WBf8yGf8wObVs77V3CFAmHUanzOdUz1jJNr+c9sHROM0baurRAAM2vHLGtNUVERJCYmNiq5xCOf41ZgAKal4XtCDW0LVELLAhtQWR4hVajV90UE7okE7AnEeg+GiZcTtRVt9PznnuxjzsZzRcg+cSB+Mor8BQ5kQxGJFnG2iUVJSoeOSIqeLyKMny7N5K/fBPbH/w3alEua/67ucExVC3Z25k89p/LeP77ewC4+fIBnNPVwZlJ4aTbjMy8cQQX9Y/l31/8nVxPALtBJtliqHGd8uFb1baq+41ZbKKj0vxqHSUNrTtp7YknniAmJoYhQ4bwyCOP4POJrhBC49W1iERH6m3bHNUXzGiopVpnuBbhj0dkeIU2pQPIBtTwONTwOEjsT1TfiaBrJJXnIVcUga6R9+l7xJ99PpIlLJjZDY8EQA6PxBwVwcaP1/HzNzvZcZRFEpq8/HA7OLuLnTkHy0L3Vz03l1Grf+Oa0//Ly59s4Ybz+zBg5jWcZrbgWruM3T/sQnHEoBFcdjjbEzjiL1dTKLgNvgCKJDWqR29HDYpVXwBVlo/YBlBWVlZju9lsxmw2H9P5br31VoYNG0ZUVBQrV67knnvuYd++fbz11lvHdFzh+NfQamkdXVOC1YYC+tqt2UQALHQEkq7rnSAk6JzKyspwOBzk5uZit9vbezidhgSgB7+Il1QfktuJUp5H4NBedJ+HQG4mJTuDyyY/8u+f22+gx+ivU7oz8O8XY0hM45YRN/HKvq9ZO/0OHF2jSHv6XQ5Vwhfpw9hfR5/dBLOCT9NJtBjYVu6r0VJtsMOMK6DhVnV8mo7TrzY64H1549vYrvy4xa+1iq76CGz6GKfT2aj3RNV7aNvdVxNhqdmRo9zjo9/j7x3xnAceeIBZs2YdsX3WrFk8+GDDv3hXrVrFiBEjjtj+1VdfcdFFF1FYWEhMTMxRx93RVb2ucDdwbH8cCHXrzEFe7Y4OdfUWrqvlWu1/t+a4WocXeLzJn0/B95Gl1qOeJh1LaH0iwyt0ODqAFMzm6QYLUoQFLSIBkjKQ/B7MFUUkDdxP1gcftOs4j9Wgr77GUJoNzlz+NWsKhyJ6kf3UR6Sn2kEPEGUxkr5kAbfs+oh/XPIaGnBBnxgG/WUslhg7+75fzZpfDwDBlmoWWSLRYsDpDy7FbFWCGWBFklD14NLBitRwV4p79ie00dU3TbCGVz5iG0BWVlaNXyj1ZXdvvvlm/vSnPzV4nvT09Dq3jx49GoDdu3cfFwGvcPxq6YCzvhKGulqtde5gVzjeiYBX6PBC4Zkko5tsaCYbUlQqSf8ex4v3liPnbKNg9pds+XgFc3cWUxZo/f6sY6OtTV4uuDZjwW502YCW0IuE8y6i3CwzPs1BRGUuks+N05rG6FQ7lsgp3DTtN0r2llJZ6CZyUAbFa9ZjjbJy4gV92fPhRlQdhkVaWFXipkLVSbcZUXUdqyLh0yQUScIkS7iO8tq8cP+zx3RNrUX111HScLgtmd1ub1QGJTY2ltjYhtvY1WfdunUAJCUlNev5wh9Pa/a9beic7ZlZ7sxZbeH4JwJeoVOqygKrVgdq99FE3jaaE2+DE1UfhtJs1L3ryZs7j4O/7eLXVTlkuVt2Rv+xBLvXn9uLrOXZfDD8CsZvX0m6O4tAwSFsXSsowYZcUYTzpy+Ju2oWRp+L70b/mVNfv57I9VvY8O4KvrnyBZK6OTDbzSxYdojThiRgi7WxYFEmI6OsLCisxK1qKJJErifAsEgLhT4Vp1+tt5VZR6f5AmiSdMS21rBs2TKWL1/OpEmTcDgcrFq1ittuu41zzjmHtLS0VjmncHyrKzvZGsFhS7Q5q2qX1piM6tHKGwShIxEBr3Dc0AEUE/6YdIhJJ37kecQDwz1lGEoPMuS1HD69bTw91n7Ch39+gbWlnnYZ5xuzd4X+nTh6Aumzn8HQaxhlShiRBgnPml/Y8MYCttw9hH0VPipUHeOt7zDqjimc9vPr3D/gCsafOZC8dfu4ffGLrL/3aYa/+Aj6Tf9k2NP3Mu6LT3HuyWHut7uYmhDGTldwYp8iBTO9/nrK9i8eGMc7bfIKNJ0WCKDVmlDXWm3JzGYzn3/+OQ8++CBer5euXbty3XXXceedd7bK+YQ/pqZ0cKj9vNYKKBtz3Lr2aSjwbWgpZUFoS2LSWisSk9Y6Dk2HqHE3HbH9+vtu5YUMF9+ddD0/5FW0yViunpzO8Cf+weZHXuT1r3cA8NLBH9HsCRiyt+JPG4ZPg7Dcjaz46x3s3lzI0mI3k+NsXLDwP9wz6GpuvHk0iScOA6B8Xxa6qhF7xXT+3fMsJg2IY/n2ItJtRkr8Kq5AMNtb4A3g9Gv19uWdVbKFtEm3tOq1N3fS2uqrziLcZKzxmMvnZ8T734lJIc0gJq11Du0RIFYPXo+W5T1aZrclyzrapoZXTFo7nomAtxWJgLfjqC/grS1pyGR+fOxsIt+5h0fv+1+LtzWbeeMIYgf1YNO7ixh514WU7T7Ab8/MJ6VfDCM/fRvZV0EgJp2AYsHl13CYZAz5OymN6smrCYPJ9QS4bHQKG7YWMrBPNNYv/0e3SDObTzoZg8XAqs0FJJgVsj0Bwg0yRkliwJAE1q/LZV+Fv8H65neHnYKutW79c3MD3lXTzqgz4B354ffiF0oziIC3c2pq0Fg9u3q05ze01HFTAt/ax2sou9vYrG/bTVgTAe/xTJQ0CEI1OevnM/j0+cE7g08GYNK11/Dd+XGsuOSvfLTkYL3PtRvkBgPKDLuZZ/+zGou8hrMHxDLzopcZH2MlISEMTdXJ/c+T+MsrSX74dQACmk6xR0X54h08RU5SrQZMssRXK7OJMyvYu9g55PLhvfRsHF3tLJh/gD6RFlYWVOBWdU6e1JU1iw/y5W+ZWBX5qPW7rR3sHgvNp6LV6jas+Vp34QlB6GgaWwtcvRa3vn3q2r+ujGxdLckaOnftx+vL/LbE0sqC0BQi4BWEo/j1rbcJewugNwzpDcDNs27j8TERaBEJ/COsH36do3aHGNw/lnNP7ccj//6ZLzYVAPBbkZtXfnud2RP/xkdLfuaG8/tg8UlEG33EmGQqNQX/dY+y/mAZ428L4+mEQfQONzG8Xwy2174g+YYL+W1LAcXrVEyyxJyDZVhkiRSrgYOrcjjk9mNVZFwBrcE+vP0iTPU+1hGoARVVko/YJgh/dPUFwU2tmW0oMG3Muesrb6jr+SLQFdqDCHgFoRlenvUcL1fdGXwyjtR+vPXYnxn0zj944tnFdT7n4+WH+OfkPjz75c18cu1bXPr8pfz4jy+QjCbO3P4LZ+9eAcm90bUy8GjoRisGgw2rQWJQQjgpUjkAUUaZMc/ehuw9wM2zd3HlhFRK9joZesM4/u+pX3CrGj3CTGxwekM9eFOsBvZUHLmARZVr3/wL/3h8V72PtzfVp6HqNQNc1d9xM9KC0J7q6p17tGWNqy8bXNexjnU8IsgV2lvtFUkFQWgGZ9Y2Lv7zvfT5xcQ7Q07mvRFTGb1qES8ueZon35kW2u/RR35h5kUvk+wwc2jRBs7+aCb+g7sx5O9GSuyBpPqRvC6kgAdkmUPlfgrdKl3UApzvP8XFA+MYd2kGW559m5u7ns35PaMZPvv/SBqewJ7/bWRgn2huW/IKMV3tFPtUHEYZt6pRfa2JupYPvtZzSlu8TM2m+rQ6b4IgNM6DoSKCB+oNiFtqYll9q7I1J3gWC04ILUUEvILQCrSAn+uvm0X4Td8T++Ih3hlyMj9c/Qh/z9nAHbeM5tsDTt58fwMzpj7Modnfg8mCVFmKFPAglxegmSMg4KObXSHaorDqkquIHD+JjCvH8ux/VvP61zsYH2NFMcn82HciaR98Q9nBcvpcOIIPJ/0dAKsisa3ch1vVayxPXFct71fPv9Zmr01zqAEV1V/rJkoaBKHZqge91YPgxtb9VmlolbXqdcEiyyu0t04V8D722GOMHDmSiIgI4uPjOe+889ixY0eNfXRdZ9asWSQnJ2O1Wpk4cSJbtmypsY/X6+WWW24hNjaWsLAwzjnnHA4erDkZqaSkhGnTpuFwOHA4HEybNo3S0tLWvkThOJazfj5DTr+N/r/ZeGfIybw0cBJzr3+Gv6bewHpDd/xpw9BsUWjhMWAwETDbYfGnKGgM/XEu3599Dw/8YzY9woxcc3oPJu5axcRPHiVtbBeK7phGeFIYa15eiCJJeEq8ZNiDs+81gmUQVWrnRYdF1p5d3AGpOnqtGw0skSwIQtPVl/092nNqL1ZRVymFCHaF9tapAt6FCxdy0003sXz5cubNm0cgEGDKlClUVPzeP/XJJ5/k2Wef5eWXX2bVqlUkJiZy6qmnUl5eHtpnxowZfP3113z22WcsXrwYl8vFWWedhar+njG6/PLLWb9+PT/++CM//vgj69evZ9q0aQhCSzq48n8s/fB9xpxzO/axNxF2+qMMeHw7Dy3O5fllWWzrfxHoGv+XOoyf8ip4ef0bTD4lneynPuL0xxeyyDaUDf98k8RnPyJ+QByn/fwaaekOypwedrp89IswMTnOxjnjUusdwzVL32jDK24e1afWeRMEoX3VzvDWlzkWpQlCe+vUfXgLCgqIj49n4cKFTJgwAV3XSU5OZsaMGdx1111AMJubkJDAE088wQ033IDT6SQuLo4PP/yQSy+9FIDs7GxSU1P5/vvvmTp1Ktu2baN///4sX76cUaNGAbB8+XLGjBnD9u3b6dOnT6PGJ/rwdhyN7cPbESUPm8LyZ87GIMMrKw5yYUYi+0vcJEWY6RllRpElHo/KIMVq4IL7TuP/Hv6RURPTWLswiz59Y7BEWXj7hz31Hv+dISe32bU0tw/vDyNOIMxQc45tRSDA6atXij6XzSD68Aot5Wh9eo8ls9v2QbLow3s869RdGpxOJwDR0dEA7Nu3j9zcXKZMmRLax2w2c9JJJ7F06VJuuOEG1qxZg9/vr7FPcnIyGRkZLF26lKlTp7Js2TIcDkco2AUYPXo0DoeDpUuXNjrgFYSWkL12LmmT5obuPwIoJgujLr2UUwcncfpLN+FWNZx+jZ8fn8t5d56Cv9JN2vZivlqZjamOSWpV6prA1hGpAQ1Vr1mMoapi0pogtLfWCnYFoaV12oBX13VmzpzJiSeeSEZGBgC5ubkAJCQk1Ng3ISGBAwcOhPYxmUxERUUdsU/V83Nzc4mPjz/inPHx8aF96uL1evF6vaH7ZWVlzbgyQTg61edh6Yfvs/RDeJBUGJjKZXfcxO2THdyxrJKnEnbyxlMLSbEaQpPU6uoT/PD7V/PqMwfaevhNpvk0NKVmCYMmAt5GE59NQnuoXcsrJq4J7alT1fBWd/PNN7Nx40Y+/fTTIx6TpJpZK13Xj9hWW+196tr/aMd57LHHQpPcHA4Hqan1100KQkv79OlXCDv9UV576HnCb/qe72a+xEX71/KPnx8n2qTU+Zz/9vlLG4+yeTRVr/MmNI74bBLaW+3a3sbuLwgtpVNmeG+55Ra+/fZbFi1aRJcuXULbExMTgWCGNikpKbQ9Pz8/lPVNTEzE5/NRUlJSI8ubn5/P2LFjQ/vk5eUdcd6CgoIjssfV3XPPPcyc+f/t3X9MVfX/B/AnGPeCAndcQS8qJpt8SoOcwtTbLysd2qBcf2Tlj9EyHeW1yPy0ss934PaFKMtsJmbmcGWNtg+y3HTGbSLOQdgQJuxO/zKuK8jitwXc672vzx+MUxeuBHov9943z8d253ifN+e+Xtd7X+fl8Z732aH93NPTwwMLBYzt9H9xz+n/Dv7wr4cBAHs++Q9emXoF1qffwomWbvzfvspR9hA8XE4Xhp/Q/ftFpjQ61iYKNmO9TTKRr4RUwysi2L59OyoqKnD27FkkJyd7bE9OTobJZILVasXixYsBAA6HA9XV1XjvvfcAAOnp6YiIiIDVasW6desAAK2trWhubsb7778PADCbzeju7saFCxewdOlSAEBdXR26u7u1ptgbvV4PvZ4XgFDw+rfl//FvAIhLB+IA2GoCHNHYiNMF97D+VoYP0C2xNlEo4Fld8qeQani3bduGr7/+Gt9++y1iYmK079MaDAZERUUhLCwMeXl5KCoqQkpKClJSUlBUVISpU6di/fr12tzNmzfjjTfewPTp02E0GrFz506kpaVh1arBu00tWLAAa9aswZYtW3Do0CEAwNatW5Gdnc0L1ogCwOVwwzXsAjuXm9/hJSKisQmphvfgwcG7QT366KMe46WlpXjhhRcAAG+++Sb6+vrwyiuvoLOzE8uWLUNlZSViYmK0+R999BHuuusurFu3Dn19fVi5ciWOHj2KKVP++p7jV199hVdffVVbzeGpp57CJ5984t8Eicgrp9sNJ8JGjBEREY1FSDW8Y1kyOCwsDAUFBSgoKLjlnMjISOzfvx/79++/5Ryj0Yhjx47dTphE5GMOt+AuyIgxIiKisQiphpeIJidvdxLmIg1ERDRWbHiJKOg5RUac0XWG7k0iiYhogrHhJaKg53ALpoQN+0oDG14iIhojNrxEFPTY8BIR0Z1gw0tEQc/ppeHlVxqIiGis2PASUdBzuIHwEWd4AxQMERGFHDa8fjS0jFpvb2+AIyG3AOJyBDqMSU9czsE/x3l21iXA8PuqcZWG2/fX6z8Q0DiIgsvg52G89YlCAxteP2pvbwcApKSkBDgSouDS29sLg8Ew5vk3ReActg7vTR6UbttQbQI+CmgcRMFovPWJQgMbXj8yGo0AALvdrvSHp6enB0lJSbh27RpiY2MDHY7fMM87JyLo7e3FrFmzxvV7DrcgbAIvWissLMTJkyfR2NgInU6Hrq6uEXPsdju2bduGM2fOICoqCuvXr8cHH3wAnU7nt7h8ZbLUJoCfW9UEY33ypZKSEuzZswetra247777sG/fPjz88MMBi0clbHj9KDw8HABgMBiULkBDYmNjmadC/JXn7TRYE93wOhwOPPPMMzCbzThy5MiI7S6XC1lZWUhISMD58+fR3t6OnJwciMiod3AMFpOtNgH83KommOqTr3zzzTfIy8tDSUkJHnzwQRw6dAhPPPEEbDYb5s6dG7C4VBEe6ACIiP6J0z1444m/P5x+vLXw7t278frrryMtLc3r9srKSthsNhw7dgyLFy/GqlWr8OGHH+Lw4cPo6enxW1xEpK69e/di8+bNeOmll7BgwQLs27cPSUlJOHjwYKBDUwIbXiIKejfEhRvuYQ8ZvIytp6fH4zEw4P8LsWpra5GamurxX5+rV6/GwMAA6uvr/f78RBRMBgD0D3sM1qGx1ieHw4H6+npkZmZ6jGdmZqKmpsafwU8a/EqDH+n1euTn50Ov1wc6FL9inmoJpjx1Oh1MJhO+avvZ6/bo6GgkJSV5jOXn56OgoMCvcbW1tWHmzJkeY3FxcdDpdGhra/Prc/tCMP0d+9tkyZV5Tryh+tTW5v3iz/HUp99//x0ul2tEXZk5c2ZI1JRQECZcf4OIglh/fz8cDu9LyokIwsLCPMb0er3Xg2FBQQF279496nP9+OOPyMjI0H4+evQo8vLyRly0tnXrVrS0tOC7777zGNfpdPjiiy/w3HPPjfo8RKQGX9WnX375BbNnz0ZNTQ3MZrM2XlhYiC+//BKXL1/2beCTEM/wElFQi4yMRGRk5B3vx2Kx/GMjOm/evDHty2Qyoa6uzmOss7MTTqdzxBkaIlKXr+pTfHw8pkyZMuJs7vXr11lTfIQNLxFNCvHx8YiPj/fJvsxmMwoLC9Ha2orExEQAgxey6fV6pKen++Q5iGjy0Ol0SE9Ph9VqxdNPP62NW61WrF27NoCRqYMNLxHRMHa7HR0dHbDb7XC5XGhsbAQAzJ8/H9HR0cjMzMTChQuxadMm7NmzBx0dHdi5cye2bNkyKZaEIiLf27FjBzZt2oSMjAyYzWZ89tlnsNvtyM3NDXRoahDyiwMHDsi8efNEr9fLkiVL5Ny5c4EOaVTV1dWSnZ0tiYmJAkAqKio8trvdbsnPz5fExESJjIyUFStWSHNzs8ec/v5+sVgsMn36dJk6dao8+eSTcu3aNY85HR0dsnHjRomNjZXY2FjZuHGjdHZ2+jm7QUVFRZKRkSHR0dGSkJAga9eulcuXL3vMUSHPkpISSUtLk5iYGImJiZHly5fLqVOntO0q5OhvOTk5AmDEo6qqSpvT0tIiWVlZEhUVJUajUSwWi/T39wcu6HEIpfo0GWqTCOvTEBVyvBMHDhyQu+++W3Q6nSxZskSqq6sDHZIy2PD6QVlZmURERMjhw4fFZrPJa6+9JtOmTZOWlpZAh3ZLp06dknfeeUfKy8u9HlSKi4slJiZGysvLpampSZ599llJTEyUnp4ebU5ubq7Mnj1brFarXLx4UR577DFZtGiR3Lx5U5uzZs0aSU1NlZqaGqmpqZHU1FTJzs6ekBxXr14tpaWl0tzcLI2NjZKVlSVz586VGzduKJXniRMn5OTJk3LlyhW5cuWK7Nq1SyIiIrSDhgo50u0Ltfo0GWqTCOsT6xP5GxteP1i6dKnk5uZ6jN17773y1ltvBSii8Rl+UHG73WIymaS4uFgb6+/vF4PBIJ9++qmIiHR1dUlERISUlZVpc37++WcJDw+X06dPi4iIzWYTAPLDDz9oc2prawXAiDMZE+H69esCQPsXtKp5iojExcXJ559/rnSONDahXJ8mS20SYX0aokqOFHi88YSPqbh49NWrV9HW1uaRk16vx4oVK7Sc6uvr4XQ6PebMmjULqamp2pza2loYDAYsW7ZMm7N8+XIYDIaAvDbd3d0AAKPRCEDNPF0uF8rKyvDHH3/AbDYrmSONnWr1SeX3M+vToFDPkYIHG14fU3Hx6KG4R8upra0NOp0OcXFxo86ZMWPGiP3PmDFjwl8bEcGOHTvw0EMPITU1VYsPUCPPpqYmREdHQ6/XIzc3FxUVFVi4cKFSOdL4qVafVH0/sz6Ffo4UfLhKg58MX2xavCxAHWpuJ6fhc7zND8RrY7FYcOnSJZw/f37ENhXyvOeee9DY2Iiuri6Ul5cjJycH1dXVt4wvFHOk26dafVLt/cz6FPo5UvDhGV4fU3HxaJPJBACj5mQymeBwONDZ2TnqnF9//XXE/n/77bcJfW22b9+OEydOoKqqCnPmzNHGVcpTp9Nh/vz5yMjIwLvvvotFixbh448/VipHGj/V6pOK72fWJzVypODDhtfH/r549N9ZrVY88MADAYrqziQnJ8NkMnnk5HA4UF1dreWUnp6OiIgIjzmtra1obm7W5pjNZnR3d+PChQvanLq6OnR3d0/IayMisFgsOH78OM6cOYPk5GSP7ark6Y2IYGBgQOkc6Z+pVp9Uej+zPrE+kZ9N1NVxk8nQsj9HjhwRm80meXl5Mm3aNPnpp58CHdot9fb2SkNDgzQ0NAgA2bt3rzQ0NGhLFRUXF4vBYJDjx49LU1OTPP/8816XipkzZ458//33cvHiRXn88ce9LhVz//33S21trdTW1kpaWtqELRXz8ssvi8FgkLNnz0pra6v2+PPPP7U5KuT59ttvy7lz5+Tq1aty6dIl2bVrl4SHh0tlZaUyOdLtC7X6NBlqkwjrE+sT+RsbXj8JtcWjq6qqvC60n5OTIyJ/LQZuMplEr9fLI488Ik1NTR776OvrE4vFIkajUaKioiQ7O1vsdrvHnPb2dtmwYYO26PiGDRsmbDFwb/kBkNLSUm2OCnm++OKL2nsvISFBVq5cqR1MRNTIke5MKNWnyVCbRFifhqiQIwWnMBGRiTufTEREREQ0sfgdXiIiIiJSGhteIiIiIlIaG14iIiIiUhobXiIiIiJSGhteIiIiIlIaG14iIiIiUhobXiIiIiJSGhteIiIiIlIaG14iIiIiUhobXiIiIiJSGhteIiIiIlIaG14iIiIiUhobXiIiIiJSGhteIiIiIlIaG14iIiIiUhobXiIiIiJSGhteIiIiIlIaG14iIiIiUhobXiIiIiJSGhteIiIiIlIaG14iIiIiUhobXiIiIiJSGhteIiIiIlIaG14iIiIiUhobXiIiIiJSGhteIiIiIlIaG14iIiIiUhobXiIiIiJS2v8AFwPXuK8jN2MAAAAASUVORK5CYII=", - "text/html": [ - "\n", - "
\n", - "
\n", - " Figure\n", - "
\n", - " \n", - "
\n", - " " - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4wAAAH/CAYAAAAc41PkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9e5wlR3Umin4rMveuR7+kVkvdatRCDQgMFi8LLpbMQ34gRtfGMLrHMJczDIxhLr4CZjSyLzZwji1zxpKNxzK+MOb+PMMYxhww42OBGdvDSDZYhpHBQpYAARYvgVpSt6RWt6q767V3ZsT9I2JFrIjM6pequrqq1/f77V/VzkdkRGRWd3z5fWstcs45KBQKhUKhUCgUCoVCUcCsdgcUCoVCoVAoFAqFQnF6QgmjQqFQKBQKhUKhUCh6oYRRoVAoFAqFQqFQKBS9UMKoUCgUCoVCoVAoFIpeKGFUKBQKhUKhUCgUCkUvlDAqFAqFQqFQKBQKhaIXShgVCoVCoVAoFAqFQtELJYwKhUKhUCgUCoVCoeiFEkaFQqFQKBQKhUKhUPRCCaNCoVAoFAqFQqFQKHqhhFGhUCgUK4oPfvCDeM5znoPNmzdj8+bNuOyyy/Df//t/j/udc7j++uuxc+dOTE1N4YorrsDXv/71VeyxQqFQKBQKhhJGhUKhUKwoLrjgAvzmb/4mvvzlL+PLX/4yfuInfgKvetWrIil873vfi5tuugkf+MAHcMcdd2DHjh14+ctfjsOHD69yzxUKhUKhUJBzzq12JxQKhUJxZmHr1q347d/+bfz8z/88du7ciWuvvRa//Mu/DABYXFzE9u3b8Vu/9Vt4y1vesso9VSgUCoXizEa92h1QKBQKxcpgYWEBo9FoRdp2zoGIsm0TExOYmJg46nlt2+JP/uRPMDs7i8suuwz33Xcf9u3bhyuvvDJr52Uvexluv/12JYwrAGstHnroIWzatKlzDxUKhUJx5sA5h8OHD2Pnzp0wZmnjqRJGhUKhWIdYWFjA1KatQDO/Iu1v3LgRR44cybb92q/9Gq6//vre47/2ta/hsssuw8LCAjZu3IhPfvKTeNaznoXbb78dALB9+/bs+O3bt+MHP/jBivT9TMdDDz2EXbt2rXY3FAqFQnGaYM+ePbjggguW3K+EUaFQKNYhRqMR0MyjftZrgGqwvI23Yxz5xn/Fnj17sHnz5rj5aOriM57xDNx99914/PHH8ad/+qd4wxvegNtuuy3uL5WuPgVTsTzYtGkTAHTun0KhUCjOLBw6dAi7du2K/y8sBSWMCoVCsY5Bg0lQNVzWNp2pACBmPT0eDIdDPO1pTwMAvOAFL8Add9yB3/u934txi/v27cP5558fj3/kkUc6qqNiecBE/ETun0KhUCjWL471glazpCoUCoXilMM5h8XFRezevRs7duzArbfeGveNRiPcdtttuPzyy1exhwqFQqFQKABVGBUKhWJdg0wFCorgssGdWHvvete7cNVVV2HXrl04fPgw/viP/xh/8zd/g8985jMgIlx77bW44YYbcPHFF+Piiy/GDTfcgOnpabzuda9b3n4rFAqFQqE4YShhVCgUCsWK4uGHH8brX/967N27F1u2bMFznvMcfOYzn8HLX/5yAMA73vEOzM/P45prrsHBgwfxohe9CLfccssxYyoUCoVCoVCsPLQOo0KhUKxDHDp0CFu2bMHEpW9e/hjGdoTFO/8TZmZmNAZuDYKfDb1/CoVCcWbjeP8/UIVRoVAo1jGIVsCSape5PYVCoVAoFKctNOmNQqFQKBQKhUKhUCh6oQqjQqFQrGNQZUDVcie90XeNCoVCoVCcKdD/9RUKhUKhUCgUCoVC0QtVGBUKhWIdw6xAWQ233DGRCoVCoVAoTluowqhQKBQKhUKhUCgUil6owqhQKBTrGLQCCiNUYVQoFAqF4oyBKowKhUKhUCgUCoVCoeiFKowKhUKxjqEKo0KhUCgUiicCVRgVCoVCoVAoFAqFQtELVRgVCoViHYOMAZllfje43O0pFAqFQqE4baGEUaFQKNYx1JKqUKwu9s7M4779s9i9bQPO3zK12t1RKBSKE4YSRoVCoVAoFIoVwCfuuB/vvPlrsA4wBNx49bPx2hdeuNrdUigUihOC+ooUCoViHcNbUqtl/uh/HQrFsbB3Zj6SRQCwDnjXzfdg78z86nZMoVAoThD6v75CoVAoFArFMuO+/bORLDJa5/D9/XOr0yGFQqE4SaglVaFQKNYxiFYghpE0hlGhOBZ2b9sAQ8hIY0WEi7ZNr16nFAqF4iSgCqNCoVAoFArFMuP8LVN4zQt2xe8E4IarL9HENwqFYs1BFUaFQqFYz6gqULW8iqCzqjAqFMeDs6aH8ferf+RJmvBGoVCsSajCqFAoFAqFQrEC+ObeQ/H3A7OjVeyJQqFQnDxUYVQoFIp1jJWow7jsMZEKxTqFJIwPHNTsqAqFYm1CFUaFQqFYx1j+khorkERHcVL4/d//fezevRuTk5O49NJL8fnPf361u6QQeOzIIh45vBi/P3BwHs65o5yhUCgUpyeUMCoUCoVCscbwiU98Atdeey3e/e5346677sJLXvISXHXVVbj//vtXu2uKgG/uPQwAeNJZUyAC5sctHlNbqkKhWINQwqhQKBTrGMZUK/JRrC5uuukmvOlNb8Kb3/xmPPOZz8T73vc+7Nq1Cx/84AdXu2uKALajPueCLdixeRIAsOeA1mBUKBRrD0oYFQqFQqFYQxiNRrjzzjtx5ZVXZtuvvPJK3H777Z3jFxcXcejQoeyjWHkwYXzm+Ztxwdm+lIbGMSoUirUIJYwKhUKxjkHGrEAMo/7XsZrYv38/2rbF9u3bs+3bt2/Hvn37OsffeOON2LJlS/zs2rWrc4xi+fENQRh3nT0NANhzUBVGhUKx9qD/6ysUCoVCsQZBRNl351xnGwC8853vxMzMTPzs2bPnVHXxjMWosfjuo0cAAM88f5MqjAqFYk1Dy2ooFArFOoaW1Vh/2LZtG6qq6qiJjzzySEd1BICJiQlMTEycqu4pAHz7kcMYtw6bJ2s86awpXMAKo8YwKhSKNQhVGBUKhUKhWEMYDoe49NJLceutt2bbb731Vlx++eWr1CuFBGdI/aHzN4OIcMFWrzA+qAqjQqFYg1CFUaFQKNYxVGFcn7juuuvw+te/Hi94wQtw2WWX4Q/+4A9w//334xd+4RdWu2sKpIQ3zzp/MwDEGMYHHp+HtQ7GdK3DCoVCcbpCCaNCoVCsYyhhXJ947Wtfi8ceewzvec97sHfvXlxyySX4y7/8Szz5yU9e7a4pIDOkbgIAnL9lEpUhjBqLR48sYnsos6FQKBRrAUoYFQqFQqFYg7jmmmtwzTXXrHY3FAWcc1lJDQCoK4Mdmyfx4OPzeODgnBJGhUKxpqAxjAqFQrGOQbTcJTUqEKnCqFAshYcPLeLg3BiGgKdv3xS37wpxjHsOaByjQqFYW1DCqFAoFAqFQrFMYHXxKeduxOQgvVzhTKkPaC1GhUKxxqCWVIVCoVjHoKoCVcscw7jM7SkU6wnfKOyojF2xtIYqjAqFYm1BFUaFQqFQKBSKZUKZ8IZxwdnekvrA46owKhSKtQVVGBUKhWIdg4xZgSyp+q5RoVgKZcIbxq6tqjAqFIq1Cf1fX6FQKBQKhWIZsDBucd/+WQCpBiODFcaHHp9Ha90p75tCoVCcLFRhVCgUinUMrcOoUJw63LvvMKwDtm4Y4rxNE9m+7ZsnMagI49bh4UML2HnW1Cr1UqFQKE4MShgVCoViHUMJo0Jx6iDjF4ko21cZws6zpvCDx+aw58CcEkaFQrFmoJZUhUKhUCgUimVAJIw7Nvfuj4lvDmoco0KhWDtYVcL4+7//+9i9ezcmJydx6aWX4vOf//xqdkehUCjWHYyhFfkoFIouvrn3MIBuwhtGLK2htRgVCsUawqoRxk984hO49tpr8e53vxt33XUXXvKSl+Cqq67C/fffv1pdUigUCoVCoTgpOOfwzX39GVIZqjAqFIq1iFUjjDfddBPe9KY34c1vfjOe+cxn4n3vex927dqFD37wg6vVJYVCoVh3IEMr8lEoTkfsnZnH7d/dj70zp56QPXBwHocXGgwqwtPO29h7TCqtoQqjQqFYO1iVpDej0Qh33nknfuVXfiXbfuWVV+L2228/5vnWWjz00EPYtKkbVK5QKBRrEc45HD58GDt37oTROoeKNYC9M/O4b/8sdm/bgPO3rH4Cl0/ccT/eefPXYB1gCLjx6mfjtS+88JRdn+MXn3ruRgzr/r9hVRgVCsVaxKoQxv3796NtW2zfvj3bvn37duzbt69z/OLiIhYXF+P3Bx98EM961rNWvJ8KhUJxqrFnzx5ccMEFy9YeES37izV9Uaf4xB3341du/hrcKpGzEntn5iNZBADrgHfdfA9e+vRzTxmZ5fjFsv6iBMcw7p2Zx7i1GFT6ckihUJz+WNWyGuWiwznXuxC58cYb8eu//uud7Xv27MHmzUv/w6xQKBTHwsL8PByAsfX/BlWGQPCLYFYqCMDklF90zs754xnWAVX4Z4uPlfv5XzQHYGpq6YXroUOHsGvXLmzatGm5hqZQrAj2zsxHsgisDjkrcd/+2UgWGa1z+P7+uVNIGI8evwgA2zZOYFgbjBqLfTML0aKqUCgUpzNWhTBu27YNVVV11MRHHnmkozoCwDvf+U5cd9118TsvrDZv3qyEUaE4TXBkbh5jsWJzDiDygdK1IVSwcGTQOqC16eVQScwAoA0krCL/O8MQQM63A6TzgETUxtZvYxLHx1jn98trOOcwvWkzSHyX/SJ0SeDmzQMAqW/cv0pcs1i3RjK6eeOxF4fLrgauQFZTpzGMZzTu2z8bySLjVJOzEru3bei8rKmIcNG2U0fIjpXwBvBZiy84awrf2z+LPQfnlDAqFIo1gVUhjMPhEJdeeiluvfVW/NN/+k/j9ltvvRWvetWrOsdPTExgYmLiVHZRoVhVHJmbz4lOUL6qgjDJBRLZBjB1JDC8pp9vHKxzMESow0YmRiVJ4/P4OnAWMHWHiPF1W5fOt86TQyY8Dr7PCMc6MqDQZyLCYms9kQz94D4Y8h8nvjO4TxTacxCk0VkQmXi8LeaB50tei9XEuD/0RSoVfYST24j9tA6OyJNOJNXRRFJZUshTB6LlT1KjltQzG7u3bej8nQDAk86aXJ0OATh/yxQue+o5uP27jwHwf6c3XH3JKSOwRxYb/OAxn8jmmecf3SVwwdZpfG//LB44MA889VT0TqFQKJ4YVs2Set111+H1r389XvCCF+Cyyy7DH/zBH+D+++/HL/zCL6xWlxTrFAvz84BtPKEC4Ewdf843LqpgTG5YJauIMqshQypKQCJMI4tsETUw6fjWJsLH50iyw8SLf+drRnIi+sLEywF+XKaO43OB3BESwakNBbVPKGeB3LDSxyRNLgD5OgweD/FcVkNUgbgysSPRz9ZRJLNWzFlFQD06guFwGg0SQevjNFERdBYg4z/OxjmsM7ZnMjWS0bWp9cyvuB7v4z5tnPYLziNz8/EYVkCZAFsAJLZVBGwI583PzwMFMVUo1jLO3zKFG69+Nt518z3Zy5D3f/Y7eO//8pxVe6FwYHYUf/+hHZtOaUzlvUFdPG/TBM7ZePQX3CnxjWZKVSgUawOrRhhf+9rX4rHHHsN73vMe7N27F5dccgn+8i//Ek9+8pNXq0uKY4AXzK11sEg1WTz58IsGA7945jUErxt4OytQUn0BuioaUBAF/r38HkiEtAY6l/o3rMJCnQycqUHjBU+2TA1yFlO1waj1x/MfA/cVEDbJQFKYRBnyxKmlOh4zNLm6JNW/1gFt6zCswvgKNSzjPcitk/F67ciP19T+/NAntCOY0TxcNQjqm1fepJ2TlTTZLs+/JEcVAY11sOEeVUHFy5Z/ZODqyazfGXEL4+W54GvxnLQOqKtwLwbT/rtrAJhIQEm0AQBg9RQGxtRRzQSEEkoGgMnmvURfbCH3sTxHqq/Zcc55gk/A0HhSbJDURtk2/14TgHYE4NTb9VaiDIaW1VC89oUX4qVPPxff3z+Hhx6fx//n//oK/uTOB3DRtg14648/7ZT35+DsCP+473D8/p1Hj2Bh3GJyUJ2S638jJLw5mh2VwYlv9mimVIVCsUawqklvrrnmGlxzzTWr2YWj4sDh9PaPyCtOgF8wAv0EaEokxmBSwba+SHSC0sULfyYjIJNUHUGMWrGgLRWRUdhZGYJ1wHxj0ViHqdpE5Uz2k/vOC95K2BK97TBX16QKFrPPIW/X9ye1bfzX7LqGgAqpDUnw0hxT6lvYZsgkYhTmypna7+e5JU8iWPUxhmIbGZkgA1S1VxjDd9MsYNJaLNbTcV7rQAKqQNLIWbhqGPvJc1GZ2o8P6f4wWeS5a53YFkjb2HoihmJeIeaaCZPcXlVDULPgSQk/S2SCsljBVd0/55qAFumZ6Sh5hufcP12sErKaWBI2vrZ1wMg6DE1SLUvrJs9DqfA5AItmEoMamBtb/3dVhXsa5grOwoQXAQ5Aa4Zhu58/2RbBoAplKAy6BFBen+eW1b8ygQ2QVFf+mz40Ox/niOMyk4oabgNRds8q8m3zWPyzN4RCsZ5w/papaPmcHTX41T/7On77f9yLC7dO45XP3XlK+/L33z8AAHjaeRtxYHaEA7MjfGPvIfzIhWefkusfT8IbhiqMCoVirWFVCeMTxZG5eQwGg5hQorTBlKoXkBJx8O+A/+4cYPl4ongMx34x2B4IeAIEFOqLPA5JycqIIcM2icjw4pjVKaHssFJUKiK+70mRqwiYrAiz1sesDYi8YpfNSRpz7IYgEZUglUvFgjmXVEQShKEN2ysxP6Xtj5VE7nufwibB6mD/ThNJtnVe4fNzbJLiZRMZbx1Q1ZPpXrBqWNUYGH+tRhC8aGEV10BBdFlVYpLEc8nt+PlyGaForEODYM00lBG41jGhzK8RVTN+yRBstVHtq/N+lJyQv1eBxstjWusE8e+3hkJYXV04ZrCEytSEgdcVZSqhdf76Ffn7M9/yc5A/g43zJBAuEec2HMB/Dwzuj7wnHDPILyta59Bah4Gh7Jkr2+hDGX/If1fcrrNeNUZoQ6rkfBYn+rEOWI0IL0OU/Ru2HHAaw6go8C8uuwjf3z+H//w/78Mv/slXsPOsKVz65FND1gDgi9/zsYs/+pStePDgPD5376O4+/7HV4EwHjvLMSe62XNAFUaFQrE2sKYLANlSbSgSS/QNLsaBFStEJoZMFv1iE3GhJRfUvGitxEKclZX5+XkfMyfgggrEBKRDHoWSwuPiBSZvk4k6ouoiiFwFG9WhqYHpLBApfGrjE58Mwie2a11St8SiWta04jbKubSCHMl5ctlCO9kfq9AHGe9ViTHE8+MEivliAt6Osrbl7XR8TjuKcy7nrIFBQ7UnQfUkWjPMr8djMDVcNYSrhtm8yz7KsTMx5nmK8Xphnrl9vjXlCw4biFHrXDzXkFdJ+fpt6LdvILfiyjH0PS9yHrOYwkCk5DOdjYsTzTjrYyXDNWpK85E9J+FFhXye5UgjeSXCVG1w9sZpbN4whbH1xK4EAVmpi8Db05xYh5F16XtQAqsw70NDGIZaZ0yqZ+fmowtAzr8V58W5DJ8qjAuQLz3yvwueRz6XXwBYl4i0QrFe8e6ffiZ+6pnbMWos/tV/+TLuf+zUKWhf+p5XGF+0+xw8b5cniXfvefyUXNtah3v3HbsGI4MVxocPL2CxaVe0bwqFQrEcWNOEsUQlCBDHsQG8iPM7WBmzzkVFkReXXtlL7flFol/wl4t7gl9I86JeLph5UZolEDF1zGyZN+S3SfJZLvrj+CSJCGPkeCpu21C6qSPr4iLciXa5f7FvYa6cc9k4SsLKbfB8yiQqhhIZjcQpZssshlyM039JpEQSMMdzxGQn2FBJEG6e/8b5Y4nPCepbS3VHBRxbh8XW+XMCmHgNhdo4tt72O2pdVKokeOx9Sqmcu1aQIX6uBia/x4Z8zOVkRXG8rQPacEdHrUuJbkZzSSEVfa/Jf5j0MUquYsjPORPbmNCmGFNHRyqe4ToQWp4/GRMp4yL5pYYTJLd1rngB4QlZDZupiLJfcjzcR4tEtLmdYUWoxbXl8yj7JJ8J/nsq56syiSgasW0y3Kv4IgDJgju24dmJFm90xnSqwDGMy/1RKEpUhvB7/+x5uORJm3FgdoR/+eG/x8zceMWv+/jcKJa0eNFTtuJ5F54F4NQRxh8cmMPcqMWwNti9bcMxjz9nwxBTgwrOAQ89vnAKeqhQKBRPDGuaMPICTy7ypOUR8ANswzGsFACsjFCMR+LFKh8jyWbf4pmJDC/WJSEDxGI2soY6xTGK+LPUYFJ+olqBRJqkQsfbKJA2XqByDB+rd95eitgu95sX31FlMokAyjnt00Na6+KCW5JX/p3HTuIn/95HirlvjpO5hDll5YqEshjnLCSwaanOktCUSmNLNRqh7FSBTHmCRJ0C7UzqHAC0I9R2hCFZTFSeCBskRSuSWYGSlPPPsfXPEz9TlSFMhGQ85b3mFxFMkmvY2NZEIEE+8Y2BmZ9BPZ6L15H3WD6TfH9ksiAZF8rXJPGd+yTja+PcxwGn+NAU0+cyMkfOokIqgyFJ5ND42oyzc/M4EuL9mOyX8ygVXQKihRjw93JYmWSFDvcZtonj5DmQdRLLFyJMKOVLE4n4UoAoe5YlKeX2N2+YwuYNUzEWmF+oKBTrHRsmanzoDS/E+Vsm8d1HZ/ELH70To8Ye+8QngL+/7wCcA5567gact2kSz7vgLADA/Qfm8NiRxRW9NpDsqM/Yvgl1dexlFRFpHKNCoVhTWNOEkQmTVA54O5Bi7YC0YI+LdhGnyGA7nVTQSuWoVDrkudyHqampmPymgk0xjLHjeXkA/mmC0sP2zKim9VxTEjZWqkpVk8mwrLcnF8myLEBc8AYixUl0pNpHcm7RjZUr50Luk+TIISdvUiHkfVm7rKRJlVZkGC3HI7eVfZL9iRZMZ+PYeXxSweQ+AWFOhZIdlaQg8dUEVK7JyUl4WcHkoUZ6Hlp5z0Qm1tbB22aRMpDGw4KVFs6CRrOoCUEB7SYT6ihbS8WDAikZk1Aus2dVzEkkk2TQuPSyYmgIQyOuyaowt81zG9R5hLmXz6AcAzdTKpbls8UqqXxxwWNlJ4CcB2n7zuaq+ENbKnGPFXPdirb6ynqU5PRUQxVGxanG9s2T+NAbXogNwwp/973H8O5Pfq0TMrKc+NJ9wY76lHMAAFumB3hKUPq+8sDjK3ZdxonELzI0jlGhUKwlrGnCCOREii1/bLHkWKbyQ5Ssp1FxdK5jLwTyhWmpNEpVh9EbpiTJIi+ggY7CKFWeWD5B7GOlZqn+AV5Na11uw5X/UTvnbarjcJxUxQg5sZOKoVT9OmpcMe5yCmR/s31CVS3JZ0w6Uyhh2XwV12YCwgob4MnWsPJZPx0SKeXx+l9SKYdYDqMaZqS+iu1QJBAU5rN1PoZudmxBoznQaA5m8UgipSbFbALeYtrCZHPhRD/4epFQzc+EZDEAbAMzmgMtHoGrJ/w8NAuYNm1sJyNW4nkrr5El/ylfaCwFjsUV90USMe5j3GTqLDvohukpTE5viHPLsb1VzzMi1cCoOPd8B9IzlpHJnnHwSxN5jryudCiwNZmcjYomq/CybAjH/zYilvJIUE0BQS5XKYbRGFqRj0JxNDxr52Z84HU/AkPAn9z5AH7/b767YtdKCW/Oiduet+ssAMDd9z++YtdlnEiGVIYqjAqFYi1hzRPGqGYJpZHBKqIkiJzQRtpTrWgrS+BCuTqwFDks46HYYpdZLSWEva+zjX9HzwKfTK9Kwf0YmBSLGZXKsLCT9lOAyXNqrbUOTSCArZgHGdfIkGVFZHxkqSyW23muygW9tLiWsZMZoZFkpSBXCP3mkg/croyL7IwD/fUCHcJ9E3ZGPob7XsFmWWE3VRZnjw+C2jHMaBbUjiNRI+RKFBOLDn8Q14u2UTJwRNF6S0Kp8x0Z+jIhxteDHCweyhVFZ2MMZ1S/OCsv5SVG+pB1UZC8jMhLBY/vjUzyFM6Vqi0AwDbp+sE+mpF2PlVsK18UdKYQxbODpNjyHPDvpUoZp9SkxDWcJAkQDoDwN9QXl9hab+eOfwPiRdSwPFihWOf48R86D7/+sz8MAPjt/3Ev/svffR+3f3c/9s4sn6o2Mz/GNwJh+9HdW+N2jmO86xTEMX7zBGowMhJhVIVRoVCc/ljTZTVKNTCLyUOqpyYVx1rE6vFPWUpCIrN3IpFCaaGjYr9c6GbHMwERqmFcEAuC2LuIDURRkhqpNJI4lxfWcWEcxi5LgJis8UDSeL/L+83L8yyBChLh5hjKPvW1z57XR5IikSADEwifdUAV9kXizN8FwYkEThD2SFwgYu5cinvjuZSxatwtLmnhAF/3sKff1vn5nG8shhVhYnwENJ4HjX3yAlf7eolkp6KtFEBW+oXjITtCjawZyYRnMJnm1dT+ZCbCg8k4F4N2ARQICltkJ6oa9cIhuOE06uLFBds//XOTE0Y53uz5DSAme2Xfpc26x8q6MHs4f4FCXm1lizEh/1vLOJZ4WUChDXlMh45xDGM1BJDiJ/lvxYH/Pigjf3xcK54Pbp/7yOptBQChBmQLQmVyyzIJ8rlKAuPR3gc8oTYViuPB6y+7CPeFchu/+mdfB+D/jm68+tl47QsvfMLt3xHiF5+ybQPO25wK17DC+JU9j8Nat2Kq+MzcGA8+7knfM3ccP2HcdXawpKrCqFAo1gDW9H/7bAeTMGLRB6RFukFIssExaoJIAvkij8HJX8o2ZQmMErxdloyI20VCl3LFlS0ol7IKBpRKi1RBSdgP2zA+w2MJ22Wcohxy+TDwwrnEUg8N92GpOC6HgliKrKflsYYQlCcRAxrKXEgiEkm3baJlF9x2+JTjkEpXSRSc80prGY8m7bmtA+atf17mxxaoQomOyc2w02fDbjgH7YZzfA1OICZpAdLzyM+bVC3jM8Fzwgod116UzwMZ2HrS77MNWgcsmkmMJrdgofW1ACfdolfxhn5hEscTYgp5HnhMkoh37rvoS4wjleSwL05xKVYh7icTxWif5fORyF08RyaOEvdOvqjI+tIT7wqk2FlW4NliKlV1/nelnAZZWkXGHjPYsizROE/gtayG4kzFz7/4ouy7dcC7br5nWZTGL93n7agvesrWbPsP7diMYW1waKHBfY/NPuHrLAXOzvqks6awZXpw3OddEAijKowKhWItYE0TRkPJHsaLcrnoY8TC6SLjaWyjp82oDsi6a8gtcnydbAEp0Jc5tfydyQS3WYlFaGlb5f0xGY6wp2ZKmaljqQifgIQ6ZUH6rLdyHuKiuch4yZDJhvpUXql8SoUus6wK8kNtA2pGoPFCiuMEAkHwpNFbM4Ma1WejDL/zvM+7oKk6bx1lW2rDxCiAlVivyro4PiYxMjmNfBkAAFO1wcahv46rBrCTm9AMN/paidXQ/0SuVvF3TvozkBNf3ns5zjD21gwxgt8+tvnLh8b6+o2TFWEwnvNkuxn5ZyLYUgGfPbalGjNjpKysfN+BaCetYFPSpmNJSkIVdaaGrSfhwj3rjEeOVY49EGX5dybbd/Dxn/L+ZS9kCvUZgE8OhK4joEx4w+B/U0p7u0SWzVVcy4R7apqF+OxHmzVw1DZXEvLvdTk/CsXx4v4DXRWtdQ7f3//E1bUvhvqLMn4RAIa1wSU7veK3knGMJ5PwBgB2bfWW1EcPL2JhrLUYFQrF6Y01TRjLRCtswZQxdvxhMmCdr8HHb/tlJlSJPiIkk7wYsVCVRKi0OpaLUhKfjoLYoyZ2UGaqFH2VihUhH8NSbpxIOsOnJNMl8e5LDkTIs4OWkDGK2RiEPTeqXu0IlR0lpbQawtVeVcxUJ0GkOc5s5FKNv4EhtDAg2/iEN6H0Ax/PY+fnZrFNqhIfZ11IUCMINhPHQVBnByb0cTgNBJLFBJGvs9B64l2bVB+QgE6cHxMsJiEce8d9ZQLH94QTA5FtUNkRpmuCWTgEM5qDq2q4eohDNIkFyVZDVtIKFlN1mMN2FJPqyP5QOwK1o6R4chypJLbZjfYKoFRnO49DEacLICXmCds654u/E8NKZKEgW+fnM8YNi+fKyesEQipJKSckknbTMpFPR8kM9ycmtOEXVfAkVT5b/vnvKo8KxZmC3ds29Gb6vmjb9BNq99DCGF9/aAYA8KLd53T2P2/X2QBWth7jySS8AYAtUwNsnPD/B6rKqFAoTnesacLIBEkSNADZG/BMwJFJXoQdVZ7P2T/7Er3Y4lhWCWVMoSRSxzSgyYWttPcV9sNIhvkctmSGbJSSsMZsmsjJqiyhIevGxXjBYNvtEFxK5TVYcc1IbwmhEC5lNcyUGTLR0untldYrjY0gKmKeWIHsKyFhyGe2ZMshkBQmnkf5u1RY2Z4orcl9KnE5P/ONw7wlNDDeLmsbVLOPYTB/EBPjI6jHc5iiNpXwYALGY3cp+21pg+X7mSfAMTF5SlRArQW1wYZpalCz6K2jpsZC42N026A+OvIkGrbBhF3w20yNkTMYWcQ4TJDJy5gIku/CJ3W0m7AJCPddEk7kz3Cn7bAv+/spXqr0vmgJ9xCmztQ/VjUzq3cAq/VLqeP8TEQLdUj2E+274tryeWcVe2zzv0sufbMaMAYrkCV1dcaiWJs4f8sUbrz62dnfwP/rZU/B+VumnlC7X/7+AVgHXHTONHZsmezs58Q3K0sYTzzhDYCsFqPGMSoUitMd6+a/fZnwhhd5XEuRyRCQ7JdciB1AzAQalRtBGiLJMr6kAitcfXF6gMjYWTCLPvubVMq6OxNpZDJqXXG8iImMC2kBufgtCa1UIRk1j09YM2Vdu059xHIsbDkMfS775MQn7mNiUtW8su0kRSkJhSRxTMTq8EE7itevKFd/5AKe90fyG56TMtlLVtsxxDe21pclGVkXi7GPWoexhU+w4ixcNQAqP67qyKOoR0c65NeT5WEsseEgCHYRrxjnlVW/IimOq+pIBJmMja0fw3xjvSWSy12wgllPevuyqbHYWjy+0OKwmcacrbyySnnMYG/2lELN4zIbHTUt3Lc4l/GhELGJ4Xv2XEqyKOM6eXdpS7YNqAmk19QxK23jEDOyll2TBHVsk0WZwjXjC48Qk1qqj6UbgduUpFTFRcWZjte+8EL8z1/5Cbz4adsAALOLT9yG+aUl7KiM54fEN9/ce2hFbJ9Na3HvwydHGAGNY1QoFGsHa5owSqtYaXuU6hGQq45MDmJB+7Cd44wkmWBQ8YkEDvlxkrhSsU1aGuN5Bcmb3LAJkxs2dVRHuVCVlkXOEtlHPq3LrXJLYakYxdKmx8dJ4ifRe40iDjOLUZTjF8qVq4MNVbbBx4q5qFwgB9IyKTNzBvslj7+06PKCXj43HLdZEVAj2SAN+edj1Pp6i0wcR63FqHWxjdYBduO5sBMbo1rq6klPHmUcn0hOxGpntIQKBbJXhSuyk7YwqbwGGTjj4yqHBtgyUWGqNj6j7XgBIxtURmdjrCvg4zEnakJjgYXGYq4Rind5D+T1S0Vc3KMYTyhJJ1uPZYmUghgzsSR5DZkAKHz4+QcKezr/fcg5Cq4B+bKH7caAKOURXpa0DhjZUFKD40eLFw7lNaRCXBOye3a0l0wrDTK0Ih+F4kRx/pYpvPkluwEAf/7VvRi3xxGGcRRw/cUy4Q3jgrOncM6GIRrronV1OXHf/lmMGovpYYUnbz1xey3HMT7QE+OpUCgUpxPWNGFk8AKOF2VSLVwqMWErYh35e5n4BcjVB0lKOWGJ4YWhUEYk2ZRk9phrLEn4ioLnEhxbdywiyEQkI6joKos8Jj5O9recBz5ffuR2HkdJKOP3pRQq/l1mwuxTtjhRTjZQEV/XjLI6gYRUTgNIi/rM4htUsSFZTLtFDBZmwAlU8uyZHP/qvw8MYcPAYGPIXDPfWP9pXSIX7RjOVFg0kzHOThJbWcMwqn+BoDSsikpSxTZRbqcaxkQ1MDXccBpuOB3HW4dxTWAMABiigRnNgcaLqMmPZ7514XkmjFqHQSWyCXNsoSTioR9lEptMGZVqpvj7yF4gyBjO4sWCVCx7lc3yGUDxvIXjDfmXN1s2TmPD9FScb34OYhvWx9+yYuyA7N8HWeuzKazDHDcs/8b52eJnqHVd18GpAtEKEEZNeqM4Sbz4adtwzoYhDsyO8IVv7z/pdg4vjPG1Bz0J7ItfBPyzz+U17lqBxDdc//EZOzadVNkOVRgVCsVawZomjJIMlSStXNBElYgJEJAKz4dajCQSU0jilxGugoxkKoiIsZOLR9mTzv8pYjHsACzMz2NhbjaSrr7FslTKpNWSSyMwuY1z0TN31LMvxTPmc8X7+vogLa4SWcKfMF8c3xWVLalAheM6i35K2WBZhUTxnePLyFlkwVXiXB4PJ0ZqrctIIzULqA7tBY3mAdvAzM904iP5kapNIiI8jylbLoXyLYAbTsNObQFMjaGMYStsnGVcYxsymkZFDCaph6yqCRtnpmZRSv7TBLJpFg6jmn0MZtHXQHT1EHZiA+BsJImenDrUxpOmaRr7BDvl8xee80wtY7Joc+tw5/dSSaQ0LqkiOm5Tkklxbfm7fLkRiWawnZL4O5XIMt5yFthQukT+3XMyHO5T6WSQ1yhfFJX/bhBSRuczETfeeCNe+MIXYtOmTTjvvPPw6le/Gvfee292jHMO119/PXbu3ImpqSlcccUV+PrXv75KPVasFOrK4Geecz4A4M/ufvCk2/nyDw7COuDCrdPYedbSsZBMGFcijvFk4xcZHMP4gMYwKhSK0xxrmjBKouKQW1JLQlOCRFwjH19R3gaQZ2t0QFJ4GOUiVm4XKBePvC1TuoCOCpcpdZKUFovlPsSFqlQHXZ4lskyG05fJkY+VaiMV2+RYSmVRjofPk8fK4+Pc9JyTGs1tjE6Qj0hCgE68G5PFhdbhyNjmaqOpYSe3wNUTQambitfmeZ6sCE3IlFsRoYaNCU6GFWGqNpiuXP6igQzcYBLVob0+eynXVAQ6KjLPYUlKeJ4l+Y1zy/MhiPTQINk6Axm1ww3eGussWvLxjtSO0FqHLQN/rWFlwvmUSJycR1YAQybbLJkNmRCHmuyi8X2BtKMWfxfZPYUodxHaoFYonD3kleeZE+zIBEt8rCFgfn4e8/PzcVsNiyHy7K9LxQDHueRPON6FsUlS6YD4MoKfr6X+DTpVMEQr8jkR3HbbbXjrW9+KL37xi7j11lvRNA2uvPJKzM6m+njvfe97cdNNN+EDH/gA7rjjDuzYsQMvf/nLcfjw4eWeEsUq41XPfxIA4JZvPIy5UXOMo/vBdtQfXcKOyljJxDcnmyGVsSsojHtUYVQoFKc56mMfcvqiVMdYReLfJTHjYwCp9FBmX432UhEbJclMjE9caq0UiAuF3+X14ykiKQlfU/Y965+AA0A9i2WprFTxQBP72Uc4EWxy0oYq25Jksm/8UsmR+/oMd2XmSblNzo8r5isbtxxzqTrx75LgiP7J61cEjETjzjmMQsze1KDCcLgRlWt8DKWpQT39nB4Y0VYqOp+eiWQXNc7XJISpYafPxriaBFz+R+dvVx6PJ+eISUdFxbzJZCzhu6uGmG9cIH8Eake+3Q3erkXtCGbhMGgw4U+pJ0E2zXhFwGRtMLIOBhUqQ6jRZNeAqeF64g4lOZfPVPwpSW35kqUdxbYq18iJ8eVBwr6+P7s4ZUGpdqKWY9/fKxO4/C2Fif3jF0T8PGd/66LfLmRflS4C//LAuxXKvxvZnzMRn/nMZ7Lvf/iHf4jzzjsPd955J1760pfCOYf3ve99ePe7342rr74aAPCRj3wE27dvx8c+9jG85S1vWY1uK1YIz991Fi7cOo37D8zh1m88jFc970kn3MaxEt4wnnPBWQC87XP/kUVs2zhxwtdaCkwYn3WCNRgZF4QYxgOzI8wuNtgwsaaXZAqFYh1jTSuMpeLC22TsEYOQE5Zsn3xbHpQRWdC9TxHk30vVQ5KbmLFTxnaF4yX5im31QCpMmYJ3lFhAqdxlpRqkXa+Yh1Lli4t9tnvabo1FOaeGvGqTkRh0ya8kljxuzkzJJLrsXzbmPouk+FnWCOSso9x/Ax+rt3Hgy1NY53xWXL6OqCXIfeH2qR1hskrnDkxKdOMH51UnGi/AzM94eyu3W09inE14sKOGezK2iLZHVnuluinnL54v5oNC/6ZNi4lwglmchRnN+5hFAK0Zwk5tga0nvX20HWFofFs8hunKYco4TFCL2jWJiInYymgjlsphmHsKKl9220tyCQgLsV8gUdvEY2McariOfB6zNkNbZTkSbjMqe+LvLxJuVqJ5HMLeK59rqYjLlxLReSC+E7wKzaVd5PmyzVOO5Y5fFJLpoUOHss/i4uJxdWlmZgYAsHWrV4fuu+8+7Nu3D1deeWU8ZmJiAi972ctw++23L/OEKFYbRIRXPW8nAOBTd524LfXIYpPiF49BGLdMDfDUczcAAO5exjjGx44s4pHD/nl/xo6TUxg3Tw6wZWoAQOMYFQrF6Y01TRhLcPKJvoQMcZ0dkt1IJVIqk1IJkOpRqQSWGRd7SQwrKkUCl9Z1ydyxEtj0jackXk6Q0dblihRxf0Q/S2tpGXPYN66SCGQ2vXC8HAu327qcoJZ1FDNSEBb30i7L44yL9h4S0rEGs/LFCWHAmXBTPNlkbbAhEEAmqTLGLZvnahjjXCOhdD5j6ogvCcBObAyZUn2c4ELrMDOyMWlOmSwG7QhDspnd0U+eJ1Uyk2dFADULMAuH4zzQeAG0cBhmNJ+2AXDVAHaYYnuOjC1mRhbzjYMbTMIszkbiVbsGlR35tsYLSRF0FrR4JCYSqggwcwcTYZPW4DIhj/yI+5oeAlEGRGbFFXGo0tqa2UaFNbzv74bnkvr6EfpCEPdaWFO5Lia3zaU5HF83vFAoX9yU/YiEHzazF68n7Nq1C1u2bImfG2+88ZjnOOdw3XXX4cUvfjEuueQSAMC+ffsAANu3b8+O3b59e9ynWF9gVfFvv70fjx05vhcNjDt/cBCtddi1dQpPOkr8IuN5u84GsLy2VI5ffPI509j4BJRBjWNUKBRrAWva/yBtlGyflCRJKoq8mDta4gknjs2SaAAgMhgw5xPHAohlCiQp5AU1Lzh9f/IFrkMiRKV9lK/Bx5TqqBwG7y9ttNKKCWcz2+fRzudxNC4QFBl3J+YkQyDCfHHp+isVoowAIrd0OiBZb8V1eJsjA6qGiWjItk0d6w3KfnG7Y+tjD2XpFdlPwBMDIoqZVZlQEAyawNwaR/H8irw22ToHVLXPkBoyqQ6rAfbPN5iq8wLxA0OoTZ0TINv4tiS5Ci8cnHWe5fIzRQZuclNQPT3pcrW3WZGz3pYJYDzciFHr0FKNCZvmuKJAxJhMhjbN4hGQbX0NSZ7bkHk1EtTS/lso3fziwBUKaDbWQC6p9VltXT3MiL8T1lWCT/rjkw6l6/KznP99mDyzsCxPEuymFc+ts5ic9qrD7Ny8316Mh0meLN1hwnUHJow1xFhW4YUEif7Fex6JKAA8sULlJ4OVKIPB7e3ZswebNyd1ZWLi2Ha/t73tbfjqV7+KL3zhC912i5d9zjnNyLpO8bTzNuKSJ23GPQ8ewl9+bS9ef9lFx31uLKexRHbUEs+78Cz86T88sMyEMcQvnqS6yNh19jS+/tAh7NHSGgqF4jTG2lYYOXU/kBaS4WsZLyeLu5dv+8tabpkVUtrogKhYcNKZePlwjExiw6RS2tp6FTWgo05IBTJz2wliLBXBPkImldAyBkwuhGXbZX9646561FQnPtmhPafLfSVZlOBkNjyXmerHC3Tug+yTKMsRM4wW42QraWO92jzfOIw4c2pQoFlRqwmox/4/87F1WU0/xtzYYlGQxdY5zITC1FM14ZwJwpbaYsPApNjQoA6a0bwnT+OFzJrJcxuzdTLpyqyUwh5aD7NkQYN2ARNVqgc6MD4xD6upUQ1sR5hvHJrhRrjBBKgdR8to40KW1sGEr3nZLPh7xypkURYjJh0qajVSqTqGbK35DRckk5+RkGBHvhTgeE++/2w7Lp9FFP2IbRQJbrLstYGURpXRWU8OA2lpxXXlC6LsWUSurMdMvs0IowPrSy3bvHlz9jkWYXz729+OT3/60/jc5z6HCy64IG7fsWMHAHTUxEceeaSjOirWD14dVMZP3f3QCZ33pZjw5vgI4/NDptSv7HkcdpmCiZ9owhtGUhjVkqpQKE5frG3CKO2JYRFZxp5lpK1HGZPqHSCSYqDfptkiJawhXli6tLiUZPRohbol+SmPK+2xpZ2zzOYqE+jI9P7H+m/RIZW56OtrHex0kGUfGGUMZQ+O1YeMAKIgpy7FQ5YEOa7vw3GQP5HizXhuWeHlmEMgjNs68FnzjcXhRYtR67e1zhdt5/IU48E0ZhYt5sYuEs2ZxRaPzrc4MrKYHhhMUOtLbRAwEWoZbh5WkRyaxVkMFg/5lw2jOV/qYu5gZ24l+QEQyWIWn8lzUw3hBpP+Uw2TDTOQt8qOsLEOtRiN88+rbWDmDoLGC6gOPQwzmsd07TPAzmICzngtzAmrqr/ONFANQc0CyLYwC4dhFmdBzSjdg9IizP1k0iRf7AT1MlpfCxXSK5NJRS1tpUzqs/hg8XyUMZ6RBJraJwjizKnimYtEU1yLSal8vuLfbSDrZbZjIP07MraArSfhJjaindqCUw1jaEU+JwLnHN72trfh5ptvxmc/+1ns3r072797927s2LEDt956a9w2Go1w22234fLLL1+WeVCcfviZ5+wEkbeYHq/CNrvY4KsPzAAAXrT76BlSGc/YsQkTtcHhxQbf23/kpPsr8Y1IGE8u4Q1j11bOlKoKo0KhOH2xpgmjK0iLoVSknd/4S+LYwhyTRMlyBkuVmbCBkMSFu02xWDIxDZNRVgUJeZ+Y3MkEGyWB5T5JEhuJ0hLKIhPXSrTbZyktlVZ5XIylk99LSCWoZ75kjCTPA8+FQ14Mvazrxz9lCREef6nmyPPk4r5c6JOIT5PktAmZLS0cFlqLxcZF5bF1wKHFFo/OeVI3UXu1b2wdRq2Dc74u46h1WHQVBoawYWCwcWAwPSBsHBpsMqG+YLB6+phKAzeYhpvc7C2llVfcXD2Eq4YdhY4txQhzVxKohpJtOP5dyPIiTJzakSd4gaTaDed4EuMsJirChnYW1I4DURtlllJXDfwY2gbmyKOg0RHQeC4cX2Sv7clmK9XHTBlmS3frkyvFvycgzIcgcOF5iM9aqXaXfxdlPzgjKz8T4ROT+rj0wiG2aRtULk/6lJHS0J/4nUz2b4j8N2nhaG+RVggUaswu9+dE8Na3vhUf/ehH8bGPfQybNm3Cvn37sG/fvkjYiQjXXnstbrjhBnzyk5/EPffcgze+8Y2Ynp7G6173upWYFsVpgB1bJnFZUAk//ZXjUxnv/MFBNNbhSWdNRbJ1LAwqg2c/yb+suWsZEt+MGovvPuqJpyqMCoXiTMCaJozRFiYSY/QRLpnJc0mlCuiQkogl7K4Q15fXypRJJJInkgtm+8pryv6VGTJjs8V1Zf94EcuqSifpSFgEU1gI17Cp+LvziiK1IlMlL/SlBVFeTygxfeMsxyxthHLOY01EGftWnFPGlqI8togLlHFkkSiJ605VhImKMLYuxigS+Q+Po7GeII6ty56lc6drnDVZYcPAYGAIFj5T7GB0BHDeflq7YDUNKhzZ1sftkfEZSyc3+bi7UJMxK2QvCXFhjWaSxQSrdk0ilWSSSgYAxsdWzjNZcRaungA5B1f5moyODBZbB1Q1XD3hCWw1RAODRVehMT5ulJpFuImNvu8Tm2CnzoYj8iqgfL64z4L8lRZRAF6tbBZ8vyuxT97XHjU7e/bK8Qp1OZtPPk5efzSXxcFWBF/ao/ybEfspPFvxbyvUtCTkLz8cgroo/i1Y0//gPgF88IMfxMzMDK644gqcf/758fOJT3wiHvOOd7wD1157La655hq84AUvwIMPPohbbrkFmzY9MQVHcXoj2lLverA3w3mJL913YnZUxvOCLXU54hi/88gRjFuHTZN1JHwnCya9ShgVCsXpjDWd9MYVP0sLZGkvPZqLivdxDBtnw0wXszHxik92whc1KemNbUCmXrJ8B7cP5HF7NlzTgrLtPCZpT+X4N6mclsQ3olRX5E+h1gA9JM1ZwFqAGvQRskzdFXbA0mIbFRzRrbL+o1QmmThWBFDxIiDeA7ZcyjEXBNKLRD7RSWsdRo4wNZyOqlkFbxvlvhryCZGGIV5wEG5iRcCWCYPxvD9w1DpsDNmPFhoLQ4TaEGommLP7AzldhJ3clArP2wY0nvcEb7gRaJtoYbSTm2Kf+R6TbeDqScw1DhOViYmLMpsnP3fyHsjxy+/OgQj+njoLci5mj+XnoHUEW0/CjOZgFmdhp4dxjBMEbx9l+2k94b+XJDG0FV8wyGdOvICQllMYg8mN/u3/4uGD+fMmyZ4gblLh43kzXKIjPCfZywU5P+0IXPtyPJiGten5M1K1lPMnbehkABJJbsSzL/9N4n9LNmzwC8LZudVZEC7BuZ9wmyeC4yECRITrr78e119//cl1SrEm8YpLduB/+9Q9+PYjR/CNvYfwwzuPbtv+Yqi/+KKnHJ8dlfG8C88CsDyEUSa8eaJJmTjL68z8GIcWxtg8OXjC/VMoFIrlxpp+4T22Pr5MJqkp1b3S7mgEIZMLPAn5H4CDIFNCmSqJaYNcvZAkT17HOlarCuKJnNBKolUqm73/PZWKFJDFjMVj4k6TlSbotZwCPhkLq0TSQrhEP0p1VNpDia/DlkGhmHGSFV7ky3ZILvh5KOgn5LwPSPd9vvHqYOvSOMeBJFTwcWvTA4PpgYEJ914mLSEiTNaEUevb4SyskRyExXBF8NlK60lwQps418J2yaqbWZwFjeb82JsFn+AlEEMmXNM1dV90iPnIFEVRrkPes5H1iXMGhpLVkygSVX5ufV1KbwO1Exuw2LqQKIdSVlq2iIo+SyWa1dNeliKynwLBIl4Ps6RETiqFfGxpsZUkVaj/HKuavQyxhVoo7ocsPSPb4Dhlx/3pUfLLuo8u2Gz5medns8zKfLQszQrFmYgtUwP8xA+dBwD4s2Mkv5kbNfjqA48DQLSyHi9YYfzHfYcxP2pPuJ8SyxW/CAAbJmps3eATgD1wQFVGhUJxemJNE8ayjqBEX/IbuZ0JgUwqIxd8skwHxyxKVU1ej8lQmdGU25a/+7hFyvrkSwZ0F5Ly+tKe2kt0o2KTiJ0LC9lOnJf8HkhjRzEEQgZOQUp4X5nxspjjGAda7It9FpbBhuesZ2FeJjMps8z2WYPLuFaCjzscGE/4DrkhjoxtpnhUBExRi7PcHM4aeEWtDfU6CT4GbaLyxG3UOhxujU+ME4iYDX0ZW+BQtRGjyS1www1APYQdTsMNJtEMN6LdcE4idM71EvzMwinswXGMkhhK5S2cR6O5Tpze0ITPwgyoHfsEORMbATKYnJrC5NRUTHATFTZTg4gwQS1Ms5AS0jDxlSSvIHQ0XsjuZfbCQdhSYwwiGSzMz2Nhfj7tl/bnHispyPiXNCFTckXeDtxrixWKobSLVuTnRdZZ5Zc08jnLFH0ynW1AHlvLzz33a35+HrNz8zAEbx0+xTgdkt4oFEfDq5+/EwDw6bsfOmoW03/4weMYtw47t0yesBX0SWdNYdvGCbTW4Z6HZp5Qf1lhfNbOJxa/yNgVxqKJbxQKxemKNU0YlyrHwNsyOyO6ap8kDTIZS9kO/yxjlJggymQuMqOpIX+N1ubkRCbWkcdKRTGqk4G4lP2KhNjZDhnLyIT89MUylrFdrCTxR5So6FhWxbk8P5Xrz+YZ51PYTCXhL+18kbiw0iPVxUJplL/z/ZFrjqHxttFh5S2ngCfojQNGzmDMXaz8WDfYeUw3s5jA2CfJaUcwRNg0NNg8rHBo0WJubNE6h4p80hxv3fTXaq3zJSOsxdj6a8w1FkdsjSObL4Cd2oKFiS2w02eLGyosnazqAokcMuFqR54UxkEXapzpuU/hvrpqEO9Lh1i3I5jFWZhQNsMsHMYQrC5bnyXV1IGkcZs21iHka5iFGZ9Bdfax9CxVw/xeygsXCmF86WKbVLojPOPlM1gTfNxnHEQihkspg411mULOf2c+gVGKUS2zI0cyiEQ2M5GR0gsQwCvX3Naodb7kikOX+CoUClzxjPOwabLGvkML+NJ9B5Y8TsYvnqgVlIiiyviVJ2BLdc7h6w96wnnupmPXHT0eXHC2xjEqFIrTG2uaMJYq4lKQC7tMlKJk9+PaemX7ZXkL2aZcXMq+9CW3KfsMdI9xxX7uIxFlfRlboYKUqpwkaWIhnymLnCylJIHyd0kUjwZhK82uudR+JBWGs10CudJbF0pqXxKhkU3HO7E9WgGFHZa/W4dAHH1M36h1GLWBEJgajq2kzaKPNxwHy+V4ISiMBOt8BtXZsYV1wIGFFocWfQ3GGj7T6AS1nrQMpzE0wIRdwLj1pH/UOszZCi3HEAKedAGIJSQ4flTcR67jR80o3T9RqiKW0mBCQiav6UgmZGKdAFuCqRlh4cgMZufm47GuGoLaEdxgAi3VsPUkmsE0Fq2v3VjLJErGwA14zjzhdINpOFP5mo0Son6iJFZMhjmDbVSm5UsOKwh02MflYKK9ldVqVkdD87KWJ8HffyaujUN6WYD0PHFmU8vtIX/ZFJ/f0P/yxRTI1/8ctS7W97Th5dTS2snKgQytyEehWC5MDipcdYmvxflndz+45HFfDPUXTzR+kfH8EMd41xMgjP/x8/dhZsH/e/Tmj3wZn7jj/pNui3HB1qAwHmdpEYVCoTjVWNOEkRdwS2XkZPLG5OFo2VMrk8hjqYJIUsI2M6kOyuuV3ytDse0+NU1eo0zMI4mnJLZtUC15kdzr4JHErVQImViU1r1SgQQS2ZRWSdlmeXxpXRVjjVk9e2LQ5DglSewb29EW3ZEoFsqmnMsq3O82LOLZajqy8MSmnvBZRNsxzOxjoPE86tERbBr6ove1IbigSrXOYVgRpmqDkQuZRlkRhCe2tp7EoCLMjx3mG4uxdRgayq2dwf4b59D0/GlKImWZBHrlL5aFoBptSMji6mEk/j4LqY+ToWYEtCMfixjUYTecRju1BQ2ClVkodxUsJtt5TwJtE+MYs1hF47O+egvt2Mf0iay0EvyIL1VKhX+6oPjG56b1ZJkTGY2tSyT0KDa28jmQLxgMAaNw7rBKf6fcRyaUbFmN/xYIazb/WyBtsaPw9zlRETZVFhtrb0ddKlZYoTjTwdlS//Jre7HYdGMM50ctvrLHK3snmiGVETOlnmRpjb0z87jxL78Zv1sHvOvme7B35okpg6owKhSK0x3rwh/FCz+2i/XuC4ttjjXjfYC3mFSGsvOlVVQm1WESCqTryWP497jYpq46IfvGPzkza9l3Bu8hIgwondOXWbUkix0toIxjZLJ4tAQ5vE2eW/6UYxQL/+x7j10yjk10Uc4pfwdyBTF2L7RlRD9amM7DwPeC2x6avJ5c6xwWW6AeTCcCu3AIZP3ipYInKxuHBs4B1jkYIlQ8nEBAGxjU1TCQG8IAhE01MF1XgswKQi5heuJJKSeSjsKfbcj46kwdibijVAOQ7yuTKp+UZ5iUx9BuRXnMHpPISsytz6g6THMe2p2c3gAAPv4QgBtM+fmqJ/1xbYNmMI3KFZlLwX8TnshS+bxJi3TbpJIb3GdDoEDal0Km/IlEOzxmtpUODWU281rMh1TA5b8NVVknEyZk9/WKo4EDGfKW5mYUyW/nfp8CnEzdxONpU6FYTrzoKedg++YJPHxoEX9z76N4xQ/vyPbfdf9BjFqL87dM4sLjrL9Y4jkXbAER8ODj83j08OIJW0rveeBQZ43ROofv75/D+VtOvrzGrliLURVGhUJxemJNK4zA0nbU0gLJYMLAyiOri/LYPlspL7iZfJIgWHIxWfZBEkwgV8+YRMpYSk68gbCdPzJeMrYfLLV97jAb7HZlIh5/YqE28mZn8/hDXrgH4pGVcFhCKTmmglIqldwe+scB5At/Jhx9x7LSs5TYxBbYqDyHRlrLZVT8wjq7R5ObYSc2wE1sxOEGmBtbHF5sMbbhJUNQJ+cbi8r4mo5MwFoYT0rDmCuZlIWKZEKtjxWEtfl94DmIZLFL1kl8r6n4mwj7I1ElkymP5RyXWW1jDOHkZm/Z5WemtCvzfTU1nKngTOW3GxNra2a3RfztULndWU/s+FqDSa+Ih08Fi9o1GJhAHEVm22zoPAaZxRW5O4CQyrjws8HN8L8R8iUFPzsOXt2PWVXF9tZxVtowJFFf0lWJdCsUioTKEH72uT75TZ8tNdpRd2896RcWmyYHeNq5GwGcXHmNW7+5r7OtIsJF206OwDKkwng8JWgUCoXiVGNNE8aN01NxUcfIiBhy1e1opK7870eqXkxOIgErYv/KJCvyfPldkhnnXK+VTioagCeFZSp+Vhfl2I9m4ZTgBa0kkpGgslW1LF9gm6RKAd7aKOLLsqypQE4kSnIp1cxiHvvugxwj22/7EgSV91cSaR5zExb2aEdZ5tlhuABfq/PCgMtOGJ/45pzpOtoXK/LkgGsxctZOvqYh5PGgkmhVQ0/e5Fxy/KI9CjnnNqohHJkYy+qCMtg5ltsp4lZlSRWp+sXjERS5YE91PBemjs/AwuxhLMwe9vGVtgnW2jDeiuct7xL/DRG8atspfSFiDCGIYqa0imdmaPw95LjDiBhrWUdSF5NOhXjJihCTSvXFMDMR5OeCf5KzsfYm4Im6aRayuSyJO8hkMZOnCpolVbFW8KpgS/2rbz6CQwvjbN8XQzKck7WjMqItdc/BEzrv2w8fxp/+gyeyKbyBcMPVlzwhdRFAzPh6ZLHB43PjYxytUCgUpx7rwpKKYHcrCRDbyhqx3VAieNIe1wc+XtoYga79VNpQ5U8ZL8VKYlbjUbxJJFFqgwkhH8NLUKl+SFVFrnPlwr9vfFKl61hQZaIRICd+EnzsUmpin4JYtiWIQdn3EnLcrZj7vuOXeimQ2QmrIQzy+5kVbkc+jxTGWhsTlMj0piV+D/eauLQE/L0bWwrExHgLadjPhL02NYCRL7MBwMULeysjAE+8bE8GVO47QrbSahhrERoK/ebmyIBY3ZJW4HAPqs78mnw+mLiG/jNJj20MxT8l7SgqpC6Mm6TNVM65IHUO6bkkePtqssPW0U5qCBg7A4NkK+WkOBUZ8N1xglR6YpqU3fz+UvbvQaYoLh7xCutwOvbRH2sicawAcCZZkMnfwoVxz4yBgSHUq/CKjmj5k9SoJVWxEvjhnZvx1HM34LuPzuJ/3LMPP/eCXQCAhXEb4w5f9EQJ44Vn4U/ufOCEFEbnHN7z599Aax1+6pnb8X+8+ofx/f1zuGjb9BMmi4BP+nPupgk8engRDxycx9kb1ImgUChOL6xphRFIi14JVkNKBU6WXDia/XEpkc5QnsGzJGuciKbM6MlJOizQazfh7VyCgy2oUQkU6f6z85wvE8AZXiXBlbbXUnXtLWheJh2Rv5MosF7GMwIZEViSRPbtD2pMVBYFkelTSjl7JY9JJjJiRU/OjYQkCI3r3jueG3lepsSG+Ds+tjZJ+eXzrEOcF1YeBwaJ+CAVhefxxMRApvJlL0p1Fohk0TFJF7FwUgUtFVrZ/2y8guxnY3Y2U1aZEHUS1/B9Ey8Cyrnq1Pbk8dgGlWuSK0A8T7E9Z33sn5wDoKO+899bbKfHYhv7L64l/80gZ+M9qoqPV9bHkczztflZa/l+h/lnFTN7nsP+ySqUdSFNeqNQLAUiislv/uzuh+L2u+5/HKPWYvvmCVx0zhOzf7LC+NU9M0et+Sjx1998BJ//9n4MK4P/7aefifO3TOGyp56zLGSRcYHGMSoUitMYa54wHo3gxZhD5BbDpchin2olSRcgygGI65b/5/C1SrIYzwsL0Eg4wvnyrX2MqRKLZL5MJC7hRD6vdck2K/fzvliGgtUeUYIhKwYvUcY09qmOxyKJHD/WjDplIJbK1LqUUliSIkmOpWWQ9zFMz3Z+PuS+so4mH89NMWmRx/HzFUlQGAOXiLAOaMnPb7Q2wmf+jPNQ1Z4Uhp8AMqKS2aCD0heJYCBnZbxqX/8lacxedvBzIeYa4tj4jAibsrx30haeHQ+hTsqPmKeOTZn3xbkZRrIs6x/WhlLcoZgffv6tQ2qvJLHimZXlXTKLNRnYyU1wg4nYxzL5UsxCi4JIQrTnLCaM8y+bjvW3sgLgTM3L/VEoVgJsS739u/vxyCFfnifFL554/cUSz9i+CVODCocXG3z30SPHPH6xafF//MU3AAA//+LduGjbhid0/aWwK8Qx7lHCqFAoTkOcMGH827/9W7zyla/Ezp07QUT41Kc+le13zuH666/Hzp07MTU1hSuuuAJf//rXs2MWFxfx9re/Hdu2bcOGDRvwsz/7s3jggQee0ED4zT4v/mXyDv7JCUFYwSrVAkkw5AJQKpJ8DYg2eNyMMpaQiIJ9zp9okWxwQL7Y5phFTubBiVi43da6WFqDj499Dipl7Ad8QpYmKJDSghkXtn1qUEkSgXwhXcYsFnF2VNbNi7bCo2QALWywkuyX5JFJXkmC5AuB8sPba+rG1MX54nsp2pREshXPgVSiHARRD0QpPlfln5icD8CXrwglKhz5EhJoG5Bt4YgywlMS9pI4yxcb/JzL/pbJliCO6X2mgSz5TDaG2Im0PaqCsr9c8kPC1Gmu+pTuTkxnkyVcismqYEHtKHULwlLbLKByjR9ruJ4cV9n/+CJCquWh/7aeRAtfWzHOoXMZeSXbxH9fHERNSBEv6sr2FQpFBxeeM43nX3gWrAM+/RWvMn7pPk8Yn2j8IgDUlcGzn7QFwPHVY/zPX/g+fvDYHM7dNIG3/cTTnvD1l0JSGLW0hkKhOP1wwoRxdnYWz33uc/GBD3ygd/973/te3HTTTfjABz6AO+64Azt27MDLX/5yHD58OB5z7bXX4pOf/CT++I//GF/4whdw5MgR/MzP/Azatlt76XgQ7XEi4USpLjHBiItNsUhmlCRBLqZ5QSkXpUvVdwS65K18KxoJqCCEfA4vSmW7sR9E6NMoSqtr61ws/SCtsKUCJUlx6qxfsHOR+E6G1PAzFpOXC3smijYpaH2ZU6PKKdvk39sRKMTBLaU0MqJ9EOk5iB9xXEbig1LU94wwseJYQJk9k9uR1+yNpQzXlmTNUCAubEk1daqfKJTeaDsFggrc8ycqSHzV8zQsRaTLlyC8rfybYQttqVg6iPtWxCTG44qXByUaM8TICXVT2myl5bkv+RKZ+FzUrolJfOQYgEDiTY0R6tzajeI5D3UduQ+R5FONeUuYb13c5pDbVokInOAo9hf5s8IElMua9L38OBUwK6AuatIbxUqCbamf/spDWBi3+IcQv/ijT9m6LO0/78KzABw7U+ojhxbwgc9+GwDwy//kh7BxYuVe+OwKpUL2HFCFUaFQnH444X/9rrrqKlx11VW9+5xzeN/73od3v/vduPrqqwEAH/nIR7B9+3Z87GMfw1ve8hbMzMzgQx/6EP7oj/4IP/VTPwUA+OhHP4pdu3bhr/7qr/CKV7zihPqTJa8Jiz/55l8eV4KXPDLuT6p95WK5PFeSDi5xIb+jOKav3337mNxl1jYioZxSlhQH8GqiCT8RyGIbj0G2oi4tmLFdVn2AvLwGEJKq9JCXQjWMiUZ4U4i/k+2x8hK7JUmSsz4jq0k2yzTucAjye+UthaK9ou9lXCInLMkUIiBZBoXFkMHH8sIfzqJyftYNpbIKMuEP9wsujbOyQRELMYfp4GDbZRJUrMfJNjGGtHUhSU2wpvIcyXmSzw4/Z9wk7+pL3sTbK+Q1RCHO4flD0V45llIddGRQw6IV8ytJFQGRBMZ2eD9S/+H8ywhXDdEiJZmJ4w9JcobIyZ4k8bFdvq5Quz0xpKjMV1TcdwC1HWUxpVJ9Bvcj1MkkMqjIZHZ2hUKxNH76OefjPX/+DXz1gRl86q4HMWoszt00gd3LZAeNmVIDEV0Kv/WZezE7avHcXWfh6uc/aVmuvRRUYVQoFKczljWG8b777sO+fftw5ZVXxm0TExN42ctehttvvx0AcOedd2I8HmfH7Ny5E5dcckk8psTi4iIOHTqUfeIAWD2hUBICyJRGqbZEBcH12w5lshl7lA9EW0wipPogYwyXiqlvswQ3eYxjnz4jr9tY0U8gWlclqrDoJSDGQXJ/yvqMvQop+Xg6LrMRyz+UNrslyh3A2tRGaUmUqqW0JLJNsx7C1pNHXWB3YuZEv8sagxLZy4VwXZmsJjYZfpY2xs5ciZi5SH7LMhpl2zzuPmsvtyHmMSPlMt5O2CmXsuHKMUgVVaJ8eSEV29Z5WzP3Oxt/UOUkmQKQ3+/C8swWXY7vzBLRSMtz+F1mOoWzcKYGNaOkzmYDSbUgy3tZKsWyjqQDOgqhIV+qg/sZM7ryGKth7H9bPKeGhNItxsKW8lMNjWFUrDVs2ziBl1y8DQDwW5/5RwDejrpc2XmZMN778GHMj/qdTXfveRx/+g8+VOb6Vz5rxVX1XU+wFuPemXnc/t392DujhFOhUCw/lpUw7tvni9pu37492759+/a4b9++fRgOhzj77LOXPKbEjTfeiC1btsTPrl27sv1SPWEwoeP9crEm4xH5O9s9szaW+EdbksdyASiVjKXaM+HDdlT+LtH3H2NcnFP6yHZZZQSY9DqY0L7sgxyXE8dnxdh5oS5te7FzJlkGSzWotKAyuQwWzLjZNqltcRzEcZKAl3diKfIfx0SmQ/JKJTrLVipIcBn3WCLOFcfi9Vy3cb7uYyS9bPGsPBlGNYwWVWm99O3mJJNjG6kkmOG8Uqnu+1uQfw+ZyEY98yPGwdleI0d1NiPcBC7rMYp9jaqkuKf8rETiJsdBhUVVPks9NT5dlZLpxLb4XMD3RWSR5QRD3Aarsdw+CVWY54sR72/P8yrtw0b2A/zCZZj+pmyDgUk1PxUKxdHxquftBAAcDHUJf2jHpmVr+/wtkzhv0wRa6/C1B2c6+611uP7TPvfC1T/yJDz/wrM7xyw3zj9rEkTA/LjFY7OjY58g8Ik77seP/eZn8br/+CX82G9+Fp+44/4V6qVCoThTsayEkdFHlI71ZvBox7zzne/EzMxM/OzZsyfuY8KQveUXCzdpqWPbqCQicrHdp87I/i21jZW7UeswtrkaFeMnXSoBsFSEV7SxIhFOjllsncM4KJJMMEsiGMeIRBbl+tSKazugU0S8M2wRK9dXWqEsV5ApTGxDLRb7kpgBgjhw+62PicwERNG3jOAitxPHY4XyJVWzkgz1jVkqi/wiQm6TLyHYhsgKVnacsDMyaSpLvMhxZDGBVhB0Y7xF11ofF9qjSLYuqc4SfYqizOLZRyJLAs5/C50XCgwmUqZGS3X2/HeS45QvHcJPttRm+0JNw05mVd4Xrp2ptJL8BZVRKp+9CZbESw+ZDKomoIaN94/ks87PTzWEzJzK9lYq+yrsxqtBF1VhVKxFXPmsHRiIf7x+55Z7l40IEVGype452Nn/qbsfxN17HseGYYVf+Sc/tCzXPBYm6go7Nk8COLE4xr0z8/iVm7+WJbV71833qNKoUCiWFctKGHfs2AEAHaXwkUceiarjjh07MBqNcPDgwSWPKTExMYHNmzdnH4Zc0EeYOi725YK+XOOU2Uwl6agI2aLoaOpjzGKKZDWVpMFG62jv8GIbS5FSA8A5hLjEdDx11ENPHCwQsqwi9qskqWORaZUXyhlxkZbK2Emx4C6zoAolqTVDr66UiUu4DVYSq2Esdl4mxomErieJSknkupMprIbyuNBWx0Z5lEQtjesmBYoEAemFhCQmFSyGla/BmFkg4ZVVfhat8xlbqR1lBDqW1qiWCDGW6mPYVBnKCE/f/GSWzPC9Fmpf9nIl/GQyymPl+ZDPSVTSyvkuuy2/CKJXIYyHnxcnkh2VSnbxHMWkS9yfxscNxuRCBYHsPLciZpX72Nd/Vw3h6kmvlIe5mG8dFl0Vx0xhXBReekTifQyb9EpDCaNiLeLQwhhj8RZsuYnQUolvjiw2+M3/7m2wb/2Jp+G8QOJOBU4mjvGbew+hXDq0zuH7+zV5jkKhWD4s6wpm9+7d2LFjB2699da4bTQa4bbbbsPll18OALj00ksxGAyyY/bu3Yt77rknHnMiKBVBtgOWST+k0tJXQuNEr8kLJpnhtFT8LBBjFBnSNsqQbUVV0aU2/L5wfoyz7MY+8n75n0dmmZRzglTmQyp1EaXVtCSQfWQyi71rQKO5/phCeSwrNtXQqzFMNIEUE0gpSUoZAlYmZZHqmCRQceGOgiBLSJtleGa4OHz5DEnrMSfEiZZFZyNpoMbXEZP1Mct+R9Jjm25cnkSZMTUoWjUsavgC9LGYvbBf8k+Z4TVTXGWTSMSQv8fnEWnMmYoY+mzIE+Cs7TIutFT7eFuhFkYLad9xktzL+E4ycMPpjAB2XgZQcbyIQZSWXEkgI0EOtmI+fmDC32sxLsdqokj40zpvUT7Rf2sUijMV9+2f7WxbTiK0VOKb3//cd/DI4UU8+ZxpvOnFu5flWscLGcd4vPhvofRIie2bJ5alTwqFQgGcRJbUI0eO4Dvf+U78ft999+Huu+/G1q1bceGFF+Laa6/FDTfcgIsvvhgXX3wxbrjhBkxPT+N1r3sdAGDLli1405vehF/8xV/EOeecg61bt+KXfumX8OxnPztmTT0RsJoi7XVAV1EslUS54JeLd7mvT1Vi8EJagsmgVAvlNiC3jsr+9G0nIlRI2U45kU0b1EtDXkWUpNEQeTsq/E9/XlAiSbRL3bFLshXJGi/al7AT9i3qK2dhFg5Hq+JcNYUp49sos0lS2aZtQEHFKed7KfRlnJXXyMmhye57RYU9tSA4taHMpghns8Qt0RYK4/tNPitmTOAT5s6E46ltQk0+E59b6lMSbWH/DX0HQhtVmiMK94GcRWUMWuvQkAG5oxND8PWZ8In5GluHFkGdIsRnTipLnkjVGfOuEEgd20YlpBot7c4Iyqp8ngrbbXaeOI5fLjCZbcl/j24BM/SZaTkZTjnNUiEu58c2oGIcnDE1kktKc+gAWBhUpgbGCwCJmEYYjFq3KjGMtfHP8XLCrY5YqjiDsHvbhs6/6xURLto2vSztP+eCs0AEPDSzgEcOLeC8zZP4wWOz+E+fvw8A8O7/+zMxUVfLcq3jBSuMew4eHym+7VuP4pN3ecJYztX1/+0b+E//4gUY1vrHqlAonjhOmDB++ctfxo//+I/H79dddx0A4A1veAM+/OEP4x3veAfm5+dxzTXX4ODBg3jRi16EW265BZs2pYD13/3d30Vd13jNa16D+fl5/ORP/iQ+/OEPo6pO/B/nkixIIliCF76Guuf1WVMleHEvr1OC/1k2BFgQTA8JlJAk0auRQAUX7YVHg4kEFJEYSjDJ7CyEQxwnE+xoPbQuqSViHFLlyzu/hFLEC/lq4G2ng0m4Fhg5g0q0mamCZDpkrQ+S+JXjKu9Lu8R9WurZiCSgsLNyG9YBPpdeUtMyVckBi65CxcRSzJlDIpcxuydfL5SHkGUlqAkJD2wDsq0/rxqAxouhjcorV9UwSxYjlfMYP1nMW+sE0RXzzkobE8yBeAZN+LthpZGP4b+nfN79fS7LY8RSIBKmBpfd4KRIVCqI5TMh7KesGhOQMs+aYYznpPCCpaqGScHsPGuiRIhtPNnj/eLZZlK41N8lb/bzYOAGk+l8oVqferqoUKxNnL9lCjde/Wy86+Z70DqHigg3XH0Jzt8ytSztb5yo8fTzNuHehw/jrj2P4xU/vAP/7i++iVFr8ZKLt+Hlz+oPkVlJXHACCuPjcyO84//6CgDgjZdfhLe87Cn4/v45HF4c4998/G787bcexXX/9W783j97vlrIFQrFE8YJE8YrrrjiqCmfiQjXX389rr/++iWPmZycxPvf/368//3vP9HL96Ike6wCHOv4PrK5dBmM9LtMYBPrL4KihZQKxfBYKbKjGhkKJlJxuEGKQyybss51iGz+RjYcF9rhvpfKJ48jXpN/7yGKrJpRsT2LrRtOwxounG5hW4fJOhEonvt4ergWE7aovoX9THok2cxIZ5iYcdg4MPl4ZMIZ2b4rtjH4d26jDj8bQbIzJQxexYnEUMybdUJ5Y4LDO02NkUVSIONJDci5ZC11Ltkxq4GPb3Q2KVsuPaO8OGCrbEl+papYggl1yhxqAJjeGGAn5odJWFVakCkvO0Fsu5V25HAOK77UjHwcp1QTAa9Y83jC2CMBhieNlR2hIoO2qN1IzcjbV+vJTLU0Jj2TJBVIoXQaMVeSJMt5lVPj7bxe4W3D75xtdjXWbSsRc2h1Aao4BXjtCy/ES59+Lr6/fw4XbZteNrLIeN6us3Dvw4dx957HMT2scOs3HkZlCL/6M89athIeJ4ILtoYYxuNIevOrf/Z1PHxoEU/ZtgG//E9+CFPDKs7P/+/1l+LNH7kDf/7VvTh7eoj3vOqHV2U8CoVi/WDNexW4TIQkZWW5Bf69cfkilyHjIMuYyKWuIS2msrSGT0zjBMELZLA4j4/hmMU87jBkQyVWvVJyG+tcpiiaoAryJqmg+fOpc5NL6yxfSw5blirJOKqzHZUkxngBUf1hYtRa/2Z4wHGasd+JZPC2kqzL68hdWeZXQdwZRuxrbUpCJM9xxfmx4LtIJiMJh4wJlElvWqQsn0ddQ5OJWTXZhjlqHUbWPyPZdZxNBJG3cXwktyHmpczyy5A1RbnvZaKn2DckMjRqnbd2MlkL/bAOsayGjOUr25Exp1lGVoRYVTG/UomNZLuqO8luytIXMWGOa5L9l2NfbYPKNajtKNlRxXxxm5zVtXzOPcerk10W6VlFO+pkxGVluCzbwfGtTLYr2Eh6FQrF8eH8LVO47KnnLDtZBFLimzu/fxDv+W/fAAC8/kefjIu3L18JjxNBjGF8fB72KG+9/9tXHsKnv/IQKkO46bXPw9Qw92+87Onn4nde8zwQAX/0xR/gd//q2yvab4VCsf5xwgrj6YxOPcIseUwieJWhWMZDxiP1KXV9SiGTk8qQJyMATGivEtSmLztp6mv4CW4zJaGJ58e+J7BSUCqNREk9OnfzBgDA/kOzsR9yXqSyyOORFsY+4sOXkyoME6pMteKYwEAYKxPiMG0iRXHx3Wd15X2hjThuEmUsgupTJjayoMz2KscsVTi+99l42UorbIc8Lv+M5IqhJOUdYkspPrEzf5IgsSIJyuekquFESQiS8ZDtyN+D8aLfVk92lC6p4JYEV/ZH9jF77sP2GI8pSTSZrE0mjw65st+ndFuHVFNyKUszb2OiyrZeWUqDjw3tOJnVV2acbcO81cNoEZXqML88kvPFCnJ8KRHiMePLA2Ez5uOiOtmOgGqYvdCIGWDTHxBONcwKKIytKoyKdQBOfPP33z8AADh7eoB/+1NPX7X+nL9lEpUhjBqLR48sYntPhtaHDy3gf/+zewAAb73iqXEMJX72uTsxMz/G//6pe/D//etv4+zpAf7lj+1eye4rFIp1jDWvMFoktWNsuVZh97hWKISsCCYraFJisqL2RUNl4pq4OC6OlylKyr5E2yohO7Z/XNxP32fn2LqY11cEEjmgbFtOLrmfUlks0VGFXFKlWJmLa18gKoRMBvj4cjk5rCizSDrKSxkAeWxdSSSyscnYsjAOXvBLAmfIW1N5sdzYNGY5dhsUUu6/TMwjyaEkRrErUv0T7TEJYVLBBIlVMGmR7Vt6k3NpnIIckW3S9azNypFI1cs5F5Wtsn2+tkM+V4xh+DJqXa4eizmQqhuTQ/57cKJNVtk6CqzMjCo/SNeL2WP52jApcQ0Tt2KOYOo0T8b4j3yehG2abcbkQmkPFOprUaNRkkXrUlvUjvychDFlf1VMfvsIskKhWFWUJTVe9vRzsWV6sDqdAVBXJtZifKAn8Y1zDr/8p1/F43NjXPKkzXjbT1x81PZe/6NPxnUv9wT41//bN/Cpux5c/k4rFIozAuti9UJiAewXc4nQccyeczk5k+Sv19Zqk62UraV9VlWGVBPLSTVIKfhLyH5xrcWoProe25+4XmxD/HQA9j0+i0dZXQwWVskNS6LIC3vOhCkJtDyGF/6RLMjFfNHXkliWI5dt97WXGkqxkTH5jCCwbOnNThHX5vaBNGeVoSyeTBLjvv7J71IlZZIMTqoSyi5IxSremx6iEK2xncQuBbmwFtSMfY3Btkm1KdmWSTmJ5Xi5vuuV9yLjR4LYsTpcKql9llYmxdKCycdKezghkCrOblrUV+R9GamyqcQGk7qMNBY23ziX1seRRvXRWVCzkEqfAIBtUHNsaXgpMTAi3pT7E2pnlmVXyjnIysGI+zO5cQsmN27xZTZWwZJakUFllvmjxFexxrF3Zh7v/uTXsm2f/spDq17wfleIY9xzoNuPj//9HvzNvY9iWBvc9JrnHVcG1Lf/xNPwxssvAgD80p98BZ/7x0eWtb8KheLMwJr/Xz9ZLL3y5he8FBU6VvOIkhWTFTZJCEty2IcOiRC/L5XXJtVPTP3hPvvticyV8YmSB7FaGAupu3R8RuLCeTbsN0Sx1Ia0psqYSj6XrZp9MZ5p0CKLJRdu7x96JChMnJY6DkCmwEQSVZZSKPrCRDcqgDbFk0pi0wQSPDCEiYpQU1L9SvWwLxkPb2NSJMcSk82IZD2SVJJQl+LzE1TJIdlYqoMVNk8qxkCzkJREEwhPyJiKlo9ts1p/ZcxcSe54P49JfmJfBWSsHgViOjB5OZHOfQmEqvd+F4mRWNV1pscZb2os1BuwWE97OyoZT7bYplokxMmuAfg4yOK62bUkwRTPF5M9ktcJZBMARjSMNSrl9bjPMHX32eVDV4lkcdKb5f4oFGsZ9+2f7X0xuNoF71Om1LwfP3hsFv/uL3yc5Tte8Qw8/TjjLIl8Ep9XPW8nGuvw//4/78SXgwVXoVAojhdrnjACiAoiEJLALLGWYTLIxK0keZGIISeD0nLq4rkutsmkVMYGsrLChdSbQGZYuQSfE8hc2X9JhAGpmrqkGgIhDoviR6ofUm0FkF2b4ZyLC3upKGUcUVoNhS0P8DFfMlNlqVhxW33txZhCbjdktiwtoq4gpeValZVkIr+QZZLKpIlJcC366JAW8B27pGi37HepvvJ5DflyGRWC4odEAjv95rFSXmCemAyy/ZTVqFYUtZco7KhMduIcCsSXAkhjyg5hglPMR7zPyAmVTGyTXyj9k9JRliUBE30hwM8Hk60wbxPUYmiKNiUZK+YAtvFxi9amxEvNCLR4BJwwKCbzYYTrtjAYRak/lT8ZWURFtIGJpLtvTPFFRzie52dhbhYLR2Z8033kWKFQnHJwnUeJ5azzeLLY1VNao7UOv/hfv4K5UYsX7d6Knz/BWERjCP/+556LK55xLhbGFj//4Tvwt996FLd/d/+qK6oKhWJtYM0TxjaSD08EW9cfw8hWT2n/lPGOTpCDTukK5IpcJWyQS8Uocp98H3PlkK/t7Z8uO7a8rjwmuw4kgUkkkvclKyFFYgrksZBRVXX5wr+Pb8cYxrBAtg5xgV0ez33rKz8giYwkHEspkEsJGXxsUlUpS17EYMWtLDEh1TVuh4kSk/xILNElYOm5y8/PYtYCMeRMqpJoNjBYaB1GsT6L8USHfA1LF74TK4ntKKlexiT7pk32SQcf58f3s1RDHXKLaDafTM6BqLDx3LYOSQkNfc2fv+59kejcQ0FMuU+x1EZsqIjXZIVQJsQpyaOp4ao6qYtBnSXbgsYL3lrKf53VMJI6LscxhLChyqRKZEDjBdR2hNqKuMqyvyI5kFRtqR2B2iYm4TnVUIVRoeiC6zxysrnlrvN4srjg7GBJFQrjf/z89/DlHxzEhmGFf/9zz4U5ib+/QWXwwf/1UrzgyWfj0EKDf/Gf/x6v+49fwo/95mfxiTvuX7b+KxSK9Yk1/7qbbZf+d6GMiJWrVOlk9UAu9cD2zrI9JlWxLUpK1vGA1cNS2QEQMrUiKoWEPANqK9rgfnESHNkOk+C+JC19Y+Zt3AoRk1zqqEoSPAapNsrj+QolseLYSNlG2W65zwRywjUG877nmU7T/XYAUewjZ8OVc8GETVo2GRnJPMp/xq7n916Fssi4yrtNMQlElBTFZtETo3oiK5/hTAXUkyn+jn3NgTiRMXDOwsKgsX7cTOZYEZPfpQ2X+8T7IukV3YykM4yH7bwVpTqInF1UqsrymXQI5xVtZ8+LsJh2sqiWqqKwpdJ4Aa4eZsdT6+M9UdV+Pjn5jSB7JO2j3K5ALWRZGs2CxvNwk5syJTFeU1hY49hlmZZ6GJ8JhUJxemCl6zyeDJgwssL4zb2HcNMt3wIA/Norfxi7tp68Ajo1rHDDP302rnzf38Zt1gHvuvkevPTp554W41coFKcn1vzqpTJJQUsL4Vy5Y5XOiX0c1xjjG5kkCuVQWkeJIDKypgQ5MeGO61pZs3hELKW+pLjLo90MSYozYgWO3SusnrwGRjc2kuco9hPpPP4pf+d2JMr4OCaNZYyhPLYkzX3Wx3i9QsWS1ykznRpCRuIlqS+T5Mj41D5eSMgTt0hIwiwJZxkHycShbz/HOxL8C4shWa9+NaEofTUQRLEOSXU86XH1JKgd+xhH6+MgyTmfCKcZxXmoCN7KKeZbzhtDZlGVMYiSDDFB5N/TRJnspUHnhYGznZhI7kfZh4qL3ojjHVtUeXtfvCKTz+F0bjVlay+3VQ/h6lBWw1mY0TxoNAdaPOKJpVQ3yXgF0TY+bpHjJqsh7NSWmESnQ/xkPG87ggkxj2V/yxcqpwKqMK4t/MZv/AYuv/xyTE9P46yzzuo95v7778crX/lKbNiwAdu2bcO//tf/GqOR1vg8GaxknceTARPChx6fx8K4xb/9xN0YtRY/9czz8HMvuOAJt79/drGzrXVu1WM3FQrF6Y01rzAGYQlAIkmJO7gsaQkv1ipK5/GyjxU9IuQ2VUkIOd7PpZqJUmyUx0t7KBNC3m5dYn1GtCMJqgvEtFyWSdtlufiMY2JlJM5COmepZZ6sS1leD8V5TpzDyiQnmylVvc51kN+HVvwurwcEFQuItf/4ODKUjak8j+MYgVyNBLCkOiyJVWnRPRp4qjkRilR4+Znr3CceL1srg9LlqqSCOVP5PrUjOFOD0MBVUzHGMSpmzgKook11YPxcUbOAqpqMc8D3Ryq6kZjKhC/FPETVMdwLJkXyWC5DwvPmVcdE+NkOnM2bJId8fan2ASkbqkxAE0+y2acKnW6oRusc6uHQ953trEAkca4aZLGlHCvqOLFOE2pdsvW3bYJKWUeramsR4mJzCzLJsYmMrYQm3Pc1/45OscIYjUb4uZ/7OVx22WX40Ic+1Nnfti1++qd/Gueeey6+8IUv4LHHHsMb3vAGOOfw/ve/fxV6rFhObN88iUFFGLcO77z5a/jHfYexdcMQN179nON2Nx0NHLsp/18iYNVjNxUKxemNNU8YgUTmqmItlgkikKQkqYjjYEGN8YbiX1FDlGUwzS18rrOfL2rEP+qV+D0STkhFJiif1mXneSVULNjRJXsyUU5luv8BdBbpyG2y0q5qCTCCWMnrOtFWn0LCiWVafyOWKB/iWEcSY+T+50qmvFdsTc3H0FUsJTmR++X1ZUKipSBVyMzyitRX7ofMmirRR66z2o1AIkFBRYxxcZywBYHAkPGkMRSu92TE+O+m9nZVZ8N5SalzZLJ5rQ2J7KZCretREnnO5fdyjkolWb6Ukc8LkN/neJqwpqYXCCL7aVF+gmwT50DChbqL0coK/+JlZB2GhlBJi6v1RNvVQ5AN8Z9le2RAtbiOFVlXA7mv5Nzw/Ig+eOLZgGD9eYbjUXlMGzrXXUlUIe56udtUrAx+/dd/HQDw4Q9/uHf/Lbfcgm984xvYs2cPdu7cCQD4nd/5HbzxjW/Eb/zGb2Dz5s2nqquKFUBlCOdtmsCDjy/gk6Fu4m+8+hKcu2liWdrn2M133XxPchqRL+NxuqisCoXi9MOaf90t7ZYkPn5fd3FbnuvgE9AwTEHwOHZQEgZJ9oDc0iq3l9fiPgJpUc2WVFdcT8a+uZ4PX1eizx5YZvrsG6O0p8bsr0ItislNbF6vso8Yetuu69gfjwV5rThGkTnVieP4GBmjx0RS3qeMQAfyxwv9vpqRrEYCKY6xtOYC+Xwupcj6hm16Jp2olygtllLlk+QkjN+ZKsU0cvbNYK8EGaAe+o/pWiRZ6YrX5aytIo5PziNv8wPLk8pICybPlZwD/ruQdt7y6SgTIcl76lVxoSJWw3RNU3uyWCQTYkVPooLFZEWYrAiVC+ot20XrYbS5OlPDDSbhKm9XlXUhXTFeMAFsxZwUGXBLW6ss6xHbKhVUheIk8Hd/93e45JJLIlkEgFe84hVYXFzEnXfe2XvO4uIiDh06lH0Upyc+ccf9ePDxZGn/kQvPwlXPPn9Zr/HaF16IL/zKj+Pj/+pF+Cc/vAPOAW//+D9g/5GuXVWhUCiAdUAYXfE7f6QC1McXmSz2EUoTkqe47HheDFN2XCqnwXZMKs5LhJZLX3B7fVbFvpIN3b53t7U2WXIZPH7ZX/k7f+cxZaVEWC0qCKKsY8klSmIsofjIY0pw4pWyXqAkfzG5jRiznJtSaYzHWIexTTZJ7reM1StVQxLtMVFkcsz7ByYnQbKNMrGNJLyGlriPInELk5WoRgXC4ao6HUPkjxlM+XjGahCzqcZ4PyahgqBk8YEcV1iQlk6yI5nMJZwrh1CSQWlblSUzgFxZ5ftdKryd6RHtLEmweBwcY8j9jVlJR+k4AFlZksLe6sS5WbbTkJE2tmPyOMosi2vZV1PnpLEKBHUw2T+eFYRZgfjFk8nSqFge7Nu3D9u3b8+2nX322RgOh9i3b1/vOTfeeCO2bNkSP7t27ToVXVWcIPbOzOOdN38t23b3nsdXpPSFj93cht95zXPx1HM34OFDi/i3n7g7c1kpFAoFY80TRr/Qp4wM8bYS8rg+xZDBls2cHOYJdhic7Ma5ZBGtRF1EeW3ZPz6+FcS1tWk7E6eStObjYaLqf3I9x8bm6qUcl/yU/crnICWTkTbVSMLleJiQiThBuZ6USWqcUE8l2eLjY/1Kl6ubksCXqmKZObVEvD6AUZuuL+eTr79xegpbNk5jWFG0cXIsXG+cZc+8RUXWJXLFZSs46U1qIK8xGMtLBMtpjFWsh7DDKbjhNFClAvGxVEMPWUwTUCiZfQlkJAq1LLYRSFepIvaR0DgvzuYJdYq5ylBYO9GOQM2oo+aRJGmynzIWEp7Q0WgukjoaL2Tt0WguEtPJ6Q2Y3LApzREQ7cLyOlT2Ufa9nD9T5/1jFfMUQ5PerD6uv/767IVb3+fLX/7ycbe31L9zS8W4vfOd78TMzEz87Nmz56THolg53Ld/tvPvonVY0YQ0GyZqfPCfX4rJgcHnv70f/+Fz31mxaykUirWLNR/DKBcu1ZIpXTw47rAve2mKwZJlOlLcIifKke0wWptKYzD4Ory9tKkS+fO4z4ZyhY/bkLGMco0mE/zYQDJZ8SzbyGpAxrkAHByqsN8gnVsmwIk21ZDgxgpyZpzrJJxhpc+CyXP6DvhYSalZMRHL1OJi8VOSZ54zJo2t6xLVSChBeYweEtGUhLN8evi5cAjJTbivbNMUx0ryKs9P9x8x2Y0DkmW0iNHMQCZYJk2epCYkwUHTLEk+O99LoijsnbJvGemUyWbk7yVZ4sQ9RVIajsHkueH3UyXXiHPCCXVKayersGBVT4ybaymK/sbsqvK4SOIS8XPD6dR/OU9yDhil5bc4jmwDJxIYZW1KqCX1jMTb3vY2/LN/9s+OesxFF110XG3t2LEDX/rSl7JtBw8exHg87iiPjImJCUxMLE8MnGLl0JeQpiJa8YQ0T9++Cf/u1c/GL/3JV/C+v/oWXnDR2bj8qdtW9JoKhWJtYc0TRokOWUJO2rzlMyeLQB6nxqQR6Npd+Vx/fCKNXSITyJdQ0oBcsXQ+O05mY5TESV5PZplMfU6N97VfEiSeA+4W/6dEchwOsLFDQYEsxlYSQSZ+fS4Wg0TqmFz2LZcliWUywe2WtlF5HI+R0CWdkkgCqV0mtEA+P9zGwuxhOFNnymcka0XcYRXIVuxzcS1ul7dF62qfSsVEp4h3m7MVhlWoCShImzM1qEa3vIOwunbURj6fbZftyCuZslJnSQxdSsKTtVUqarxbjFtmC6VA7LhuY5mUSN5b/lvgOoktDJpwI4dV7WM2uX+2SfUUuS+2SdcWmU5RJeuuE/eTlcWF2cOpP7ZJxJPJYkiaE8cqyai1PslN+M5qcfxpfZZUn9zo1Ca9qY1Xy5cTrSqMJ4Rt27Zh27blWYBfdtll+I3f+A3s3bsX55/vY9tuueUWTExM4NJLL12WayhWB2VCmooIN1x9ySlJRvO/XHoBvvS9x/Andz6Af/3xu/GX/+bFOG/TqbfQKxSK0xNrnjDGJF9CAWT0kbbs3J62WoeYbVVyJwsR6+V8GYXK5ORTKnys+MnMqFnfwPbO7sJLqordfWmcfe2W7ZQKqiRefe3L0iAlWcxiFZdYLzKh5DjGsp9VJKd+q6yXKMt0SPAY6oIUSqujIdND/HMyKUkmf+cC9LGPVJTwCO3HOQiqGRDOdez/rXsJulSh+HrU9tRLczYldhHXnDbws2kL1UsqadlkmbxMBRm08Fk9I3ES6iIBqEyyuHIb0ULZZ22VRLRQFYnnslQiwz5WW/klSFQGAzHl+8h25IoMGvFMQbRNLhA0kXEWQLTpUjuGc1WoYzlM/Qjq39HIthP3IM1nA0d1PraYhMfEpEXy3jjuD8c/tksojwpFwP33348DBw7g/vvvR9u2uPvuuwEAT3va07Bx40ZceeWVeNaznoXXv/71+O3f/m0cOHAAv/RLv4R/9a/+lWZIXQd47QsvxEuffi6+v38OF22bPqWZS9/zqkvw1QdmcO/Dh/FvPn43PvrmF6n9XKFQAFgHMYxAriyWReplHF+pgpX/DNpMQUxKXKxtGFCZEDe4RLuyPbmrDX3jOMgsrpHER7TLi2dOatPafHzlWDi+ryw8n+yb6bqlWsnXB/ofDI61seB+5POSYhWTvbYvuY9sK5JQQvxeKnWRWABxwc8KUuvSgl5aVJcCW3sjgQpkJSMuKMiiTHQi7YZSheNzZXvSssj9LshiJC3WdmPzZBxcScD67KeBLI5tmPMQN8nz5jgmMqh0bjCZZ/AEumpiYa/M4hWXsMDKeyWJnIx/jMfJMdnGE9igL3P8aGUIQ0MYVpSptFGR5Z8clwgAxsANJqL6V/bXCYVy4cgMFo7MdBVZbpvjSSsmpOk+8fPQV0uSmlHKrNo2Pn4SwOLjj+JUQmMY1xZ+9Vd/Fc9//vPxa7/2azhy5Aie//zn4/nPf36McayqCn/xF3+ByclJ/NiP/Rhe85rX4NWvfjX+/b//96vcc8VywSekOeeUl7mYGlb4D//rj2B6WOHvvvcYfu+vv31Kr69QKE5frHmFcSksVSasJDmSYJiwIJWEJ2sz/CzrJcptx1NNwpcrzOMpOYZQni9jI7l9GV8p+wR0x1wey4s8Wb8xi2+U1y7aY1XRupxM8nwebxkNGZvoCoLux5BIJIqkPXlDeRyhVAWBpKrK/VJl9RtNqm8o2uT2qR2Fou1JneoqS3W+vbCt9sX1pcEmEhgzapaErR31W0IRbJOlEkg+M2uyKcMTKamqSQJa2k+leiczrxZqW2bR7YMkm+U1xLxwf6hoh/8mCcBgdCTaSY2pAao7mU3j/IrMpBS+9yXlARCtqIuHD3bvi/i9ceEfSmuj/aDsr++08cQQSOScCaOMoeyp/6hQMD784Q8vWYORceGFF+LP//zPT02HFGcUnnbeRtzwT5+Naz9xN97/2W/jhRedjZdcfO5qd0uhUKwy1rzCGO2FyAmOL4uQvktrolQQWYHJ7Kch22hrXWyntSn7qMw0yue1Ls9AKmMn5UdibF1WYqC1vkxFKwidJIsIY5RtM/iY1qZyFKxmxnIfgQzLOM7KEAaGcoUzfHjsTKCTbZTnqkv4uI9yv4RFt05jVpojKI18T2RpkEgSgoVySYU3EB5JOhyfLw9Dsq2WtQl9w0JFCh/i+D9Zp/Bo4Iyc7SgjGVFxLM/n77bJFSogjjvaHQv1jsfKH7ZVkm1yklISX1ZFeYytP55sQXZKkAkxkMjnoSDJnZ9MPnumq3VAg2QvRjvKSXxBbLN4TVFLMZtSrlvJ5/cg3o9mlO51UCxrOwKNFxAz1jKszebViXmiZpTbT4/1nKwgVGFUKBQnglc//0n4f/7fdsE54No/vhsPH1o49kkKhWJdY80TRgmDRI6ApKwZEgsdYdfMa/pRSM6SlDi2by6lVkoiVybx6DuOSUtpKXXFcUCuAqZruKg69oHJbrntmH1HmDui7IHg+eJ22p6kNVyL0SKpsqbYH8tphHaYgLIt1YhjyyyjsvZiWZvRiW1+g1C1gqrGhLMOH2kz9TGIvpZeJG+sxrFaJRKl+P02IwbZT0lmmKAEAiIti9Q2QLAnxu3BsmgWZ2EWDqdyGU4QN/5e2DillZZt1FmyHsBbNMMYqPVjzAgrpf295GYpwsgkugm1D2UJDFlGQs6NGEdJwKOlGinW09XDRPr6lFIkogmgG6Morb4CC7OHsTA3m2JBRVKbjNwzibThfgaiyLUV+XjqI4gledYYRoVCsQbwa6/8YTzz/M14bHaEt3/8LjRloWeFQnFGYc0TxvKfMFYaJWlMts9EHg0l8uiJictsfLVJH45j5PhCJp9MLodVIlaS0LDKI2stSkj1zAbixbUYqdjeF7cIdJPm9MUncnv8qXpIcFZDEYlAStIIsT0mq+F55euJ4+T3EkxAOUatrB9mwYprItqJcKefAwMMDfIYQjkuCOIkVcE+UmQFKQtkimPdKJKgJYgT5WQlkkU+pLyeSE4TC8TLvvURDlbAypINrDyKYyUxduJaAJJtU5CXRJiPopoy4Sz2OzLRtpsRznIcS1hrS9U4ixMNimr8m3KeSManhck9UtwmrI0Jf2KfZFs95DdaSCUCgXT1MNS+NHH+4hzaxhPFVhD3ZgSybX7vZCzqUiU3Vgjx73g5P0u9RVMoFOsCk4MK/+F1z8fGiRp/f98B/O5ffWu1u6RQKFYR6y6G8WgExQbCVMYQyiQrhrokzAZis1RyG38uxeOivRV53FyMARTHSLukZRXPAQOTMqwerVwDp94uE/OUllUAMXOpgwt1C+X8uIw0prF3x9qEjVXPmrHvDYRFUC+dS2U7wrFlrcdY31H0Q84ZdyebR46TA6Jy5eTiXJKTpayTADolE0SbGRlzqXxC2a6ThIDJZpvIplcrc9IViRoAZ6qeGQRgah9LZ+qkoPb0q4y/K2MsMzurJICCLMv4wmys8npHi18s9xfKYtwfkvJUfQRTxGVmSilDkkoyqAloELIcy7hFU8PxXMl2RVynnBcuj9EZC1uDQ11Ijh+N5DaSXk9YXUmWpULcLC49bysAswIWUqOWVIVi3eMp527Eb/4/no23fewu/IfPfRdPOXcjzt8yid3bNpzyhDwKhWJ1sW4Io4UnWW3ropLGdRizOoOFUmcCgQIQi9jHNoXqyITPwRMmGVu4lMU0J4sUFbXyOMDHHqY+5W2yQthXP7CEJFV9dtqBAawjWOs8YePzqFvOgsfg94fvcbunpGViHHmM3CYtqf7epJqIMqbSoEsey/FliWtKIhEIQnZOYQmN5EAmnSktpnJ/QXaychZF4hUS7bmqTiUVims4cWxU9fpi/+KspOvF8hhkwuWLwvNczH4pW6Rsp6gt2Gc9JWfTNcpEM3wMj9NaX36izuciDSURXpDxJT3avCxGdg2+TjX05UHquvsSIPStqoYYW/8TzUJmmc3GXpJkANQupGOE2iiT/FCz6JXF7NoW5BycMdH2i6pI4sOxsO0Yjgiu1gLqCoVibeBnnrMTX/reAfzRF3+AX/yvXwHg/w++8epn47UvvHCVe6dQKE4V1rwlVQ5gbJlo+O9sGU3JboTt1CSyJ9W6pDomdU/GOgLJEtk6h3GIKZRJVfoUQZnVVKqL3D5Rl3gyWD2U7cnyGGw7lf2sTX/sJfed503aScu+MTmTx5WW39hucZ2sXWFh5dOIElmM8ZqhnT4SmxV0L1XCvg8QSYmrJ6Ml0HGJhEBcSGbxlMRwKdtqgDM1WuT1+thmGmMFXYhzk3GKnGCGbYyyLmJJbBitT74yGM+BFo9EK6m3Rg7j2LLkPDw3fe2JbbF/Rnx4ajlej/surLoSVMbluRTrl5HFIt4ybhMxn7FvTNy4/RCPyvMcSZ8gmtSOMCRB3kX8qBMkNCYBioRdJPeph1gqk6mrBnCmjmSTxgu+fVNlY4pk1Np0f43xx/XFgq4wNOmNQqF4InjzS3Zn360D3nXzPdg7M79KPVIoFKca60Jh5CVYK6ymTEJqwzF9DkaYNMukMkuphCUkiaJsG4ljipIZQV0sFUcA2LZ5GgDw6KFZwFAnSU2ueIZ+CwLMbVUmkaraUKYe8hx5O2roY1HagsdcEkVvXaUwjqRgZslpStU2XNs5kcWW0oy1zkVba9k/U7TFmVkpJCVieyT/TkAnJo0EGXTiOBk3yMdl1lImFEym5D75eyBnFROHPqsmEy3T7Z8fWAOScx9IB9nWf2eCzd8rQagKNdTxfCxh+yzjIHmfC2qrEbUL5TyksYT+ts73y9TetsnEKhIvMU98fs/8SWWzV62V4JjDQu2NJLUS350Fqh77cKHK+mRGJs9Ay9u5LdsAFiA5h6Jkhx87Yp/Itv45YzJrWzgirz4SxSRHvv0xFAqFYq3gwce7xLB1Dt/fP6fWVIXiDMG6IIwMtqGWsXk2249UIF6cy/ZVG8payBfoifSktlvrgsqHGBcZrZZEIRmM6EvgBkwapdoJJPLJxK8VhCqLXaSkbpLYJutLOufrKHb7n/oQv4s4Qd4mlUppAZX78j5Rpq46oRpaAEaUCuH4xDaeK8hi6E9rXTyvnAM5TlaYJIl18NlQQYmMyFIMZBtkmTt7LJaRYMg4yNLWKW2NJt9HLm1jsuPIgOwo1ukj53JVisU1oqSg2dZn+KyGicxw0hsyKalOPcxVOhH/1xfLWlpoY63CQP4ioSGXESo/X1VqoxHz0keKnUj8Y1LNS09whZooEtFQiGs0Rtg6C8JL4wVPyEzlVT55L4GO3bS0uFLoTyR9S5xHzsEhqZ0ZuQWSvRboqIdM+Jlg+xcYbZdEnwKshCKoCqNCceZg97YNnTwOFREu2ja9ep1SKBSnFGvekipj3HgwzuWWyHI/nydtlgxZF5HAmUyT/VMqk1znkGMjOaunJKJOkD8uGSBLcDx6aBb7D83G761Fb+kMHmW5TuN+SUI1jvUcUytsAWVCVyKLC+S+92zn79K+KkkJZz2tKJHBrE3H8aJeCR30ZEiVfaaQ4ZHgSy1UPLsy42mwSXbGUMYeCvti69AhO9Jq6di2Km2SPbGMMVtmHwloRV0/ALGOn7M+ls1UKclNJHAO1I49uYhEpeqohdSOPbFjAiVLRwiyOGodRqyEMWFqfF1BM5r3JTzGC14BY7JofamRzEJajr9UMRky1lEe3zZ5Hznej8lxnHhxH4V9lVrfZyagcd6Y+LGtVvajzEYqSXUzimOO7Yg+xHkHUkxjfN6Egiz/lvrmhc8V8+GqARQKhWKt4PwtU7jx6mfH7wTghqsvUXVRoTiDsOYVRkOABcW3XwQuI5Esl7wU9KpfDlYbGX1qorR3MgF04EQ1uaWzdQ4k1pBMNllRLNXLPotnuZ2T7fD2Nlg9q2Bh5bqGJZnkrxbAQCqHRekNQ75NJstlO2WSHbl/bP0cp5jQdA1WCMs55u98z1rHCXjyxDvS+uvnwGRE1V9QlIZwFhWZwGBNXmoB/n5xKRXEeQxxiNUw2ViZlDULuXVSKo5AIh9AsEMOPRnkUgusaoaEMI5M6EpemzASQmc7yqPvx6LfVg8jqaNmAW4wDYIBnLBDAplaBwSSTojEGkAipGT880q+Hci5aEeJOMfOMLl2UUXzN0vE/UnltrByUkniRBxhtHOWtlQIVdIYOKp76ls2/gaXxDEoumX/5fz76/ccwz/5/rui1qJtMkW411KbjcFbVE+9wrj8imC15l81KhSKE8FrX3ghHjm8iN+55Vt47q6zNOGNQnGGYV38t5+RDCCofqHERVCpZIF4RqlscY1GrrHIx0cihUTUCFyjMbXhFcmkRrYuZQAtk8RURKjDtWpDqdg6ybjKcH0rEvoU464MRM3GtJ14PIRYMy0msKH8d+uSmirH0iFmYoHN1xqYkGAHidj5RDYuzjv/LustxphEQSojQSSvPPqx58mH4vjjYr7OFviODFqYEM+KLCFRrHvpbCKOgaCQOD+SvbbxZM3aro1V/J7F2Elw/T7uskxyw2OQ/ZcQiqCvv7gIWpwFtWOY+RnQ4my8J654tmLhevh7M6woV1nZJlsNMrKajvE2SlcN4eoJuMGE31Yew8+FTXUIM8VNEFhXDT3pEupcR51kBVQmxglz3JghxoNp2HrSE9oiTjFaeDmhTT2EG0ym+bdyv0hyU1qSi8Q/AOI9iyU0ZP/Y9mxbYeUtxiTG64i6yqdCoVCsAbzquU8CANzz4AwOL2gstkJxJmHNK4ysxGW2SSRCwiTIIVew+qyZTBIt0IkDlMlmSkenTHDD7fi6g4hxkZ68eQIXSaRoozY+dq8iwBFgW2EzBWAcdZREGc9Xxh6yQkrhmty7Mp6RidVgiVcHWRxZUNeikgcTyJfJS4kgVzWtmEDZT6+KESrk9yn7PXS0E4tHpqOkMfhYvlYZe5GRBP7dNnDV0CfCke2FZCjx+n1qkskVQ5DxZIVj+JxN6hcfx22F75Fo9SlUhb2z3bjNb+aYOHl9IErp8T5JgtSjasK12XXJ8rgHIf6uJ65Pds+2ANpk4SyIIDlRlzDaeYcx4ygx4QSSEsvfWUWkOsuQ6+oh4OqU1MbU6Rq2AeAT20RlEDapgRJh7h3xtep0a7jcByuLwjbsCMmyLJ+lkHWWgu3Vl9xI18ru+ymCxjAqFIrlwIXnTOMp2zbge/tn8T+/8xj+ySU7VrtLCoXiFGHNK4yNdbmyxmpij5oGIFPCWO2SCmIqGt/9WPhP67oxhhIcQ8lqZCJv4QPE5Doc8yhJqCc5qdNGnCvj9PicitKYpEpYhXloRRwlgEyxk0QqWwLywlsqMWE7yfiwsN2GsTDJM8jbNvAEXW5rrc+WWlqCUxmUpHxy3/g6jcuJp7TUVuTjHck2WWbX1nkL7cgCLUxMthKJS1j4t1SjpRqoatiJDWjMMLtuR5Vi8mpEwfgYw1aoTeX8sirnBKFhG6i0RgpSSLaN1sZMXSzjBp3F5NQUJjdsSue2hXpX9kmqmkE1K5Uzef3y2o4o2V1lzB/Pb1XDDX2ihEj+ZJKeMHZX54l+atgUA0kGDdUxiQ4QCGSVbMPy3JiEqFB847EijpTLh/gHKcSoViEOsQp9E+oq2TYSd0cUYjWZ/NZRmY1ztgrQshoKhWK58NKnnwsAuO1bj6xyTxQKxanEmieMgCcibbEWi6QQOUlke2JJGoGk3tWGMDQUrZz5tWT7iQhKKyuATn841hBIJLJsU37nkhlsR5XHcFwkk8/S7mqC3ZVVwzbMz9h25ylb9wVrJhVkiPfFjJBMYASpLLPK1iHxjQlqK9tRmdQm+2maLyayrDJK8svd5ntoxfF8zXi/WeUzdXYcJwJqAlFldZUtnNSOMEIdk/1EG6WYJyaOCNehSPqS5dMnZ1kQ6pj4CJBzGYmQ8YvOVIk4SiVL3KvYRrMYSZ0LJIeK4yMh5u+BCB6VxJSqoEjU46pBRtCy54XtoZmldgRHxltKhaobz6lEAiHeFohjTDgT5qIJLxLINlm5Cj7Pk8eheEbTvXGm7pLGSArD9raBrD8JGbeYvQyo8+RFUY0cpyRC4h7HjKmnWGFUKBSK5cIVz/CE8W/ufbQ3gZ5CoVifWPOW1C0bp3Fodj4r/QAgVwCDNY9JCe+XZAMICqLr1g7kfxQtgtJXki7kSXHYgppKSSBLvAMgs7Bm5FF2G4CF88l1jEPVLZAQxpHi/Dg7qS9gDnDkZiZEdVoJ5wL5gjhaHHuURrY6cpvOoo6ExATLahpPa1MtRb4e21EBjntMBJ5VQk5eI8/j/Q75/aTQf0cmI3YOyJIfsdWYYxhluQT5koHnqi4svYaQSIhMCuOsJyqBcFC7kCllPG9swZTWzhhhy/F43GafilcNIhnJLKZsgWV1zVkszjyW7h2QsqCWVuPyWnKfbUDO5NlaIeaACFmEMBMnSMVxDDeYTNlPC1twtI4W8X2uJMtkktrIl2PVVIxTziUAoGm8bbUexrqVqVyKyRP2cJ/I+GQ6PFZBhF01yK/Fcz5ezK4f1Utuu4zzPAUwK6AIGlUYFYozEj/6lHMwURvsnVnAtx4+gmfs2LTaXVIoFKcA6+JVtySLcrFvC4KIcp/L7ZCRULBVVCiCWRmOmJQmEUkJqTRKWABnb5zG2RtT7SKZjZX7J78PQukJjn/0/UslM9huyfNQheMbGDTwZMuIj1Rjy4yhLYTyw/a/kDm0F1FRGXWS4kgFyY+JsutJq7BzLtauZLuv4/aRE1xJHvleS3KY5rWwIgfVdcI4TNd+Ad0ItZjVq1LZjGMR7VLomwu1+eK1mQSZRP6yeo4iCUxmPa2HXqUSMXaOqJPMphMDyduEakW29QlxmlEWe5hZYNtRSiwj73V578Q5GRnj54LLf4T+RjIVxhH7z3bdZgRqFkBBceRPUkttruZxWRJpE21H/nlrg7ooiCeXJDGjedDiEX9uPcz7vVQcYal4GpNnRJVqa/FChWybl+lwIiaVFcyMaGvSG4VCsTYxOahw2VPPAaC2VIXiTMK6IIy8yKdiW0zsAtOJ1ZPxjkD+OxPJjExGCyXFTKZZnCEQYx/7UJLK8nxbEjlRpqIyeVyfVxIpK7fB4JjOsXUYtS7aUC2QZWSVczEwIulNUXuQLXlsv4zkUapUvKAv7JdsCeX588pcgwoWdbhf0r5aUbIBy5hIOf+sPPI953nhIXHCmrJMiQtWVJlB1TJJRlIrs8yqrEqHNjl5jgvzxOOrCBlhdhxDV6cYuzh3PbbSeAzHJUr1qswYCuRxhUA/sRT2yCwW0ZVPIpK1dikrsuwvx+PZVpwfLJfVIBK0jPyyhRXI7J7SrkqScMlssqzqib44Sb7Cdp9cxl+HFVgZP8mkmsYLKaZREHhvfZWlU2x2T5MSWuVEWPQlxnWWZLRQQE91HUb+u1ruj0KhODPxsqcnW6pCoTgzsC4II8OJT98+JiBGkBUmjqUi5e2nktCFdoK1ka2fneuIWEUgHcPbDhyew4HDczH2EUgJaZgAHi2+MWU3dbFfnByG4GMeF1sbYvRctMgCiShLUsTb5TxlSVdYLZOxYmU8XVVkFkWu0DIRG9vcYsiET849E//YNyYNYl+mBvVck+8zj7emdC8b67DYpmQ7nMhGxvhJQlmq1jzn2XyVRMvUgIh/BBB/j8RaEhEmNUUSnE7yGHktoQySc6msA6u6TOrakf8E8hPVOTFeOOszejajpD7K+ymL2AOdbKORQIVnxdVDoB6CxvMwo9lE+ARJS6qiS8TM1D67LPefkwGJa8ekNNIObX2G1vFwI9xwGgvVVLIJ83GZPXWU7pW4J1m8ZLgPse9SFSYxzqrOCT6TWu4zz7sYj0KhUKxlXPGM8wAAd3z/AI4sqmNCoTgTcEKE8cYbb8QLX/hCbNq0Ceeddx5e/epX4957782Occ7h+uuvx86dOzE1NYUrrrgCX//617NjFhcX8fa3vx3btm3Dhg0b8LM/+7N44IEHTnoQMkOmtJyWi34mHCVh4uMBQSDDWLI2xfFMQJKySFF9jAKEIIuRtBUkMyvHIba1QSnsiEfIE7AwmGjWJo2b2zJEmd2Ws5WObW6/lRlY/cVEkpCounQLq0eyGBbUTWEFlmR7oXWZiinvQUqS00164wcT7JFh0S5fArTinkb1UDQ+NMBERZiovMrKWW95Tl2IWSvngPi6ob8xE60krJJIhHYah6hC+oHalEiFSZ2IQYztcJPS0lhaQ4F0PUkeeX9JEoO6SaFGoSeS3tLpE/SMU18keZX94rEFMpiROE7s0nLyoCaqhU7GutrSrhtUwUASYYwnrUJRTJZXJmzG16PkkiLwyqad2AgC0MBgbF1SVDlxjrCFkm19rKHoV6xdycewatpTp1K+SHFGJOspFUkxd70W41MEdjMs90ehUJyZ2L1tA558zjTGrcPfffex1e6OQqE4BTghwnjbbbfhrW99K774xS/i1ltvRdM0uPLKKzE7OxuPee9734ubbroJH/jAB3DHHXdgx44dePnLX47Dhw/HY6699lp88pOfxB//8R/jC1/4Ao4cOYKf+ZmfQdu2fZc9JiRJzAZH+e/8kSSGxP6llkBMsrgOogVi3F0JntBYVo9tpibFQPJ2Ax+jyBlWTUgK48QxbNVkMiSJcaZkIlg7TVJLuXckFDZONsNkWE5ZVO/ihhCnV4sC6EAeGyeOLe2e0eLpXMw+G+csEL4+Yh/VL2lzLZOhiMQ2bVBTmWT7uXNZrUk5fzFzK6VMrn1lRiLYzgjk/UL3mZHPFo8zU/NE1s2YCZVj3so4t754O1biuEYiz5cghTJ7azlnrKCxAhltqlJtDC8FZJwj2dYTI65TWaVrO6LCctr0FrF3VQ0aL0abrDMVXD1McxMTCVU9mUeTHZoVvUgaqxrUjlC5BjUshpXpXrvHYhtJuTEZaYx9kEpqeV/aBjSay+ctvDhwpkrqZKk8C9VZoVAo1iqSLVXjGBWKMwEntHr5zGc+k33/wz/8Q5x33nm488478dKXvhTOObzvfe/Du9/9blx99dUAgI985CPYvn07Pvaxj+Etb3kLZmZm8KEPfQh/9Ed/hJ/6qZ8CAHz0ox/Frl278Fd/9Vd4xSte8YQHVVGuGDIkGSvLQEg457j2ua9jaF2WBZXVqSEBIIr2T4hj4jUpKZAy4QyTOEMAOW+VZPQlcSmJrSHy6iEIvD5OdlmK1wAESRVjZbVDDt1f03QUzIqCpZK66qJcUJdqog2tV4ZQEwBnUbEyU8Z5iT6SVM5EPCSTyUhEuQsh2yqTYFkuRaqORpDDPBNuPgdsY836xL8H4sjkkzOtxumAeJ7KuSpJMBCUqhooCVZJcFiVLWPkqJhPQVBjEhm2f1Y1OtlAxTVIJqoB33OTj0P83smOGtqn8XzqM/+0Dcxo1p9fT0aFktge6mw4H3FeHJmQ+GYx/J7Il0NQH/k4Ebc5hE1xjPAkP5FlA5ATSXpyO21MdFPMZ5xu28JVPMcu2ltZLe1FJJPhGuNx/3ErhAo9av0ytKlQKM5cXPGMc/Ff/u4HsbwGqetAoVjXeEIxjDMzMwCArVu3AgDuu+8+7Nu3D1deeWU8ZmJiAi972ctw++23AwDuvPNOjMfj7JidO3fikksuiceUWFxcxKFDh7LPkgMiv0Ask8RENcrlCXL6BKWK6zAaigTIq1f+w+pUYx1GgUyWJJGVwXKCs9hF50KNRRf66uK1mIDGRDhCgSztYDy2hdb3heMrpV2WjyttuFJ964MDMpWEM4N2YrrIxH7zfx7SYpoatL3XkrGCcX9Bnlz4XdqLB8aXEBmalDxH2nYzAieuVcasRvXZCZUSAGcVleSjJIhybFmMYakQxvjGOsXKsdrIBJeti33EUBA4su2StlEAyXLK9Rbbsbee2h4Vn9uOk1GQsEAkyVlvYRWkKvY19MMOp1NbIcFLJGdAiO0MNlQeB19fJpph67NQRLM55n7b9Du1I9BoDjRe6JDhzpBZ0WVYm2IbTSB3VRoHgKiKyrHL2FEei4xVzPrdjECj+d7+rCSMoRX5KBSKMxc/+pRzMKwNHnx8Ht999Mhqd0ehUKwwTpowOudw3XXX4cUvfjEuueQSAMC+ffsAANu3b8+O3b59e9y3b98+DIdDnH322UseU+LGG2/Eli1b4mfXrl39g4kezLDIRE4MpAUSSIv9kjSROBbwRGSyNpG0xYQzQExyIwlaRSnjKltY+Rw+xrGV0ibV0Qjr6VLgMhxECFbWosC9C9tjTGWXXCbLa7pSqTRmFtGliIvY5pCuW5lUAoQgyDpMJ2MtxFyzatexdAKdwvOcNCcmkUFXLZT3XrZb3v+YOMhZDCuKqqG0eHI/pRWVVdMOWZN9l31mIlLulxbXEA9YZuKM9kwx/uw+CLKalUGR96uMgxT7S3WMnE+QQ81CIkMy26esS8hoG5jFI3D1BNxgKvY5Jt8BcmWRrbUMTjTD8YfBvuuqQTqPY4F5jjjLauuzrGY2UJ4XLs9hbTZfcY45O6u0sLL1lsl/VScLMbcb+pwlLOKYS5H0JmaqLUm+QqFQrFFMD2u8aLcXCzRbqkKx/nHShPFtb3sbvvrVr+LjH/94Z19JUo7HrnC0Y975zndiZmYmfvbs2ZOf29eeWNizysSKV58ttWyvDcqfVMgGgQg5jstDrhgyWGWLcYKsUgqrKVFKRpEUSU8266BwUujvUDBCtp/GDK/Iv7fOl9OQNQ6dyy2z1iWbrZwDSVYlifNO1YKcFPPFmVp5HG2w2cqfskwGI1ls0/de+xwrfdwfqXoit412TpXqb7GNr+3gCS05i4p9kUwUyyQ9PUQv3lupvMYJymP04mYuvSFIYUmMYr+dS4lsysyfBdnJY/d6FEs+RxC2SMBYVWOyxmNxFtQs5gTR1HD1BDgZjpvYCBrNerInzgPgCeRgKs/oKogWALiJjUAgqJF8sfUzjDHWeGTyJhVVoEusyzGHY2Rm0ywbKt+nMvawbXzynNBWRgBt45XTwVRG9F09AVTDNA/CYn0qoWU1FArFSoDjGG/7lhJGhWK946RWLm9/+9vx6U9/Gp/73OdwwQUXxO07duwAgI5S+Mgjj0TVcceOHRiNRjh48OCSx5SYmJjA5s2bs08JV/yeWRtFAXkgT8gC5PZFBieiifFqIqEKxx8SUSyJwYXnOfYRSOFYnPWUzy1hkGoksq1yUBGG4cPlMbjv5Xj9GJLt1Aara2eOBJElIgzC+Eqrajw+jJuzqWb175jkoKvQMkkcW4fF1mbZZfuuxUohQVg+RUxaJBRFmQp5TVYxJZHmD5NQSUolmOgaQj6+aghbT8bvsX8989S7bak4zVLJYotqVYcSJcz2u3GG6USb7w/z1an1iEQ+M4WsD6VSakz3PpSWW3ktzmDL/ePkN2Q8MZbZRMMxsuRGC5MSw8QyJOHvhsmZ7Cv/WqqKvA1I2VFNnbdRsTW4zmyzTGS5XqMT9mFvxx1nGVpTCZUqtReS+XSUXJ6XU0wYFQqFYiXA5TW+9L0DmBtpeQ2FYj3jhFYuzjm87W1vw80334zPfvaz2L17d7Z/9+7d2LFjB2699da4bTQa4bbbbsPll18OALj00ksxGAyyY/bu3Yt77rknHnOyKLNclhkty4X9UmoXW0W5SDw5izqwDI5v5Hi3KmxvLNf2Q9zGdtVE5hxcD7vgTJ8MJnLd8SXlUI6T20/Eh6+frLMcy1gZSsl2whw4kWG0L0to65JCGFU0JJsnk04GIRFjnrc29L23bIVEqd6V8X8957B9FhBKo7Roontd7r+0IfN+RyZTg7M+BRLQwsf5SbXasEWV7bOxTiInrjEZWSR5rFQf2SLKx0pVsVQKJaErCVw5tbIOoGjH1cHyGfoXE8RkJydrK9tmZZ1IakYwi7OJfLGtlK/X+pIeHWWQ+9GMUC8eisofZymVCmks31GSVmEFzdRaVgTDXGVE3BZzXtiHOaENJw7Krl0+kxy3KOo7krTvipceq0EWT4eyGn/7t3+LV77yldi5cyeICJ/61Key/cdTjkmhUJxeeOq5G3DB2VMYtRZf/J6W11Ao1jNOaPXy1re+FR/96EfxsY99DJs2bcK+ffuwb98+zM/7RA5EhGuvvRY33HADPvnJT+Kee+7BG9/4RkxPT+N1r3sdAGDLli1405vehF/8xV/EX//1X+Ouu+7CP//n/xzPfvazY9bUE4VMYpOpRyQWwMgtk/IwmRgncgTyCW/4/AoWA9MlHRyTSJS3XxnC1k3T2LppOjveigysvObibVxM3ltFKU/cYhAVzz5FNMU0hmQzSPGTPJ6lFDZWN8tEMFVQUn3MpcssqinuMv2MBBSe9A4r40uCBOK80NgsjpCAPKYr1BOMMWm8OA+JdvosrWUfAKHuCVLUuW+FFdf/YrsEkNuSiVzE+WU8ZAYyMUOnI5OSBclDApFiEhPJGtsvZYIhSWokabQ9b3ZZsew7rsx+SsWxAFw1hKuGvdfMiBy3LRRFahYjWfZlOCiqe2TbPBOr+D2SMm6Tr8lzEUhfJKu8T8Q4Qsyfv0GCWMr5ZxJeknEIdZIT8cgxh+vw76mcSEowJOMWMxIv7+UZhtnZWTz3uc/FBz7wgd79x1OOSaFQnF4gIlFeQ22pCsV6xgmV1fjgBz8IALjiiiuy7X/4h3+IN77xjQCAd7zjHZifn8c111yDgwcP4kUvehFuueUWbNq0KR7/u7/7u6jrGq95zWswPz+Pn/zJn8SHP/xhVNXJJWuXJEqCbad9yVDKGDa2NJpAvOT+SCKdRetMJJyynmEVst5YAKOiJgYTL05w46wLSWn8/oGhSOy8spXOl8ln+mL7+E1/FQhhpjwG62mZ3KaPdMl9XHaCnMXAGFhH2TljmyeT4X4CiHZXaQN1ziuNjQ22WEk0+n4GpauF8cRazGNp6ZNTIu2pMqaxJNhLzoGzvqTH0RCO6Tu/Ty11bK9cSv1jJa8NSl0r7JqlolXME0mrbriGg1DWucskyl8sEYfK10m1DocdcuNMFWP3pALqS00MgJDcJiYJkufbxs8bEy5TJQWSbZzG9M6Rq4dozRCVa0DjBThpcuZrhIQ5zoXXMUH1jPsrn8SGlb/MVuosnLztcu7qoa+3GO9XDYznvao+tSVYVefzlxPOdeyzMWZyFSypS8YFP8E2TwRXXXUVrrrqqt59x1OOSaFQnJ644hnn4f/80v1aXkOhWOc4IcIoicdSICJcf/31uP7665c8ZnJyEu9///vx/ve//0Quv3S/IGyIxWK+T0liQiEXUUwiZA1HVss8aTMxNg+s4lEiTByz5y2pvr0Dh+dSvT8EVQI+KU1FPpkNEVs7fbs2KHl9qhknmkj2TorZWVn9HAXCyRZUBttKOXEPzwOD60BKJdJRN6Mpg2MkuU9ZjclwRwYmkM/QYG0S8SQgV81C4pCR9TsHBh37riSBclsaY5ExFklNduJYgidVJsQlRhxtIV8qe8jnL+tbYVt0QKotKbYlwtXkyWbk9cr2xHcXFExJJLPvwnLpTIVYc5AMyBbXkNc2gthkx1QZ6XGcsGc0B9jGk0CahGtHmRqZ2V8nNwdiPIJzFuTSPHXmWmz3j5CJtR475DlaVQmy1EZEM0ovDDimk/vm+GdQP6mK7dFozhNb7pokqEwkS/s0P8/SRm3bnJSuE5QljiYmJjAxMXFCbRyrHJMSRoXi9MXlTz0Hg4pw/4E53Ld/Fk85d+Nqd0mhUKwA1sUSpiQRTB6p2Ce/809Zi1AeKy2HUU2zLmYu5ePLt2njEAvo7ZjIYv+IEBPbjFoXEtxQtJP663rCVve8wo8JGEVfnfOq5tgCTQ+5Y3VTQhJizpjaOmFfDft4XjjGkm2khtKD04YMrDb8znGanK21scnKym1nJFTa9RDqKgbyWyOViIj3KSzKeU6lnbh8AcDEkEs68PZIMrrTlSuBR4kHZHSyzPZYR+M1XSrVkV1SWqeDNbSMyYv95zIfBWmkZiEmvKFG1FyMtt78Tz3LFNo2XlGM+3piDJnwcSbXStgrRaIaHzs4kSXXcfUwnsf3kOfJVQPfj54YzJjwpm1gmgVfX1GSwSqRsbiN55rHbExMZpNlNpVjC+N1REDI9pqVBAkZeqlZAI1mYz8NZ4SVKnJpf5Xj4X4IAnoqsJJ1GHft2pWVPLrxxhtPuH/HU45JoVCcntgwUeOFF20FoNlSFYr1jBNSGE9XdNQd+RPo2AwrQfhKGycTxDKDKhOqqPJZF+MFfT24pDxWhjB0I7RmiLYNJApABZ/11DngiLWYWWyxYWBAlNQ0VhgXGxdLaHg7Z8q0WiaccA5olygswSTqaFlWLRIZbZ0LafPTsaPWwhChJkH8iFABMeYSYm74ejYQy6iyEmCaBbRmMhLRCkgL/GBbjKocN9aOULG9E/n9rmSfxLgikQu19yKhLJVCzuwp4yhLtegoyqO8Zny5IMmWbMPUcLYBtU0QtkxSBSGIVGUyUiPVwE6mWkmyhKoXy2QwcZIJXpz1xKgahjqLwRZaD1OCHjlmJlOMUKOQrC+74ao6T9zD4yTjCZKQiivXAPDWUG9l5f6lvkXLK/eVVUW+N5Uvc0HjcTdzKlXxWcrS88pYSsCT1Ji1VYzZWoCaTEn1xHaYXjyE2o++3w1QTwaLrc3OifcmWHH52tQs4FTiZJLUHE+bALBnz54sa/WJqosSJ1OOSaFQrD6ueMa5uP27j+Fv7n0U//LHdq92dxQKxQpg3SiM0eJXKkTlJ4AVKyBPcMJksbQ6ehtpIosWSdViIleHRC8G8AtUIJJFr0b69ioCNk8YDDjZTLyOiwlV2NbK1+Pf2YYax07IvhtCbLcirzqyXdYCqS6jYMlGfOT88Nhl1tVxIK6j1nr1EIhJbVhBze5NUExbB8yOLWYx0Y1/kspMFnsnLX1emWPlkJMLoR3F7ayYguc7LtZrf2xZw1AWXS/7Uz5DBSI5DEo2z30cmnwWy/M5W2qxnZzMqFrnRFa2K+MCJaHlBDpVDTeYyAlRSQR53NYm9TEkFyprbsbkOyLrKBNEahuY+RnQwmFfg3E8n/U1JoUJ7VCwckaVLY6XyXOwgnJ5C+f8uMK2qCYexz2S8ZYydjL2CfBW1XAtzqoaM5wyUY5xkENwnKdvN90jahbz/sjnmV8WxD6si/d0ANApd3QyhPF4yjEpFIrTF1xe44vfewwL4/YYRysUirWIdUEY48K5LGheQqgmZUZQ3iazeEoCIuv41YZSLCDbG4kwJIshWRARRiFgiUtkyDf8tfGlOcYhK6o/3yt00UoJYRkNfWGy6DjmEV2yx0SKbbOj1mEULKccp2jDR5JGLrkxEHGGDvyW3/ePyaEV4/FW1RAT5oLiGM5hcCKfVvQ7I1ZlkXtpJw72PleQmNiuGcYFeEYkBUGyDiFDp7BzSgJVqnbiGn7CitqGznpyKNrKbMJ8PhNUVk+FNVZCZvIF0E18I7GU2iksmCjai/u5pmBQ0sg26buznkiVWVkRrKGyJIhtIomD9Yloos1WZpMNJTQ4w6k/t3AAyO3lCwNTeeK71HgZXAuxGvgYSWm/5fsznvcE0rk0tlAuA/Dk0izOxiynCMppOnYEtCO4wRTcYDoQ8qG/tnw+CmWW1ccTsTkvN2Lm5mX+LBeOpxyTQqE4fXHxeRtx/pZJLDZaXkOhWK9YH6+6y8UxL+KK+C8A8Y0/q4NMykqFsbQ6ctmJipCKo0ebpE9C08J4oiYSyFSGkpKJ3DQ6WVOMbTRgC2cgYj0JhqwrpE8gluiwCFlRQYBt0FAdCWFFhNrkbwf4d5nVlEmqVDbl8taJvpbvEJkIFgli0YR6lpPFCjN+lSoMfy8LwANLWkSjtZXVPbkgD8fFhCnxpJSNNBZY71vI9107fCcgVyZlTGF5LhOyPhIX+uI4i2epnBVjkeQky0aK/NmStR874G1UzAnH9zmbbJbcBZE0BkAiVqE9F8hTVt4CgKtqGFbfmNS2xVy3aUzxmuXfrrQM20Fe45FS9lVaPOLVPkmCyfi4yhJVncg9EDPJ+rZdmhNJ5tkuW08mBXUwARrNp7kTcZF8jiTXZyKOHDmC73znO/H7fffdh7vvvhtbt27FhRdeGMsxXXzxxbj44otxww03ZOWYFArF6QsiwhXPOBcf//s9+Jt7H42Ko0KhWD9YH4RRkg6ZyIL39dj/Klg4mKxsRdxHiYhIAsXHtlSjgic1Y+tjFlvrk9iQC2UXYrF7r7hFW6e4zjCU03DhIqwcmqA0At2+IW6nLKGNYZUPAJk6XijZYEUrzsUkOwATQ4rkMcZ4BjmTCSmQaJcV15NzgzBfTC7b0ObYBqIZEtQ4Oa5gxWTC5ARBI2GbdPL+FvcpkkYyGdGPP7ndwrbMcXgZ+eIXDhLlMyUJoXi2qOccP5eC5JbWaSAfd0aImRy6pa/JbbG9lPeL7xxziJazdxZt8DyEnxmcBbkwh/VEaN/B1RNwg0mYuYMZWaR2HK2cZnE2ZsCNFtk41/6YWJYjEFnXjFKtRVnLUPwts62UyRi1/S8dfImLcSKV5b8FfH2imHyHnAWaBX/PgnIZXwK0I//3xXZVZ+GoBuoJUGtSnGM7yp5V38ewr4/EryBWMobxePHlL38ZP/7jPx6/X3fddQCAN7zhDfjwhz98XOWYFArF6YuXPf08fPzv92jiG4VinWJ9EEa5UOS4r2ADzCAXnEEJYtIRiWGhYMVTkchA64AqFJKvyJPPugpEhS2tABBiBZmcWSB6XHnJ2loHadLkhZi0n5Y/AUSLKNda5DZlDUhJ8jg5jU9o44+vCDg0sqgImKoJTbCUNmw7hSCa0WqaYi4l+U1W1Xwbn99YeXRQcZFIkyRtvbGorU0xdMU9YmWU+9RXe7OTKEbuYrJWqprl/sKWmr2ckPZUJl1lrFqf3RUIqluTJ2eKCiG33Y0LyeaM2+lRMTsEEEjW0EDi+Jho/XXWK278d8Tb+XhLKc6SRFIcngMHwC56Rc0Y2HoiEVi2GAPxb9QNJuO1iJqi1mIVy29kGVVN7a/RjmLdSE88qxQjyf8G2AZk0wsHZwA0TYqZtBZg4lq+dDIGaHi+hmGeks2UmpFXNXl/IJaZIm0b0HjR22bXUQzj8eKKK644almm4ynHpFAoTl/82NPOQW0I9+2fxQ8em8WTz9mw2l1SKBTLiFP7qnulIBfXgF+k8tt8Vht6SAAvJrN4ufCTnEVNuW2VMTQANQuoXANDQAODxdaXkRg5ry7yxMZyGUCm1AGC/EHE9lH6ZP0lJnshRlG0x0ltyvIY+fmeKHIZjNY6zDcu9qGyI1RB8eQyGiPry2I0Nh1XxjByqQ0ms631a+uxiG30xDNch0T8qCRx5G2NkrAAicigqmPMmAsqIpN4GVNFSLbiNqhimVWQ574ewg0mRftDzFvqJZT+BEFel4pXK7/3oVBJI+Hj+EIgT5hS2lKLGMNIPvrs15xIhrN6WmELDR/HbcgPD5koqXLhewauRcglOUqFNNpMw99lOwaNFz25EllgnanimDmhDCuMPn4ylOvgWEhpnyWTK8elTZitwoOpZEttFkDNYqrHKBLzRPson28boBlFMuuI0jzUw5goJxHfiUQQRUy1o5QplfqerxVEZWhFPgqFQsHYNDnApU8+G4CW11Ao1iPWB2EsrGiuHuaZHiVKlUgsyl256HZ5Bsy+tshZT5ooLaKqkKV0EDKgcouszslU8eXiy4ifTBDl70QUz+f2WueiAELkE+1UocYj20Bb50IMJtd+JFjnS3cYIl9iIVxnzMQznOe/c4yiw2LjyfG4dVEh9STNZbUYo11VzEnsexxwDwEq7oMbTHoFSVpJ+Z7x3PKxSAmLDCGVQJAkoIgxY9I4MORr7RXHZMlegA7p80lgRomcBLUrXg89zxZDlLuIxMq5PNmNiO+LBK6vPWe95ZSzpcprxJcqJm3r9KXpzE22L5znyHi1l1K9SG/9ZAIX7NeDKbjJzXCDqdS/MEeyJiHZ1ifOWTziyZk8tiDnsZZi+F0mFUI7SvMm50iQcldP+PhDmYyH1UqpegqHQifxUAFPPm0g0POg0RFQMw7JcaZSf+oh7OSmrOalQqFQrBdw7OLf3KuEUaFYb1g/3ii5QJeLTBlDVNgfZcxYXBL2WFK5/mBMdMLxYXUqNs+2yLJ+I0J8IxFFW6gRC9B4JZPI5JDdfchLf8hla2UoXotLaPBPPlfWSIxEVBDfgUjIs9CmWMUBW2hZIQxEk79zqRC2fo5bH3dZGUqKpQlZX8P1OAGPJ6opaY4JcYfc51gvkRf61dDPfRmzF+4H978iZCUmKBxHztsgyVm4smYf4NUx2/g6mYSlFbvQlpPnCotztq94fqRlNm4TCWOybcbAYdCvcqKHvDDJFmPNSmXIGoMy2U0lfpf2bUGyyE98dm1nG1BQJv19axOxIhPqKtaRIDu223I5jNIaHO+lsLW2o2QzdRbEt61PwSxtvrYBOB6RvwNohhtjGZZICJm8ijl1RKCgaGaZl4FEKMnADad9gp16CDexARgJVbye9GSxnvC1LUezfvtgOu/rKcLpEMOoUCjWP654xrn4rc/8I27/7n4sjFtMDqrV7pJCoVgmrA+FsSynIZUFuXi3SZ0qE6BEclFaWMX+aJsLWS0lWUCoBWiIS00k8piRRSAmusnqJ4bjZFmMbIicLCYohXwtiophaIfS8SiuU4QRRtUvXgPJPlpRstPK2M1x68miTHTJzXL9yOooT5WLSmUiiJy0pmwPIU407SgW2s7mZTRCGYsKvuxFVq7CWh9r1vrSGjRe8ElIgjIYZ2EJVTqS1D5LqrRFijHwB/LZKpsO58pPjEUs2szIYk8/HccGVqIMCdtPK0F25LVK9JQQiddzqS5iZquUSiuJ6wXFM2ZU5U/ZviSrss2ybIWcw6iY8jhrn9mVS4MIckzOoXJNlxTHeauS1ZR8HCSX3yBnQc1Cfk1nPVm0LWi8CLRNyg5rGx+nWPlMrjSaSxlVRWIdhUKhWG/4oR2bsH3zBBbGFnd8/8Bqd0ehUCwj1gVhLMlctiATC1QuXeBPMvkxcjErlKNsQRvrvQlhtlChssylgdjxNgNPwviMbP0v2CPbQWNNSKA3YQS3bUhmLxXDApM/tqgm8sfnGwKGVbLOsuWVYyNjWy7EMoZrECFrzzp5bNrmiv7wWJinMnEsxwUyaLjMQdxRKEusjMnvfKggOo5ETb2geHHR+viioB31J92xTSrBUdpT5fPC/RJjIMdZXgVZCSifw4yQypqEURWn9DHFW1see7BVOlMnNV3aS5cgwx2bbkloyr8FsZ/JEUwNN7nJx4aywljVeUygbFtuM7Vvo0pxlE7ERbp6IiWjkX3meQnzEY/hObSJrJr5GZjFWZjRfLCg9l83i4UkA1dPwk5sSoSZLbSyrEhJnsWzyOU/qB0FAjnbfx9WEKd7HUaFQrE+QER42dPPBaC2VIVivWFdEEapeLiqzguqy0V8G+LZ2iYmApGqkz+osOjxNiBfXIfvSRXyi02Ct6iWCypW7DjekQJRq0RcX5ZhtBgi10oEUoyejN+ThJOTyjBBlapltNYiV/VkbCQTxY0Dg0GIxawMYaJKsZm+vRCzGSxvSQXNiSurqoDfx0l1xmxTRU6u5fgNq4dhnluYqDyyetdR/PjlQSBsVDwHaZJzizKNF3ISGM7tlPTg+81tCLIWr88xjUu8vIhWUv79aCTiRAhGn/JYWmRLgl2qd7xN/pRkPChrMgYRzvpajeOFVGvQFuphadct3QDldVn9dc4nmAkKYKb0MXkDEpmzbU7mXCpp4Yj8MVw3EUGZrfwnliGpJ2AnNsBOiEx/kkzK+Qr3MaqbSx0n/+04haDw97mcH/nvjUKhUDBSHOMjq9wThUKxnFgfMYxS8auGcHGhWZCEUDScMxuSE5kay1goqaqUC1qx+GViFG2RzoI4eYm4tLdxukj8BqFmoyMTSVJZ9N5nEiXAukj4qPCqckZQwCt3LZKNtDaU1UmUcYelPTX20zkQAZMVYdSmUhzG+ROdDXGRMbYyxTaGkvX+u/OL88q4mGinDW0DgchiaaXCZ6kVcWFiDNk8sWWR7ZBAl4QAXlUE4KgGVbX/XtXxWqzqcSwiq4oZWSxfKpQvEOIkipcUTtifed9Ryneka4a+cRIYIFlSJVGRz2UP4SNg6WdbqJud2pA8r/JY2Y7cxzUPLQA37varPBcIGUMhEsvUoQ5km9cw5PPbJm+vfFFQltDhepHhujy+qO87C9AguQWY9IU5iy+hrI321M6/A1x70hjAmUScbeOTAjFxNTVcPZn6qlAoFOsUP/a0bagM4buPzmLPgTns2jq92l1SKBTLgHVBGGU9uhhvBKSYRblGq+pcTTS5JTAuTCUJlRa8Is7KAF7FatOC1QFx0VyRQeuCeiZiAtl2GZO8hGMBxFIVsVTEcaSwZ3JJ8PUNuc5k7D8ZNNEqms6pAnlkVZEtrFlMoXPxO7fJdSIN+XWxJ3Td5DfWISb6kbdB1kokdBXTUn0isY8Jr5+7cP9skxS7HhWPokUxJJapUyZTTjYDpAQyceyyD0x2SkUuqlgNZBIbtmaWMa995C4+fyJhTRn36Ihi3cA+mykx0XLWP8dkgMrk7VgLwIKqOksmlCWBAiLRydCn5vYokNnxbDnlvkuINqgJpXDK8h48txaFHbfqxnQWil+sxUjGx0OWx5CBGc37GMZaZC7lJD021b6M6iYN8vFVNWAtzNxBHztKBoQhMF70Y5bXtE2q03gKsRJlMLSshkKh6MOWqQF+5MKzcMf3D+K2bz2Kf/6jT17tLikUimXA+njdTUUpg4BoMwPQW0ZAwgaVqed4mSQkxqXxQrsd+cQWgjCCRNbVkISlgu3EEALChhr6LrN+srWRk7hwchgmV3LNVhFi3UhwH+MAfF+lEumcVy3JNqhcE7OsstWMrbODYmEYSS+l65tAVP1+TsaTjpH1IfnDtSABZMlvWEX8/7P35/GWFeW5OP5UrbX3mbr70BM9QDeToCBwNYjaOKACDlGMlyTgNSEOJD+NMYYoFwN8P5FEgcQBveovIeYaMRov3qj5GqcEjEgkDEI7gagog83QDXTT4+lzzt5rrfr+UfXWeutdtU53wxm6D/V8Ppuz91q1alXVqtXUU887QOcNs1waL2Wq0I+KReVsqFnyO6mJNOZEArmJKBBGFEVNqKwKxnLssfMcjdQJ0hST/vL7uw0MvwHigzQZX4dVtPKwX65v0YTwvF08vYYsYyImvNysU/j3Buk9OMmmiK29cUu6YqSTfAtJbZXKML+GPU8aB0o7EuRE1CxPp7ZkUk3sgJrYEZoH+/FWvj2UG1ER6XdtpLQbRBYp0iv9m6LKPtTETqj+OEx3OK5EcxWaB/BJSEhImKdI6TUSEuYf5gdhBPzCzLiAGVwt4QtxADU5pO+AJwjS3yvqW8Z8HhUl9c6mEGvZAlEzUgdOPHjxSBWkONL1ufBnDKKN8hyDgPf504zkWdIGH1mTUnJo8eHwAXR4Pcw0lfsxUl9j/aERrQBr9iqUT7rG3971RZLroG5JoEQ5Ih42R6dV/byPYsWimPLFvNbCJFSQL3k/TQF2uqEZqhbtmAKe9HkT2Xhk1IAsAU2fWyrL8zJS9FLtyCW/11RkkoPUViJ8MXNcIpiMZPp+RDZ2kHWb+TcjUVWD/gKO6LlNBwp8ozNrDgp438fAbLkqoPq7oco+TGfQqbE92/+ycDkVjU/LIf0SVdmv54Tzi/Rk0OV3bBBsOa9m2SxVo/leP+nPrPYgISHhQAIFvrnpns2YLMo9lE5ISDgQMH/+v89VGwG+0PdpC4A6yEUpSBsdd9eqsvAfUiGN0vWCUZLFSqQdkG3iC0puUog68qgBQvWm7EEXE8hNEZgYEp0w8kOqjPvNlUsbCEf5PIakWlLgGaAmbyUzVc21cgtGe630gwxVx1BN5RFTKWKsdt8zFxKHiGhlQiWVvpMpL+8naJzIj63FRNKrzYyQqP6ETRRfFXXCeLHRQGqSNy9l5DBQpbiCTRsBVdE4p7hqBzG/ip5X+Oo2qMCcU5V9oJjwAV6MzmwKBwrgEphd6jq9hSQsXEHU9TsRzEdJeJhpJU9JEqiC9DtifutNSqksXU/1yaij0lcRqP0ETWX77lJiqGKy9n2kx9AdCogoKcOqYKaqnKAGz8UR0bwL0xm080dnNQEuJqGKHozzlTRZB6YzYKPtUtClYrIec/7ORzaJEhISEuYLjlu1CMsWDGB3r8Q/3nQ/Nm4fn+smJSQkPEnMH8Io/a+YeZv3Y2Pmf7Tg93D+Z9FomoBY+Doy5vzEpspnF1MQfdu4XxUr54PSEAli/fNpGhxIbSRzVCJyRLp4nYQcFbqaqZ0tqCO62g8F7uH39n6I7P4E6ffog+MI89cC1s8zMzVZ4iaqRD4DkujqDZ6p9OvjxINMRGPPlwiPVKXpXOw4qXIBUWTkT6rHAekRcyIgE6JOKuKCq3gfPkfMKEqoIXWL+sHIMZlw8vtRhOAokWTmt9ReVRXoLl+L7rJDm+PHFUWCT4/R8Wqd97/kZbzyOxiQ/iCNBjWP53Mk09i8foeUI6A8+qwPTENm5Tq3xM6ZPJt8wM8Nb3KqFKruEJB36zQcjBSrqrT1dQahJ3daxbI3ZiOv0viSDyh/x8Vcmi1Q0Knp/iQkJCTEoLXCWhfs5rJv/Awv+Ktv4wu3bZjjViUkJDwZzIugNx4xs0T6LcpQwA+jtI2aKU1UgdqfDFVTRYwFR+Hn3CKRB2JRivk2MjNRTiCIIDViSrjFLilQxlRhUBv3W2fdIKAMgRNDqT5S4BugJqtaHCsrg14FF7S1aTRrmA2pMUC/sgFwKhAxVT5CKkWLLV09havXq3ms/Vyp9Mor/8764k0PaUw46WOKHgBvtgigNtfcw2aB92PUOWyIT4R1CvNmX2/FrvUkria6fv65sv6evn4DmLKeO1m39rFTWTMQDgeltlAaqugHZp3KGKDs1ySU1PeqglJVfCPElQtmgHzXiCzxFBM0hko33keroIYbJ0Tegg0VvoHCrreK/whQdq3yOjlWt8ET0gEAA1BViUopIO/WqmxnACgLGFRA1qnNWPsTMEpBT441LRi8yuneybJngyEBobkvnztEOPsTSEhISJiv2Lh9HD/YsNX/rgxw8ZfvxIuPWY5Vo0Nz2LKEhIQnivlBGE1VEzhSG0wVmOd5c0JGKoMgFbTI1+EiOcjDB0YOTOVNWZVbaFN9JTRggAwISWxV1AtmUyHLujVx5QSSEd7WfgjFQlXOV82pJUT6yL8xY9+JJPJzPP8hkQFOOq3paM0giTNSqgzKr0jH+pVBV1uiaKO+2vQaGq6cu04DqNxfup6riorGzrcjNOEN5gB/npzsyA0EhIqkAqV2CNVCTiI52bOFdWAG2prnsazCZ0T3dveIcjJJqGB9AD2JYv0LyCI3Aa0qn6KCoqeafBCKAh8xpVIZ7QO8WIZvzbQtCa8b2H/kXjderA9cxZVmqaaCKqtQFRXzlgefCSCJJDvu290fhyomvRpplILi/opMOQyitPLnQX0G/CaCjWzb8yalRmc2HYfMq0jtpJQZdJyZ3KqKWSHQXMpFQKQZBvkXT3edCQkJCTHct3msEbugNAb3b96dCGNCwgGKeUEYKXcegKYCQUTSVPFFriQJwbW6Jg50H1psSnM+aN+ODLXKFShJpGiS6SGphM5/LesMNkwsA5JiqjpFg1BvvK8WajJIBJnIIJFFvtQjUslVPCrLVUmtgAq1KshhjFUdyUzNXqvQyWo/SW/OylioZn/JPJX8OL2y2CBPiJMzjhgLo/EUJr4AauWHBbixHRGKYQTGEx9tQ8RS+1y0TWUMjIbPqxjUTWTFK5Ro9jfLrekz94cThEsZ1BsSkixWNkWEKXv1honSALqWyJHpJ7UVjuTSfUo+XkwxJTWY2qSZj5/uuPrgSaOvgxMubypuaiWOTFIBS/6U9lFPgyAzqMfKEumySRpbVFdVlVah93kt+/4Z+qjKZU0OFa+Xk3IaS6l8kjm6K2M4mebtnyVk9dSc1joTEhISYjhi2Ugj33OmFA5flnIyJiQcqJgX/9sPfJYY0fIh8vnCTprPAXVUSx78o4UkBKH3eZ2UAsH5r3Fliq7jJNBQ4JyKqUVFz5rGKe1TBPi/1EfmZ2lcH4I0H8WE/dAxHpzEgec/BNg/6rTQjfUbtWkph1UQDZxo6M1JOdnkvo114BtWt1KBmknfS4OQMFObGWEK/Oe4msPL0DXy2UtFiMPNBZ9CwRGAQGHGFOSVCF3WgWEbAcH8AQKiocp+bWLpI33W5ISCvATqIuuPL+t8HU1nCCYftNdUJcz4LmBijBEaw641bi6VXs1UZT8osyczbz+WvO49XMvJYtuzC8rwevimCSOTlgh367nB2mOUskS6Pw64nK0m61iTVeN8OykPoyCcJuvAdIdgBkbqf2ekekrjQe95Z9hGT6U+CV/ZhISEhPmGVaNDuOKsE4L/r7/tJUcldTEh4QDGvFAYPfyCeQ/dkov8hiqpA3UpTGjeNJ3zC0BSjcqqNlOlfIKk4lRF07wVaPpEoiZyPicjKWxlAegqWJj6+ihhu2sSJ6oadUAcoCZmZIZK5rKZIMtyp5DMSAlDHe1zLRqDQGnkoJyOyhFPE1MrxW+rVmp/jm5rzXe1NVstenasAe+75n0dOVGUZqryO8uB2HhGbD54n9OqCiKvNoLZ5HYjgtRobk7bjKxbwSinaPX7Vvlzc8mrhwDMwAhM0aujpjJfvzCPZOV9XZEPQlclzGQdlKVhIk2Qv+mwI23++ZRVHVjHVDbwSx91PtQ2gt72DKTfr7QGAOrARVwlpvtk3Zq88XP03dWl0NxssCa2zX8TrN+j7bsq+25OONWVva829UZmTVh523Rug+cAdfCcOQBFNp7uOhMSEhLacM7Ja/HiY5bjPV/8Mf7zF5vxi0d2znWTEhISngTmx1Y3XxiynXzTGWySR7aQ5IoRNwX1CmDGEsJLMJLRUCOJLPJFs1gsErkzmW2nybv1AtyRlgz2E+azq7xvnSczXAVxaQCo394czpXPUPmgOnR9xr4TKSViQOf2tEDUSnnTVKXg/Ro5J5TmrIotYhspOty9KeVGk1rWPo825UFzk0CR8lRFlGY+Zo5sBb6INIeonGbPFPCmyjz1RHDOqc6+PpaqJQCPisp926SiRiTKkcVGHkauYHlTztyS1qyDqjsCNXIQMDgS+hpSqgnydYz46XFS2oi46pU29wxI1SNVW5Ikrp4D8eiqsv9CuQstCVR4jtrrNo5MZ8gqg2ysvKJIyp9x+RX7417lNVkn7Cdgz0+O1dFUXYAc0xl0qTc6tZlt2YMe3w49vt3PEaMzl+ojQ0JCQsJ8x6rRIfz5mcdBKeDaux7B3Yk0JiQcsJgfhJEvLF3wGK7qBYtW6cPGFvUB6RBmj97vMHYeCMkA+x7k2YspXbydQJAmoFGGyCwtjN0C36dIKJt+VEFbjU094HP9GWZmKQktmIpA96OqWTk5gbiSoZT1dYpGfXX1Z7o2R7XBcdx9ePsZ6Nl6M1dpDikUrKB/sTyNyqb0ULDKbR0FNSSWNO5+Hujm/Gnk3uT5HTkoQBE9L9++ypMVW58jZ2T6qHRN3mQUUkm8AKe6OdLYdeapdEwqqEwBpzkSmPpy9VupmpDyzRr3O0gpEtts4fW2Qb5fpqpJHzPRDsZH65osynvxtvBxk21UOoy0S3XIuWgqF0zHjSM9Z0on4urxuT4J3Lx8lqBnIKVGCnqTkJCwN3jawQvxymeuBAD87XfumePWJCQkPFHMD8JIcCZzPv8gV/di6oSuVcRADSRIFUqqRFIx0myRywkiEQJK4s7IgU3YPmHNTFk/GuoSI8SU262R9iBGctm4BNdIJYktYkmJVFURjid1U/wF4FNttK0jPRl054vKWDPWyjTURQ7jCJ2/N/OH1Aot5pOCBFdVnbTdLeJVf8KR+R7yyvp5BsGE2BgZRoYA1IFRgPaAOJxIBaaXTSIU9c+LzEUjB1eSISJONN/pnJtbJu8ExC4ANxeVyiMj20QWaZyj/XCqqZJkk2/gxMii2OCwJDD3bW7kcaTLlKpNfP3mTxamC3FE3HScmSnlUmR5ImnMyI/T+4tSuyPvjjIVVG83VDEZ+j3mg6iGRp3/qvHX6omdVsVMSEhIeIrg7S95GgDgX3/0MDZs2T3HrUlISHgimBeEkSsaytik9A31KbLQjJFISbokfHAcoFYcS6ckkU8b1c3MDVVVhuoHmbLKIDuMOChJ6vbQF69OQihHXPHh6lmsTkFeAqXRfVcuPQZgv2dKoaMVcqYmerNXV0emrA8jpdbItYJieRo7UokktUp2k7UxqthyJVExvz73HBrBjUpHIIng8zEXpJvIoyLiT7cU6i/3a/TjSopiGRK82gQ5EtiF2lCVLgKqqYkj+10/nDxMHSGesaFIpsHBFrLKjhmuyNH4kRkwu4d/D915gJF3X0ioeZyQcVNWgSD9Bm8bEdiqqpU8GjPaYHH38gGMiLCxseXl6nfINMeF/6X78g0poJ5DWdfnzERVOLPX3VMrqzMASqsx3Z+EhISEvcEJh47i1GOWo6wM/u4/k8qYkHAgYl4QRqBetEfVC754l8qPUDX8JZxk8aqoPFcbYwSOwBQoWvQGgVREEB0ejdMIUsEXpGRWGkTclAt/St1hmNrTBk9OwiivlKqBiKP/qxQyx+5iwWsypdDVlkhqV5bMTzOtfOoMDaBfGfSrmlz6JrlPIycjJ3ZAnOTz+dBCWAyRbFJwmcpr1TVL8CjyrTI2iqa/dxUhEwAz9zVxVUwSU9i5wTcVpP8clQl88XQGkw/AdIbqjQAZEEbbiKuNSMLuu/c9ZGPV8FOUhEhuNlBdUr3n9fPxz7rxZyPq9ua3or/+Hko5xT33/faqoCNoDf9fIPRpZIqkV+6DHJUsz6XOrRrJ209BljoDtl66P/93iH3vrDgS3WWHNscvISEhYR7jj15qVcZ/vv1BPLpjYo5bk5CQsK+YF4TR0E4+J1acIMWIIS0CKQAHO27JVRUGLXHX+lQYBK4YEYEjuCipyHIfIANZM5CK7wdfiFdC3fKFQp9Lk+U+DYMylVPLejVZJL88pWsFzfk98nYH5oTsXhx1ao1aCSTyaJVChdypiAB8UJvMEUNuesqjwPJJSKlCYKoGefT9r4rwuYix8SSaSB9ThVXRs0oUKYp0jhRVev7SRLgS8wcIguAofm+vZqrAhFNe71UwIib8OEXF1VldR+zDCQ9vryRCNMezvNkmjn4Ppt+DKVnbeNAgItalNVetcz3WzyQw73ZEq9FWmdNQ5k00VWhSyv4GxNn5iYbRYrO4ryBt0JgKZmABTD4APbYFenKni4Jqx8X6JirftmpwIczgwnp4dWbfZ0/Ka/N2qfjG/C5nG5SHcbo/CQkJCXuL5x6xBCcfvhi9ssL/vvG+uW5OQkLCPmJ+/G9fEkJ+LHacIMkSP0c5+Ii4CaJAJnB8oepRRRbOLFWHT38hzBqjJEj6gTnl0bBFNClEjSiddF9PousAPDW56oUETPrkiQW9j4MjmqkBKFX/BayfYgUbJIfII/kslpWBMcYrlZyEegUJoepYGoT9jCh1Qbtdf7yZcCXmQlVvDnAl0DhixdtSd1Q3j7WhTeXMck8mpAoZJZiyX9Q+oXB7okTHTBWaQbcog35+mwqg+VyVQG8yJGLUNtroqKo62BJ7h4L5xOYvRa1VZb+xCeLbxwLi8DQVlNrC54ZUImKrqs16A/LNx1e854Y2cphK3/B9BIK+NMbD0L8DpESXzbnICPPk1kcwue2x5nOYQSST1ISEhP0Bb3cq4+du+RW27Y4EhHsC2Lh9HDfdsxkbt49PS30JCQlxzI88jLEFsVyoS9IHhL5L9NsRFX+86AEsd1tDcczz2q+N35ObPuo8NG/lRNGdC0xL/eLdVeOichq6v8gR6QkoQWvL0lxZBRH1UYKniODfqY2iuFLa52Ykk1EohQyWCGaKRaYBvMmqMZZAZoA3ZyX/xth9eJvpntE9jpZ++eil5R76z49XVZwLuucRlhUcTObobLsXFcu7MPTclfAtlP6GfE5VBWDiGyBGqdp0lxHrwMyYzsvxUBroDtiAL2UJlQl1k5eTGyF0nsZasyngNjm8Ap9VjQ2ShskstRmwuST5fZUOfVm5aksEkpNgUg11XT+p8KY77McbTCWkgE8oC6jeeP1vhVdpmX9tVUD1J8ONHUplI+arKvt1kJ2EhISEpxBecsxyHLdqEe7auANX33Q/zj/9mCdV3xdu24CLvnwHKmPXIVecdQLOOXntNLU2ISGBY14QxsEFo5jYtT1cyHIzNnGsNJa0+FyFoNPOTI6rNFno40W55iyRQzNPo1MlJYzStgqloVCFC9o2mAqeIBGRiZESUhR1XptJZoxITnUL166gHuhgQa/Ygt8v5mHHkEcxtbxReQJYp8tw6iIUNEVTBSvjlEIlTBc9ESCViZQrUmppPE2dA5HGN/QTjSR6J6XMHSf+FRA6Trpiz4qXJRCB4nOOmS7a5+H83nQOVVXeBLLhtyiJEv+d5T4noy+u6Fw3bL/fgKhYwKY6SJQvy5XKrIOKk7hYu2TAJvrOVWA0n5tXqvk7wNpqsk5tllv0oNCz5JqPpdyYIXJJKUnAnhv95ZtDZeFzLhI5t+bdXUyWBlCZM692QXh05vNkGj6+dsAAU9btdvfzPssI/w2SvpkzDcqLOt11Hmg466yz9vmaq666CgcffPAMtCYh4akHpRT+6KVPwx99/vv49H/dj99/0ZFYMPDElqEbt4/jz750h1+/VQa4+Mt34sXHLMeq0aHpa3RCQgKA+WKSyqHC4BsAvHpQuoWbN31kBEDBEkdDCqM7b7jvEVcNHQGwaTFoUenMQ4VvYnAfryiFCqRx/o3e1JB8E5VI58Gjq5K5rNZ2Qc2Dm7DxaP1eseA6nORwk1oJYdZHAXGAWm30BNydz1Ahc76PZH5KqAzscwECc0Q480XykaMxk1FqGxE4VW2C6stK0kbjyZRa33eZOoUTNfJRU5HzVMYRwoAUqLq9dsxqE0mK2BkoY6Yup6rSmmG6VA++DDeHdscCU09HwgOS6edMhJhS1FU6RPNezidpssz8ArlJb8O8msgqSyvC56pi46iKSahiwo5l3vVEjZdp5EZkGwsNglv2gkA2PkWIM+ENglGZCr3KoE8OtlnXqpBEFt19VH/Cm5UHZuny3kzlbcyVhFnF//v//r/odrsYHR3dq8/Xv/517Nq1a66bnZAwr/DK41fiyGUj2D7ex+dv/dUTrud/fesXDauk0hjcvzml7UhImAnMC4URQHOhRsfc4owSvgeKAxA3g4xcbwuHZn6k5AWX+GiNIqm5XLwDgcIVqDK0cGbljTOTQ1nUJnE6onBSO2TwHVrEV3X9njSCLWLJhE+QR+TtU0WrOldj5kxVtUIYdEhpaEq2DqfycpWCmyFyJYzACKo3e8zyZhkxFkbnYfCcGJkpLVkysOTHZLlXkO0YkI9e+Lz8PcW88Dn8RNvpO0VERdFr5Fb0ypicd3Teb6e6NuWDQTuCSLJEjni/Bdn3/dG5Nf30xJrlneR94XNR6XrLieaJfCaEWL5Kxcysab7zcc3yWs3jfpFSeWVtpufoFVtOzIMNH+VNgq3C66qc3IVFVKjStcmqm3M0vsoYew/ys9Q54AIUBWaosq30fRahodBMUPPk6zwQ8bGPfWyvFcMvfvGLM9yahISnHjKt8LaXHIULv/hj/P1378PvrTscg51szxcy/J/vbcA1tz3QOK4ArF2S1MWEhJnA/FMYTdUkBKhTMxCxKY39tCWN9+SSzFRd3cFimpu5eXWraxe5Pv9fwSJe5rVaqEOCSOpmUFcsZyKpgUBgKuvVIL7gZn6TrUFtqGzbYjZishiYBDqSkikgV5Yw01iDq1SOZKiyB1VMIDMFVDFhlSTWTq+o8t9ENLlZIzsfa28wtpTiQTEzXSKdTFlVxtTEhKuPe6MSsWfnSaB8bkKZDJQpl96DX0sBWEzWCZ8tXUOmlPx+NBf4HCQIdZGPHSmKJh+089f1w5qn5vVH9NuIOcc3MHwOxqqCKvqhny1Qm6rS9ey52Hel2xhfJVVE/mz4u8rGD7we7kvsLAPqVByMmFN6k7Jn1UR3D3pmnvQDVoXMOl6BpiiupBD7cdR5UxlNmDVcf/31WLJkyV6X/+Y3v4lDDjlkBluUkPDUxOuedQhWjw7isZ2T+OL6B/fp2q/9+GFc/C93AABe8vTlPio7YNdtn/zPe6OpvhISEp4c5p3C2FCQlPWxo6TwlamDtQCW2Pj0DmzTnBQwxermqqTii3FKzg00VC4iKCariZNhikob4YHOfZTQYJGrdagqGptKwwfq4aSOmSG2QmsArIxXpgBJCuvydVu9iZ5XTfNACVJS4WLqoQ/4wwkjjREd4+PMyZrOa3VUi/EmlZDIIzseKIKxhTsRB08KKc9f5Yl/YP7I69AaKKtwvvhNBu2VTN4fBe2VzUC54uWULUPRP20gmg5Tok3w7I3OLJkRBLWV7Lo2mqwbRghlc4dvTvDn5RVhpwgGmwm+TMn6yu5JX4UK7J9v2zOSz1CQRcXEYEscURNONz58rIN6gTrKKs0FipbMCT6NGZm10nwjUunu1126GgDQe3yTfa5uPk9uewwDBy1v9m0GkHwYLU499dR9Kv/CF75whlqSkPDURjfX+P+9+Ehc+tW7cNUN9+D1J69Bvhe5em64+zH86Rd+CGOANzxvLS573fHYtGMC92/ejbsf2YFLv3oXPnPzr7BkZAB/cvrRs9CThISnDvZJYfzbv/1bnHjiiVi0aBEWLVqEdevW4Zvf/KY/b4zBpZdeitWrV2NoaAgveclL8JOf/CSoY3JyEn/8x3+MZcuWYWRkBK997Wvx4IP7tsMUhV8sNhfyXvGKXQZEzVJLxyINQnNWKksKpQFAeQ2VC6+PqrD+d1XhFMfcnuvtbqSx4OZ4njzxRTJbfPt0Glw9cgtb1Z+wn0iOQq5qBj59RNzoO1cTnR9ew7euYh/AJ7UH7zddX7h8kJTKI5Lj0ShLpODK+roIpEqSOa5XUyNmuEwZ5GOgSnYtGzOumAUqndb1wr8S7aa2x8gMz8kpTTOryH08+Qv7QmMeTblB5x3h8W1k88SndogpzP4AM1GVY0LzRbH5Qv1GSB79NXnXK4I8jylvd1v+Rz/nZaoQkUc1UC/dvAjIZXC+rH1AKSUH5Vd0Y+ifBSN6pDIH4+jg8z/y5+HmouKqNVc3/cUs3Qff2EmYE3z/+9/HHXfc4X9/5Stfwete9zpcfPHF6PWmJ9x/QkJCO17/3LVYtqCLB7eO46s/fniP5df/6nG87bPr0S8NXnPiKrzvN46HUgqrRoew7qileOMpR+DSM58JAPjIt+7GZ2++f4Z7kJDw1MI+EcZDDz0Uf/VXf4Xbb78dt99+O172spfhN37jNzwp/MAHPoArr7wSn/jEJ3Dbbbdh5cqVOOOMM7Bz505fx/nnn49/+Zd/wTXXXIMbb7wRu3btwmte8xqU5TREDuQmog5TGSZwEknqIimOmVaeFBK4CSsplv4+GYtQyttDBI/UF25y50wlATRM1by6yElc0LHK99cH5WAE0OaYy8P2sEU8PxaLlGnbaBe8nLQE96eIn0XPEkdO0iQZ4de7/H2qPxGmEyHzRUcwfc5ITsRUbc5r8q7vY8wM2fddBr7h6hk7RsqTVwI5aZTPgSnJnlSzxO1tAYPIvzEwJWX1BqSEKV4Bca+KmvzE7kNjReW5EinaA9QE0OSdphm0Cuc0mZnyqLR+I0PpesOGggs5QukT3fOxk21X2r8XgCOFBdsE4W2Rz1P2i29iyFymAKTvqHyunlg6X1NpOeDvayq32RGSRcLk1kfQ2+IWQ4zYz2akVPq3aro/BzLe+ta34u677wYA3HvvvXj961+P4eFh/PM//zMuvPDCOW5dQsL8x2Anw1teeAQA4G+uvwdVm38QgLse3oE3ffo2jPdLnHrMclx59rN8ai6ON55yOP7kNKss/vm//gT/+qM9E9GEhIS9wz4RxjPPPBO//uu/jmOOOQbHHHMMLrvsMixYsAC33HILjDH46Ec/iksuuQRnnXUWjj/+eHzmM5/B7t278fnPfx4AsH37dnzqU5/Chz/8YZx++ul49rOfjc997nO444478K1vfevJ90aoJaQOApaAyX+PpFkqKYY8TDOZr3o1UcD7YJHPlSckYYRJ77/I03QEFWm/YAaZ6EVUoYY5JDP5NLEFNbWxLJr1RftTJ0L3bSclhRQ5dv+AhBDZI2XRV8DMMuk3LZqlQgTU5bjyxMeA1+uOBeTQXR+omlxhdW0NOx4x36TFPyO8XrWiDydyZU1MPBGOmYAyoulVQkbqGqrhFM8taJ+yKSk8GRXmoZwkBXlBxVzk86jhV5t1g2PeTxGo21xVvpz3QSX1kJ6JVKwFGrlF3Rh7M2MiltJkmZNDSRRp3Mt+SMKVDgLk0DEZ7Mf/lfek958iHTc6w/5NiBHcGQaZpE7350DG3XffjWc961kAgH/+53/Gi1/8Ynz+85/H1VdfjS996Utz27iEhKcIfvf5h2HhYI5fPLoL1/30kWiZ+zeP4ff+4XvYOVHgOYctxlW/exK6efu/oeeffjR+b91hMAZ41xd+iBvufmymmp+Q8JTCE165lGWJa665BmNjY1i3bh3uu+8+bNq0CS9/+ct9mYGBAZx66qm46aabAADr169Hv98PyqxevRrHH3+8LxPD5OQkduzYEXyioEUiLb7d4co0ySIdBywZLNwPOqZQ76JPdUwuMv1fTrgATyC9mkMLSBmchPpQMlUjtsiMpRVgBNGbxwKtkVQB1EpbFSorXAXxZnoUKbJNceTtpzYJZdE3lxS8su9TSwTl+JhWjPCSAujbEvrU+b4QeaN20ydiFts2nj5QCSVz56RCfAICKYmesaki7LNQ7YFPYvOHz2fuWwf4e0qyS4SI1yk3KYjI+flIxJMrrlJRE2kweGAh7otq8nrjxD8fThSB+nlw4uhJufvu0tQYNq8DyMBS/Jmyd4ubefPn4zdCgPp98+qmSItiwnkTmKsqXfswlmFKlca7wp9xwpzBGIPK/VvwrW99C7/+678OAFizZg02b948l01LSHjKYNFgB29cdzgA4G+u/2UjWM2m7RP43U/dis27JnHsqkX41JtOxlB36oiqSilceuYzceZ/W42iMnjbZ9fj+xu2zlQXEhKeMtjnVcsdd9yBBQsWYGBgAG9729vwL//yLzjuuOOwadMmAMCKFSuC8itWrPDnNm3ahG63i8WLF7eWieGKK64I8mOtWbOmWUguxNzf3OVGMOLTRiD54WwK0ysfEEfe3+V79HxS1ksLaaCpHjkFRTkTT6mYUpngnjLQDVD7JJK5qWKRRzmx4wSKL7SBUDlkhMjWrwRBbTEl4aagMcVHHqOFfNYk0H4RzkkakQ4aL34Nh1Q0mYIo1T5pkujJjOw371fsuchxIcJJP4V/nD/G6xBzo0E0ZV8cWQw2HGhO9SfCMaR7uEirUcWbR97lczCm8hKcH6oqrE8tih5U0Q/mD1dSA5JdMXJJzeAKJkfbfBJ9MFkHJh8MI5QKNVtVpSWXSqO7ZKUPVONJJg9243N8hubE3H/Wm9+KTYNG22cJlFZjuj8HMp7znOfg/e9/Pz772c/ihhtuwKtf/WoAwH333df4f1hCQsLM4c0vOByDHY0fPbgd//XLLf741rEezv3UrXhw6zgOXzqMf3zLczE61NmrOrVW+PBv/ze8+JjlGO+XeMvVt+HuR3bu+cKEhIRW7DNhfPrTn44f/vCHuOWWW/CHf/iHeOMb34i77rrLn1fCVskY0zgmsacyF110EbZv3+4/DzzQzL/jFTv6zo8DgdoI1H44pBoqpRrqYeUipWasXGVQRy5li08yWy1MkyRmSqgjRIJcYJxgYUl+dZoFJeFkUaqFUs2iwzwwjFx0x64JFtF1eoeon1yMvPLTpEgWvSbJ4W2Q96Xri15dj4mQNUJV1GqaUKkk4ZEE2P8lMspVvNhY0U/yMaRzgtg1fONcP8hvseGPKJUv6XMXe94cEf+8mDlyzOQy+Burm9fHCatiKUr49aV7Hr3xmiTSXGDj2yDLbEOis/Jp6Kw+piaN5PMrCbQYP1I5g/aWPevrSUoxHy8a87JoPOPWMagKqP5k8Mx8f+Rc55scXrFVoalwwpzhox/9KL7//e/jHe94By655BI87WlPA2BzL55yyilz3LqEhKcOli4YwP947loAwP//+l8CAHZNFnjT1bfhF4/uwspFg/jsec/D8oUD+1RvN9e46nd/Dc9eexC27e7j9z71PTy4dfe0tz8h4amCfU6r0e12/f9cn/Oc5+C2227D//pf/wvvec97AFgVcdWqVb78o48+6ndsV65ciV6vh61btwYq46OPPjrl/6QHBgYwMDD1PxbS549rXkQESwN0dO2vGKuDR0Hl9RAB9HSALcpLAxhn9kokNEhKzxf/nLyJtBCG/KDINE4uyAVRU1UR+pj5hWxVB+qgfnUGobjpHEcs7YZy6R5AZE2YgXByJdpolPBtNHV0ymCxzFQYZdz9eB+NS8Ug/PEoOXsDkhCx775Nsr1sPANlUdbBfnvTUDon8x2yOlvV1zYobdXBlva1to2TVyLLxURIjmMbCy6Fhx171o9YvkMa/5ZNAJ7H0tAcluDqmiSrkbyRdI6eit8Y4mlXKCiOK2fYe+bf2cjGBCDUw6pAb/ODjbJtmwB0LiDBOodxGxn+d+A7WtbPZ7YwEz6HB7bAiBNPPDGIkkr44Ac/iCzbtyTiCQkJTw5/8KIj8blbfoWb792C//3de/HNOzfiRw9sw+LhDj573nOxZsnwE6p3uJvj0286Gb991c34xaO78Huf+h4+8YZnY9t4H0csG8Gq0aFp7klCwvzFk3akMcZgcnISRxxxBFauXInrrrvOn+v1erjhhhs8GTzppJPQ6XSCMhs3bsSdd9755Hd1xQKW/BZJEeT+ijUpNCiNCezm/cLUnaP0GqQu+gA4TlXkQXK0qhVJr4wBDTNGn0g+swSxEawmlntQ/lbCx8yd86aZpDAVk9CTO22uxqz2owzuyYPByLGUpqecXDlTRpmeQLbJLuhNk/DwhbkrQ+kPeB9i7WolYlSnVG4jC3davDf6ETM3nUKFCuplppaxtjcIKa/fqV+BXyYnWGIMokoz++43BnhqDD7upMhzk1T5XHjbqE6nWkq/0FqVdr6LxQRU36WSITWd9c+nS6HulD2U9/8A5f0/qOcBV44FkVNibIKow2CqJP/w94srupyUq3CTgvuDmqwTkEU/f6i+YiJqbuxVbpoHOpGS/QG9Xg8PPvggNmzYgA0bNuDRRx/Fxo0b57pZCQlPKaw+aAjPOvQgAMD7v/5TrP/VNnQzhavf/FwcvWLhk6r7oOEuPnve83DIQUO4d/MYfv1jN+INf38rXvBX38YXbtswDa1PSHhqYJ+2uS+++GK86lWvwpo1a7Bz505cc801+M53voN/+7d/g1IK559/Pi6//HIcffTROProo3H55ZdjeHgYb3jDGwAAo6OjOO+88/Dud78bS5cuxZIlS3DBBRfghBNOwOmnn/7kesLUFVL4uGkoVxnr4DVugcvIh6broEBLOm6OCtT1kpooN9vt9RqlWzNmSiPjeQ45ISElUfg0KaYyGalGTKVOkFqZ5VAUNMQMufx63ZpMSB/JqcDURJ9o3l0XkMWWa+UCPDjXdn+ncFqzRsD+J1I9X6wzkuPz7O3J/M9d01AsGVGQClOdy89VEfF9VG4vxitQTsULgtFIQurIjJH9mYI4RwMmubqNqj3NrDlsyzi4eeLrIFJFZJ/yKrIIs+HmgQEYSVL+uhKG0uXkORQn8wTFTK95X6kOpQFlrGKZ5V5VD/rCFUWh4hv+ngH23jwAEH8GbKyskspIP40r3DOtSvsu+PetY9tK5FPkSbXXlr4utad3bhoxE2kwDvS0GnfffTfOO++8RrA1co+YljRPCQkJe4WN28exXgSmKSqDgxftmxlqG1aODuLKs/8bzvnkLf5YZYCLv3wnXnzM8qQ0JiTsBfaJMD7yyCM499xzsXHjRoyOjuLEE0/Ev/3bv+GMM84AAFx44YUYHx/H29/+dmzduhXPe97zcO2112LhwnqH6CMf+QjyPMfZZ5+N8fFxnHbaabj66qunxwyIkUau+sUC3PCgNUapwG+RR0Plvo/RRZKpkCntTVjJ3FUra/7a8PNy11A7SwMEPeeKCV9s8gV1RG3x9dJQkDKjNTwXiimV9D1WHyMsBsw8VJ6XdaMmSgBgcvuPfhANlZMkfg3EQp7GhBbhERLl78NIXzMoiWHnQqLJiQFXGTnBk6oSKcWBDyQAqCy4lhMrS3wjJsa8v3ITIfZMYqRE1skIkzchZYSH96nx7OWcJYWvYmMZMUv1ih8R9n4PpipdMJsOQGNO460zIGdENdYfX7eBqSoAFRTPvbkH4kVmqSh7MPlAPNiUeMdkcCAfTZU/ayKeEcLJwX2A7fyO9y9hdvHmN78ZeZ7ja1/7GlatWrVHP/vZwv3334/3ve99+Pa3v41NmzZh9erV+N3f/V1ccskl6Ha7vtyGDRvwR3/0R/j2t7+NoaEhvOENb8CHPvShoExCwoGC+zaPNdZplQHu37x72shcGbFKKo2Z1nskJMxn7BNh/NSnPjXleaUULr30Ulx66aWtZQYHB/Hxj38cH//4x/fl1nsGWzxy/0QieXSojQAqUYb/5vXQtf62nPCIJkWT1zMVxihtzVeFD6Eqi9CMMLYYjRzjqkqgwLhE962LZKl0NSrWngQ1TD45gY21TZr/8T6JBbeq6nHyxJHULh5whQWP4UFoPKnjuQmNUMPsAFlli0dNjZhierJI5ZSuFVZOcNgYNZTEtucVkAim6Mmxk+2ja/lxw9rD/fsEuY754nniK+dG2auvZ5sORPo9CZWbEEUBU/Rgin5AEE2vtL8ZWVQ5gAJQmc0baXTEv1aOoSBbquw1TFGDlB9yHkylOEeUe5mLkTZOfHRZvhkRG/e2924WEbOCmI46D2T88Ic/xPr16/GMZzxjrpsS4Gc/+xmqqsLf/d3f4WlPexruvPNO/MEf/AHGxsbwoQ99CIBNafXqV78ay5cvx4033ogtW7bgjW98I4wx0///1YSEWcARy0Yam/uZUjh82RPzXZyreyQkzGfMYuSFGYY3CdQwJlzQGFhFMaY0SlBkVKBJGul3EPzGgSuSxrNSu4gv3UVa58xHUigTXM1rS1TP+glj029QEBu/QK4qe1ppIIsrkN4cNcsB6GZ0UXmNJFRaA2Bkhp9n9XiTUpeDsNFPF0wniBAaUdSMzsJgQ6xtgeppKr+I9+eF32V9jJHFyBgF38XY+PQidEyFhFQGRJH9DrpHQVAksWDkSJkKZqpos7E2c2LuNym4yuqIttbW/FnVPq2B/6Sp/IYGEWeuJFK9piwtMaxKoOg7wkgmmFbptq69JZQjjqaAK9OFyjJLUiVpc/NERpatTW3D3JD8u889SWMZC7YjyLffbKgKBIGe2Bw3pvKbDlyFVHxzRD4Phihxn0FopaCn+Z7TXd9s47jjjtsv8y2+8pWvxCtf+Ur/+8gjj8TPf/5z/O3f/q0njNdeey3uuusuPPDAA1i92qaA+fCHP4w3velNuOyyy7Bo0aI5aXtCwhPFqtEhXHHWCbj4y3eiNAaZUrj8rOOnVfmje/zZl+7wa7jpvkdCwnzG/CGMDuS/SORQAcidX6LcXQqUQoRkkZelv5my6mVZGeRaRQklTGWjkcIuZnlEVvpHygfFkcrR3qgrnJBRRFWEi+WANHLlRfiOBX5pom7/XapPpoJ3zoyRrTZS4wlt4dWZaHAQXpb6hpD8eF84T6iY2SelUaAxQhUu/ImgxtrozjfGoqUsRXYllZDMDz2xApEdNOviZDtCkvhYSiLnn6vvsyVvnsBKENFx884rbcwnEZo2O1jKDCKLmm0qCMXOlJYkmt5E876knFeOTGo233QWBFoyZQko5Uh/6JepWGwub5oqN0McOiuOBAD0N/2yObdo/ruci1NtkjQV4hImcxsOVen9GAMiSeMr2hvcZ5bVxYQ4/vqv/xoXXnghLr/8cpxwwgnodML8bvsT6dq+fTuWLFnif9988804/vjjPVkEgFe84hWYnJzE+vXr8dKXvrRRx+TkJCYn6427HTt2zGyjExL2EeecvBYvPmY57t+8G4cvG54RInfOyWsxOtTB2z73fYwOdXD2cyI5vRMSEqKYd4SRoFWdF5F8EmW6C74k5GSRQIFz+PUKCPxduB+VvZf2y0W6HxFNb9bqF9xV3QZOAjgh4iSMLzZFdEiv/Gi+WLXXBsSRm78S+Yupivx7SzuCYC88aIxUcKTaVRWhL1lbeQlJAFStLnJSSQpikH+P3W8q5Y+n7CDT1ynBzGUDc9XgOTJ1TLSlcTymfrm/gdllVdjnnnWbpr7SHBNg5BCAsVFcDR3n+TqBOgcikSMjlDYisqQqFs43lZRDIojuPKoKyDu1ShyYpmprklqWbuzrzY8w4qkK/lI/+UaJjBocvF9ybGNzD05FpYBTzGdWRgJWLOWHfcbMt5UR80BFZ/Xsc7qVJwH7b9b013kgg4KsnXbaacHx/S3ozT333IOPf/zj+PCHP+yPbdq0yaeqIixevBjdbhebNm2K1nPFFVfgL/7iL2a0rQkJTxarRodmXPF72TNWYKiTYdt4H3c/sgtPX/nkorAmJDxVMH8Io6oD3RCJo0WNFiTRk5Updvt9XjelkbHFeKZ0TSxNuGhUkeupbZkkgzp3pm0tqhwpcVRvVUAVVsUJfM64iae7r1eIuII4lXrpG63j5VpUQLkYjimlgfld1rEL8qoIfeT4tdKsT5KplmdWBxfJQtVOM8WsQvtCnpuysvuQ+WGrKimj2+7Jd1H2RZqatn0nuGfPVUZveik3GaJEtArJD20YeBWxCPtgKqiyrse/F8ZYZbFggYy4SWrp/pIJKizBVDpz5qpuXrv5qfYl6BU9Sz4VXP/6j9wblo3NsRhZZHOamz8HUW4pPYypvO8kjXksNyif+35+0fMR8yZhdnH99dfP6v0uvfTSPRK22267Dc95znP874cffhivfOUr8du//dv4/d///aBsLEgPkd0YLrroIrzrXe/yv3fs2IE1a5K6kvDUQzfXeM7hi/HdX2zGzfdsToQxIWEvMX8II9AwEQVqZRAAYCpU0M6nUfuUGzFlsaHEkakePwYERDVTqNUJThCB1kAkQV3styqL+n6kHoKRRUXmcWzhyQgi+TAqUjL5/bjaFPyuwnZLE1b53asvrA8xksLHSgt1QjG/Ma2BsogHo5H1tARw4WPonxmR55ipIdzCXipzso1usKQZrTJhWR/Ehp4Pj4zKFVGmzoYV7AWx50GA3BwI/PVIcSQTVkeelZyD/F5yfCLPU/k8iqZOlwHURBEIySIFvyF1UetQeRwagUIH1fgYVHfQkkYiwKw/0ZyIplZIKVhOI2BOyVJo8M0QRvhMZ8j1TYwvlWPPL/QBdWpiFpoyAqijAfPAOM6MtXGPWYDGNCTcjdR5IOPUU0+d1fu94x3vwOtf//opyxx++OH++8MPP4yXvvSlWLduHT75yU8G5VauXIlbb701OLZ161b0+/2G8kgYGBjAwMD0pChISDjQse6opfjuLzbjpnu24E0vOGKum5OQcEBgXhFGUgQJWqGxiORmphnqBXuQRqMlwIiSJHAPbfFflfbtktFaG6oZJ2pckSgdCZC35iqiU4k8H2CESZWM/Pm64maqdnFbNRbZvn0UlKcUBCT23V3nzURlmgFjYPIuTNa1pnPFDsApqVE1huqLpfiQbY2QiLbcjIEZa4RY+eA0bRDmk1OZHHqyyAkx/x0jjbENBt5Pl5+wcU1AsjUUKYkSjIx50ss3JriyyAPc+L8VTL/nVcXAVLWqrNII2DKEqhKbHKqO9OrVPvZ+KA2Ysi5rapkxmpuRzIP5+NHvqoJCARSTNu0Lf35OEY2qxfTJupYsZnnTv1M8w6AeIprNJ5AwB9i9ezc2bNiAXq8XHD/xxBOn9T7Lli3DsmXL9qrsQw89hJe+9KU46aST8OlPfxpah+/1unXrcNlll2Hjxo1YtWoVABsIZ2BgACeddNK0tjshYT5i3ZFLAQC33vc4qspAH+iJZRMSZgHzjjAGi+iWxXfjuKl8wA9fDxCaSbaa+DUVM/81tojnbSUliKdCqAqrCGbMNJNIhRaElZM+Dopqiao2NeSmmWUVLLYbTdMR80Dej7KwC2VBSGJmfoEiZyrmx8ZUnKJn21X0oMp+GOFSjoHvYwFFCg7VQ6amqBfp0kww6A+RoCCoTn19oCpyMHXIBz+JPWehKNZkVdQn5mKjGq4UCrJIY+Ujl7Jjvp/yQ02tEFW/AkIrVWwgJImOFHqyWPTCYDcAkAsVjkii1lB5p87HqHP/3Bs+izQ8cpOAiB/9JjVZvhec7AE2YBSR4bLP3qmaLMais3rCR6o4rKJYE1h6f/bwDu2NkjxNUEpNe57B/SVv4RPFY489hje/+c345je/GT0/Vz6MDz/8MF7ykpdg7dq1+NCHPoTHHnvMn1u5ciUA4OUvfzmOO+44nHvuufjgBz+Ixx9/HBdccAH+4A/+YL8K1pOQsL/ihENGsWAgx/bxPu7auAPHHzI6101KSNjvcaBbFtXgJpoxVYx+x0wdFTM35eckSSFMtdgjhQQ1AVXks+fVMYRtLHtQVWE/Ra9W7uhawBLIyiqFVNaa6+laqaGFOgUyEWqS4uNBqqUsH1M8Y2MgTXb5d0deGlFQA9WVJF0bVVT1J+uE8HJ8Yh9xTqpBPD9jG5QxnnD6CKfOX42XoXbyNhNhILLYyAfZNkf4M5AbFHJTwvdFh5FDxTmw8615DNvScrj7BqTYP7+CRUu1z9P0e54sekJIaUYql2sx77j5lNUf3w6ao1l9TZ5DkikfyTWmmraQ8+AvHRZjy9+B0Jy7aMzPhhLMzMH9XHUpanzOTjd/VFUG88BvFlSF3RSRmxAJs4rzzz8fW7duxS233IKhoSH827/9Gz7zmc/g6KOPxr/+67/OWbuuvfZa/PKXv8S3v/1tHHrooVi1apX/ELIsw9e//nUMDg7iBS94Ac4++2y87nWv82k3EhISpkaeaZx8+GIAwC33bpnj1iQkHBiYPwqjVP/oNw8c00YkgTBIDT8nzSKnUL2CFBukGnITUyAweZWpMDxhc3+tz1gFKBYBVZjxBXVIhY8pi42ye1JjZF9l/dS3wLS1LstTDngTv0B9FQtmag8FA+ILdPILlYQXCH3PAGuqygLYBNEpuekn7y6pWVkn8pzjC/sGKYyo1tQe+h0ombxc2+ZE7BgnMLJcVcRNHTlZ2ptnLucmFSHVJWbSCli1EPCqo2JEkX+nyKgq70IPDLF8llO0SZrSsvckCjITLYtGRE8/DmUBxd6Pun25VR3Z/QMC6esxMApxRT4o464t+63lZhJahYG/pqvOAxnf/va38ZWvfAUnn3wytNY47LDDcMYZZ2DRokW44oor8OpXv3pO2vWmN70Jb3rTm/ZYbu3atfja17428w1KSJinWHfUUlz/88dw8z1b8PsvOnKum5OQsN9j3iiMypEKw00jiSgBcXWlTb1iqkoj8Eub4misuaUilVOSHEIbWaSqshzG5YkzOofJu3XQliL0/2os6tsWz7zdctFNx7g6KRXZqeqj67mPJCfrWcerrt5sjwVsaZBSXoep7GI8H2zeW+ft/XWKj0xl4KtoOR4oSc4k2GQd+yF/y6xTE1JHmqlf/p68f7zddJyTbj7XqJwYD2/+2KYQto0Nqysgi6ZqzgNxX/J/lWMWDlfpfRJV5pREUh6d3yL5MwZgqmPg08jaw9VcPicD1VqaeJZFOA/5ZkagHtbvVkPZLPtQRZ2vDoBXBQHYNCZAQ1EmRTTIAUrneRAnRObdDEOpmfkcyBgbG8PBBx8MAFiyZIk3/TzhhBPw/e9/fy6blpCQMAs45SjrU3zrfY+jKPfw/9aEhIT5Qxhlkvoo6Yudl4t6QUYUX+THTFv5p+wFhFAxsz4l7icX5FwxVGXPE2Bubgig7g9b9JssD81KgYAYBOarbcpSzBeSj0nsmtgYmtonLCBWkuzoHCYfCILg+Ot5BFDml+jbwpRLT6bINJOnjEC4OJdmgrE++rQf3g+P5btUyhLJLCRkPu0CkQiaQ8w3lfta8jHg0UAb4+vnUuhTGKQekc+Aq6gxwi9Vudg7IcHG1XAzVJp/ZenVR3+e/BMBTx4B1P6MPlBThuyo5yE74qQ6Oiq1i6vgjggGz7fosXfPmsxGTT35fA3GwlkfyMjGsX8z2sYGLc+Wz13xDs1mDsaEOJ7+9Kfj5z//OQDgWc96Fv7u7/4ODz30EK666qrA/DMhIWF+4thVi7BoMMeuyQJ3PrxjrpuTkLDfY96YpCruj8dg5ILYX9CyUOYLVSAIqiFNOw2rU7HygfmcNHmTJn8lqVS67odxPmW6sCqIzmE6g1CTu1jeQFrcAshzG/mVqyu8bxWAzBEq6nqFcCFdsbHTuj4/hfLViHxKfotVERAhVZUwGo7kAaqyC39V9sPFNo2ri0Dpc95BW2WHqXNBjjsenIQTyrYUFjFlkhEt5dKt1Ncx0uoC/lii2oy46pUmurdTVhs+gvIZybbI81P42wVqrSTfhqVUoc0HTSp4rZD69BEthBFKA3lug0OR0q1LqCyz+RXpr85qcgjUQW0ASyI7XX9M5Z0w/yIn/LL/bc+Mq/Oxa+l8Vv9Tp6rCqvj0HlYVoCNqN58vfIyBmgw6Am9U5QMlmaxTK5IQ85Pq2JNaPI3QSGk1JM4//3xs3LgRAPDe974Xr3jFK/BP//RP6Ha7uPrqq+e2cQkJCTOOTCs878iluO6uR3DzPVvwrDUHzXWTEhL2a8wbwlgHS2GLPFJTTMR801R20ei+exIoF4eMgMp8htG8bwB4fkOK+qhKF8yG6mMpKUzerZuV5TbwTVXUeSWZsmQ8mXSkriqgKl2rhy2kUZnKkSBmjigWrq2+jhxMiZPqnfdrzLr2HEt0DtRmlUZnzj/RBAtrDx8pEw0fRTtGnfr+VCclWBcKEyeLMhKoNzOlB+baFpizihQLBk7ZUhqg50ZjTsROaVC0zcD3LWL6GRAHmsNcUY4RJakm8uN0DwpYg/B5Bjkb+fUt95HpKlSWAVUW+usS6atKn3vRq4s6g5I+fjoL3qvyvvWBuhhsRMT61tZnIHjn23wtg+uAmkzKaLCx+0jy6v+NyIFisn7uMdWRygPoLl3d3raEGcfv/M7v+O/Pfvazcf/99+NnP/sZ1q5du9fpLxISEg5srCPCeO8W/OFLjprr5iQk7NeYP4QRqBeOjjgZldeBY/hCj/s1RQiTT23BzEFVYJrIksHHchm6ezSCaZjKprSIHefHsjwMXmJCk1ZLxthCn3IvVi1KjFOTlCQrYgEeqKR0PjJOdgxUsIA2CnVAH7bwN0rV96Wk77peVDfIKRF8OU6MYCmnftpcjIgqNv4ecMnXTQXoTt1e0AZBU5UKgpgo7UltkEC+7AdpWAIzQ9fGmHoaG/dgnDkpiamTvI7Ytb49VbN+1BsidU5G1HMKqMfKbwyEfpcGlfNVLKHyrp2nlMal07UEkZmrBiBVsVv7pBqd1Rs3Qj0OTDqBmgx6hVPXKWL8eOow+m8lxt6VpQ0UGpNgw4jGkJRIel58w4OD3YOC2zRMrQG/GTHbSGk19ozh4WH82q/92lw3IyEhYRax7iibj/H2+x9Hv6zQyQ5024mEhJnD/CGMnCwCddASpYFMe1NPbv7pr+NKCiunNBppC6JqJa+L4EhcsCj1SgZb4BqbhzBQGbl6xeoL7sGUFZPldZt4vkV+HYGbm0p1hsq2qE4NE1QaTxeYxwAunyXLN6g0DPtH2Oc2ZIvqRgoD2U/5m0gMmalS2/z4iVx9itUdS09Bqi0nk4LUxQiAv1YqiNSmqgzy9TWIoxx/6g9XH1UWlpXPJTYX24hiZO6gLU8lGFn0B1jfeOAayr2Yd6yyWFVBMJzge1UCRc9GR1WqJmQ0lhTlVmuYSoyj7BuRWjcvAdhckN53FjWpDJR36oOtw6uuvJ9Kw5AvI6mf7Ll6xZpvOOUD3ixbQQNVPziv2D16j29Cd8nK1rFPmH68613vwvve9z6MjIzgXe9615Rlr7zyyllqVUJCwlzh6SsWYvFwB1t39/HjB7fhpMOWzHWTEhL2W8wvwsjQUPeojGZqAh0LVBeE/nxigR/4SvJFqSZ1xC1iy6JW/uSinikfpLh5xdJUgb/VVP0gYigJbCuhpfYCoUlnGwRZMKj8YtgoeHNOntvOZDWB9ePLFCC/uPcKoarrNuxeRCLb2ufrzdj1ocrH6/LqYqvaV0ffVKgVSEAojlxNJIKpEZrOsj43FKWYEmp3JgLSysmQ0RlURSpb3uiDMlWwoQGE84bnIqSyXjFnGwgNP1DZH/qZOZNUZxqtdNZI5+HNVHUGNTBUB3XSmSV1edf6RFaFVfKzTjDvAx9g2RaXk7Rhft1GqpVuqLR2UyFU1w0jhUG/g40gZ3Ksc+b3WTY3KWJtomfDNxFmASmthsUPfvAD9Pt9/70N8009TUhIiENrhXVHLcU37tiEm365JRHGhIQpMH8IIwc30eQQAXHIbM+wAC1ekeQLSVkHpaGQypwjo96fMLaozcTCnhaP3HTOBSOx5cn8tQgDbSCHkuqQqayaAjTVJPpuWogVV25iCiORoyw8pgyA3rhVVxjZ9YoqU1MDP0dOzhRYxMq+J5NTQqrEgCeNjbQZjKxyYikVIl4nV61klFYD1z4+drHxa2sv+22JTBkvR8+dCGRMdfWqVxEEtwnK+T6558+jggJehfPBb+j2jhjZ54F6DigASkGZDChLb6KKqrJqI4/WC0cSCdx/UWk7H7IwvYUqmAlwyca4guV4OodS9bviyb3KIuOHui6qvyrtBoJrA1dfg38TeOqWNvXbqdZWdWSRcoGaUCLyN2HWcf3110e/JyQkPHWx7khLGG++dwv++LSj57o5CQn7LeYXYeRRPvcGZPKGohHcgyAVvlqFrEIfKVPBSk26uSbk9XLTUhUurFutA6s6RL83f+RmekCYnoE+LeQlln+Qk9EglYUEWyx7kshN9aoSyDrh2HgyrqxZnmijAhpENGo+KtQ3wClwFFynpW/+a+DXaBr9jCVgt6k40PBr5IFyplRCXZsC9Y4UVCLQdFzndZAdpzZ6c0kyV5VRa7Ou7T/zu230Wx6jdBgu6infVDAadX/4veQ8IuKcZUBmiaMpelB51ymPWf1XjqnOapWSCGkx6X02eXvCzY3SXcP6Qgopj0wsCTWzIrB9zIL0Io1NIRr3tmca2yDwmzFV/S7y+8r5HNtUmEEkzSwhISGhCfJjXP+rrZgsSgzkzf9nJSQkzDfCCEfouNkoV+sEgfGEraqsWheQN7cAzPJm9FCfWiEHNMLAOlUBH6kVYAvbPLpIDEwHdXhcFT3fF++X5VUeljICgAGsKSil5eDRPxEuvIOgIiCzShqjKSJFxo65RbEq+/5aa96XNRbqpE41Ip9yIiQHQ5oE8udHRJWCw1AfaWHOCY+or1alanUyyD8hlAABAABJREFUKEckNEaWSC1l7QoC4nBlibe7jQjR2Gjhr6iY7+yeyJscI9TztaE8ug0PVRXRsfV+pqwu44i97FOg3Dm/RlOJvkc2cExZgtKScKLLxyXwDfV9ziw5LpwPbN61KWOEkk+KH8CeLRsvPmaKIhLTO0r/ZvD5EBnfRp0sf6jfFBDPuXUjZgaRTFItzjrrrL0u++Uvf3kGW5KQkLC/4KjlC7B84QAe2zmJH2zYhucfuXSum5SQsF9i/thHEfEr2aKNEntzZGKXX0ZRBBpRVb2fYMUUHKYUGp3D8GTuUuUDWNqPUAXhqmab31l9sJmsvk1RkykkAlUE9cK8Jllt5Kc28VRVCVVM1r52ESIVvSfvC5EMHn3SlZcqnP8ux3IKdUYZUydel89DtpPVV6f/EF3ypKY5htH+BY1hSqLsPyvD2xkkn+cmkdQneS+pdqmmXyv9No4kWcUyj/vs8b/8/nQdby8vn+c2x2KnC5V3rYqYd+JkseFPGJnL8pnz4xUbw5KNida2X53BQBEOfEM5SNVl6XX8XHDjRmpjkPLEXVe3x7ahu3wtugcfHsxpoxTzU62a713CrGF0dNR/Fi1ahP/4j//A7bff7s+vX78e//Ef/4HR0dE5bGVCQsJsQinlSeLN92yZ49YkJOy/mF8KI1edYn5qTi1UpDjwlAGmAgqmUtDisgxNABWpD8ZFN+URSgXsghGhQiJJB92eFs10jxgxoHZwouMXwwoU9bFBMsnnjrUrrFvFiTMbV++z58bLR0zNtCdBihbgksQyMkTEwJunCp9GubC3hC0LCR1XiDnRIIWTq3X0HBBey9XVaH8dqSFz1IZS5EiANx2NEUp3fXOTgNXFnyXEs+Nj0UaWPVnK4+f5fYGm6bVQHes0MQhTpbiygdrOzYtpnvkNiKy+JyOI3p+xKqFMZvOKGsoRKoLu0HNkY8OfmzXp7cOg401Mff8CFVkot24zSWUuABARQ6Amo8EGSkThjqmzckxNHdiJz6EpTb5nACmthsWnP/1p//0973kPzj77bFx11VXIXICmsizx9re/HYsWLZqrJiYkJMwB1h25FF/90cO4+d4t+NO5bkxCwn6K+UMYKTcbIaZIlUVgZhcQD+YHB6A20eSLTAeetF6J+xLRMDqzZBGoozrGFvtKByk4eIAbX0yaS7preeRHZQxMWfjvvpiiv6rRPuXTFiBMxC6CwzTGQfrR0QI964RqWdkHlKkXy+yZeJ9M6dcl+whGMInnKuUJcHThTQoQV/Tk+LlgMkbDEY34uNKYSYJI11hCo5qqa4zotSmeVC52nJ+PPQsibr6tYb5QAPWcJ1LEwM1VFYpGoCi/ESAU3+A6tvFCfo2mJJU0g/dZ7IfvijdLNbUq7jd6spoEUmAbeuYUKChf80wAQP+Re/24+NQ4StepaSIbMMoYoOgDugpVUPKJ5EMvnouPMksE2o1Fb8vD9Rjxe7HNGlKcVRIY5xT/8A//gBtvvNGTRQDIsgzvete7cMopp+CDH/zgHLYuISFhNnGK82P8wYatGO+VGOomP8aEBIl5Y5KqjHELMaaecT80dywoQ9eV/XrBDzR9yTiEAhQL1+9JTGTxXytXrJ1ukauKHlR/MqgziNCpGUmQiqMjaN6XkC2QycyRkxoZqCUoQ+1j9/GmsMwkz2SdYOzDjkbIpCM2UVUu0h/f1qr00VODsRPfqW1GqTofHrXLK2ktqS6kksv7IVRdP7dozKRiyEw5/bix9rWaycbuzf/K4+JaH/3Ujw0RsboPZJa6x/razvPx4O2jDwXuyXP/CQgkrzYLc1SGz7Jur2+WztrfLSKKZBFAJresrnpcIgGS+L1YAB1PFikyMgDVnwiJNX+mcp6I5zoXpqjkwzjdnwMZRVHgpz/9aeP4T3/6U1QyunZCQsK8xmFLh7FqdBD90mD9r7bOdXMSEvZLzB+FEaiJE1+TmaqW2eg34MqIvHecNEgVsgVtpmVeyYM1f/MEwpEsHmXTX8PMLn29zmxTlX2YKryX94/jC1Xuu8faETauSQCCAB1yHEwFhS6MJmUSdURVivRpKqvYkcrI+urbq7OGP199sgqfBW+nPBcz/6PxMLV6Seasvg6nVvF+R8eEPXvpV0f9l+e84kmmmGR2yIImATVZbo2YKRXt2NyLjJ1UwZpkiyWej21k8A0GMvvMcpejsaz7DvZMggoie09TvDcAwsA3IiqpKvr2frpWdXksKegc/Yd+Zu/L/JIpbyXg1NayqNN8lGxDyLj+0ZwwLn0JjX8kAJbvI0sd05iP9J2bu/NzUoFOmBO8+c1vxlve8hb88pe/xPOf/3wAwC233IK/+qu/wpvf/OY5bl1CQsJsQimFdUcuxZd/8BBuvnczXnj0srluUkLCfof5RRiBcKffkafWXf2pFuWsjA+kwtU86IZCEShgATFFuNilS9ryIXLCRCopy8fXCA4i+yCJFj8mr+NtiSqiduFrAKhK+1QaAXEgVc2pbj5dAi28qyqMghozr+QBWNrIujD1o+9KBm8BI2z0HUxZZXU3nqNon/e7BHu2BHZfazachWWUriPwUnOlaSsnw/x5EaHkY0DHnJKoxDh4U0wdRgC1961fdeMImrfCpRMyZ2jVnD+1T6mrv7/bE2DuP8jb7s1UuXLuUrDozPox+j7IeUo+hTzHost32JgPWQ5TiTExlSWKRA7l+8DeWW+GTX6RInWKoUSQfmOq8mPJxzY6n+WznkUo95nuOg9kfOhDH8LKlSvxkY98BBs3bgQArFq1ChdeeCHe/e53z3HrEhISZhvPP8oRxhT4JiEhivmzzV1MNH3rYrv7SocpHyLmhhSx05sb8oUfM/fk5aIRLGOmf23KH9XNrgvMHVmeRW9G2x9vLkppUTxVRE1JNKgsv8YTBIqq2bUffh3rkw0UEpqcwlRQ/UlPelXZb46HM2EMCIDrrz/Gkqi3+SPGwE0Pgyissg+iTb49Uv2VoD7GoprSeacO83q4ea0fB/or+0b18qA2guxwk1OZX7C+b1xdDMxTs3qMA7Wbm4KKMTIu2q3xzyf066vvo6I5GU1Zm4IrPv+ofy7yKf/495eNgW8DKYPMNNUrkFrOm6rpW8yfKfv3oA6sVNWmr2XRJIttmzRScdyD+jof8Td/8zc44ogjMDg4iJNOOgnf/e5356wtWmtceOGFeOihh7Bt2zZs27YNDz30EC688MLArzEhIeGpgXUuUuqPH9yOXZPxNUVCwlMZ84cwUpoGmX4AiC7OAuIRI5ZTkb9I+SBcPi2odQaTdUKCSpe547XpJFMmqB7Rfp7uIoDSdf9bSJD/GyHIwYfGjxRVXi9fSJc9+/G5F8OUGNxnUvoRSnLYIN2c1LM+eBPcWH/4mLsx5f6f/rdQehpE1Y3LntJsEBH0JpBs7HmAIU825DyT5GJPz6cq6jH3RC4PiBpX0RTffBDzVRW9Os+oYSk4GOFs5BCMqWJE+GmOxAgzf8ZZVkdPdcFwUJU2OnEkh2EriARKAujGxJugyk0hGqOMkW9mehrM4aBOQSA48SPyyEivYu+GKnsN39LGc59haKVm5LMv+MIXvoDzzz8fl1xyCX7wgx/gRS96EV71qldhw4YNM9TrvceiRYtSZNSEhKc41iwZxqGLh1BUBrfd//hcNychYb/D/CGMnHBFFBlOJggBqdgTGsoMC0bDF7gRszOvCLrgOsHClBb8gnQE5I3fj5sn5oMw+UCTlAr1L7rYl4tWmbdQLOAloVRESiLkumGqy+9nKpsnL2YGGiNMYrylGulJeZsvKVOKg0A/KgzEE7Q11nZ2LLg/fc/yRhn/XGKIqFqWwIS5D9uU38a1EGph1Twe5PZsIyyeSNYbIEGQolgf2jZT+AZJ7PloSyBV1oyi68eUqZeNsQIaJNmn1BAmuI1rOdmUGxNujrWqyvwvQ6DoVrX6aOS8jr2PMwilZuazL7jyyitx3nnn4fd///dx7LHH4qMf/SjWrFmDv/3bv52ZTu8FvvjFL+Lss8/G85//fPzar/1a8ElISHjqgaKl3pLMUhMSGpg3hJHUI6ksBYSAoRFVNVqohWwJktgweZSqXaxq7sPGFDJOEhQpeHIRzhUzuRCNKT2NwYooWzw1A1edJAFmC/LGQtidp7QjwXPgZLM/EZiLejIvVUV2f/+8uJlw5PlIlagt7YbRWa1SRYhUoDxGVDPviyjzQ7Y9gz2piVSGk/BY+aCvLaSPq41Ak9i3KZlAoDDSODTGkBEuToy5CbEneexTB3JySmMkGrCS5NjUvoIAGmk/7LVTbIzwcVI6NCkl6DpXIn+nWqMlx+7F62TzqWGeO8vq4kxjx44dwWdycrJRptfrYf369Xj5y18eHH/5y1+Om266abaaGuBjH/sY3vzmN+Pggw/GD37wAzz3uc/F0qVLce+99+JVr3rVnLQpISFhbrHOEcab702EMSFBYt4QRgCBCiIVOU7oGuaGciE91UI8QmjIR40vNr1/I7VH+oHRfYUS6UkDQsXI+75Vhb+P7EdDhYypiLEFq+iXafOXm2rhzEmOV7TEONPYUOoPCugTI3+y3bztVdG4Z5A2RICbqDbGqBLpPeR1nMzyfkCMtyAgNC+kohytK5ZuYwq11StpEopFRuVzgEgWnSOTTXZeFX0bzZeVlfO1MX/Jv1CahnqCqJv9AyxRrEqvLgYbC65NqipDX0FHvkzeDdRDUhZt+1iwHypPY0pmo1keHVPk3bA/bF7JMQ7Gjs8bPg+4ysnnKd+MmSXwf4um8wMAa9aswejoqP9cccUVjftv3rwZZVlixYoVwfEVK1Zg06ZNszIGEn/zN3+DT37yk/jEJz6BbreLCy+8ENdddx3e+c53Yvv27XPSpoSEhLnFuiNtdNQ7H9qOHRP9PZROSHhqYd5ESeXmhlNFRW0kzPbEoWiqkZLsMGIZDVrDUzhwZVBpQHe8Aurr4nXKv5xA8LaJxaYyBsZFJw3ayskHXWcEcfALeGaOSspKqZv95+NA7ZfRT0kdjfWR3U+Zyi6oqwJg6Te4/1+g1hFhpMA7tBHQtvY2woSSlFFHGpUxMEwRUgb+fOB3OEXddhOAHadxpCHnBIuiZooxbTV9bLuvDLKCmhxRnTAVOiufBsAltc8EQSJSSN2Tz2dPhIaUOiJOnGQi4v/JiVVVwlQllCSLdD2fQwjHUFVFqFzytpqqjtxJc0u5CKYV6zd/pLIf/BRFRgYAMIJvKqBsmufW6mrdNhV553wkWdhn01lxZGSADxw88MADgf/fwMBAa1klNyCMaRybLWzYsAGnnHIKAGBoaAg7d+4EAJx77rl4/vOfj0984hNz0q6EhIS5w8rRQRyxbAT3bR7D9+59HKcft2LPFyUkPEUwvxRGucDnv6siNDGLESkKKBJREX19kohJVYQvjgXB9DvzRqhanNywiKDRNgChmtZ2XxYcpdFeImH8HF948yA1pmIpMsTfNrIr2x2JYuojr0r/NDamgdmtG5eGr2fLc2lEtyUSQj55clyoKno+UrGMqI9BHyN9bwRRYWUapp687zRmMuqvKxNEIuXkxJU1sY2PsgiigtogQ05djCiz0gS4EWWWlEtPPi1ZalXvAaAoEKTWKMvGGEV9Y0nxKwsbsEcxk2jZzxhRjcHPbV2bqVbNd9/kA4GqGFgNOAW6AXZfCkzEn5knjbOlNMp/G6brgzpgDH1ihHHZsmXIsqyhJj766KMN1XG2sHLlSmzZYs3ODjvsMNxyyy0AgPvuuw9mbzdwEhIS5h2ef2QyS01IiGHeEMbukpXBIlwGt4HOaxWSCIgkHS3+jraSCBGkhX1EOQpIFTeppDQLThVs+FFGyGZQLycPgYLZQgDpGK+Dl5P1cqLCwQmZvK6N+PHv/B70l3w0qU6dW9NAp3LGoqc2+g62cOcKcxtZlsSblEIdN41sjBuHqcJUIeJZBSarMmqpbKsnGFmzDZwM8nu0kQ6l0X/kXqsuAlBFP6qIe1LM64ptAvAx40GEONHkKSrc81KsTlWVNkqqK2t6EzBFD6bfAwqnkLOou/x+npRShFOqs6XvrcowtZNf16IweqXbmRUHJsdifgfEn8aBmwHzDx+XiD/mfES328VJJ52E6667Ljh+3XXXeZVvtvGyl70MX/3qVwEA5513Hv70T/8UZ5xxBs455xz89//+3+ekTQkJCXMP8mO8KQW+SUgIMG9MUgF4JY+DiEcDkoDwv66uxjm6hpNBOiaVRyKk3DSTH4+1BwjJUYxkSWWPt0HWy+pRVWHJBjc/pfp4+2OLbTKJFcTLmwjyvsr+xAiOaKc1PzUwqgIMa0/Vb5YVyqwlyhGSFVzUojyL44H/q8oaRD4IahSrK6ZyUnnftrK+h4SpoIwOzW5jmwcBgWP3o2fM6mslJRGVlkxx/cZK2zxVtSmtT2jPy4vNBWv+WwZBbqAzoOjD6AoqBwxgCaUpYVQFpTQMXQ/Y7xnl+WwGxuHfg6iqSgNGKLViDAMSWbI0Mdx6wKA5X5gSzzcH/DyCUH6lshghqjOBmfCb3Nf63vWud+Hcc8/Fc57zHKxbtw6f/OQnsWHDBrztbW+b1nbtLT75yU+icu/G2972NixZsgQ33ngjzjzzzDlrU0JCwtyD8jH+dOMObB3rYfFIdw9XJCQ8NTC/CCMjT9EUAGTqyEkkkY6pCE+MSHFiSGhbkEq1SKqBQE3k3OLO0HUtyhb/7oN+tPg5AmhGa+R9a4nEGhBTTmQ5kZHqWVtbY4SCj4FhPmi8HVQmQuBVVdhFudIAIgFv+LOThJ7mAilJbL7wRO1EiGJkMTBHZOSI19touyPfCmJOELi/qnwmsXHw11UAKiieY7Cqgg0Uil5L7VOo6/QEUOa5FP2LjR3VzctyQkFk0RROjSUzUMD5NGooN5amtEqk4XPS+cQapa1NRNsGAPVZ8bnp7sPTnsjXIyB5VTg+LWbB8h2EyqIbIYaNmSJ1lFTNqZTQeYZzzjkHW7ZswV/+5V9i48aNOP744/GNb3wDhx122Ky3pSgKXHbZZXjLW96CNWvWAADOPvtsnH322bPeloSEhP0LyxcO4OiDF+AXj+7CrfdtwSuPXzXXTUpI2C8wr1YstGiNpQKQqRuCaJUxZY7+tik8EaUsKEPlpBqi82bKCSAgCYYrmG2+iLy5e1p4kirKCSUzBSW/MR9QhZNAup6VI9JryBRVEkhB6oL6AgWuCgPaxIioPMfMFs0UZr9RH0B+f4rSytJ0+Odi4n59beOvqtLn2aR7NvwXq6J+lrGxEopeY25ONQeUbkbuZMnkg34xYsyjwEbndoMUCQLPI46yMVfsWViTUhvoxkdHrar6GODJIoDabJXmJM0hZ8qtir7tmyetgsixCKeSME9J0AThb4wvYJ8fvxerrxEVmZtJ0/MhP0l+z9lAbM5Nx2cf8fa3vx33338/JicnsX79erz4xS+egc7uGXme44Mf/CDKstxz4YSEhKccfHqNZJaakODxpAjjFVdcAaUUzj//fH/MGINLL70Uq1evxtDQEF7ykpfgJz/5SXDd5OQk/viP/xjLli3DyMgIXvva1+LBBx98Mk2x4OaVyiVmz7v2b4vKFCzqpBkoXxjuqYwfgMrmT6T7uLLdZYeiu3R1WJ4vtqmszF/H6m30k/02XCXVeW2GJhd3FD2SLcgpMEdrn6kJnMxSmbZFJCPK/l5lz7fLk1NJTFvGVjECGOTViy1eKaBO7HwbeXRkQZqRNqKYsvYFPoC8zy0EODDji5DrKQlN5FzDLFBGLQVCBZXaLYPYEEGWvqu8jXxjQ2nv1xf44LI5p6oSmByH6fesslgwX09PICtrmgpYf0a5gJdjJ8eVm3jyuUnftQ7JMI2jZh8AyMJgSt7U1vk+x/5dkTkbeXuDiKkSs0USg3uamfkcwDj99NPxne98Z66bkZCQsB9iXQp8k5DQwBM2Sb3tttvwyU9+EieeeGJw/AMf+ACuvPJKXH311TjmmGPw/ve/H2eccQZ+/vOfY+HChQCA888/H1/96ldxzTXXYOnSpXj3u9+N17zmNVi/fj2yLBJ1cB/Q8A2rIovyYCE6haIQi1YqF5+NBlTNKJWyennPmOll23FJOmQ7+OI5Rka86sRIn9JNshAjzfSXFu++P65OXh8jSDyVgFwwBykhpiBNUkVtu66ReiFGZtvGLWIOKv0a/TFJrE3VNCUVfTVyPvG2CTNlVSF8fqLt0SibMqALtYUd8wTY18PqleRnD3Ndlf1gXiim2laT4564GsrvqGvT02BcHHk0RQ+A8xfJW94hUwGKp2HRDVPmMIKsG5OycsSw3jDxY+DIrNEZYMINAp5mRTnrACLMgXkvU5Tt+IbmqI1cmAlzile96lW46KKLcOedd+Kkk07CyMhIcP61r33tHLUsISFhrvE8RxjvfmQXHts5ieUL29MFJSQ8VfCECOOuXbvwO7/zO/j7v/97vP/97/fHjTH46Ec/iksuuQRnnXUWAOAzn/kMVqxYgc9//vN461vfiu3bt+NTn/oUPvvZz+L0008HAHzuc5/DmjVr8K1vfQuveMUrnnBn7IIvJIjcH82b0Xn/qSJcEPIgFjqzAUhcPcHf2KKfjvMFOluA9zY/WB/jhIubVUpSxr9LItDWpjY1jbc1ck1DrWKRLg3rF0+SHlQdU18Bq0Jx5Yv817QLAkJJ6BXLwUfN5+SWk9C2sdI5DFeh5POgemVwmNi40nd/XzamfOOBl2vDnnJ8inuh7EWj3gYk2dddheaoQDjHxT0UtCdGgCO/Tvk1+WCtSCKcg5JoNtRHN6dVVdrIp0QAyfyUfBNz+LapvFP3gd69qvSqowd/1rQRUsHml1QahpWjQDNR/atkvpCmquchndcagK7VUP7uBZsFZf3dP4cCjXeQ52X1m1BNFXjGEfv3YzrqPIDxh3/4hwCAK6+8snFOKZXMVRMSnsJYMtLFM1YuxM827cQt927Bmf9t9Vw3KSFhzvGEtrv/6I/+CK9+9as94SPcd9992LRpE17+8pf7YwMDAzj11FNx0003AQDWr1+Pfr8flFm9ejWOP/54X0ZicnISO3bsCD5RcFWILayDFACFMBfVeWiyStfwdAMcUomRqgw/JpOMUxm56ObnRF8a5/h9Y3W6341cdnyYOKF25by5qa4jUUZVrBhB5t+lWhkzy8uYysPbLD4A4jnrlA7VxZgZr/RjZP2KKrZTPSN+XPqk8vJtH9ceVfZqc2XW56B+oGF+yX1Ho8+lLCwZIgITI5F0C6Xsubxbm2LqPCCLtGHiTTB5AB9Jvk0V9MublValjYI6OQ4zOWFJY78HMzlhCSUHz83I02/IsSFSWjaj54Z9dGonpcKQzzbogNtE0vU8Nrk1OaV5yv2e6fpG+h6pzKpI4C12j9mKkJoQR1VVrZ9EFhMSEk45ahmAZJaakEDYZ4Xxmmuuwfe//33cdtttjXOUmFkmY16xYgV+9atf+TLdbheLFy9ulJGJnQlXXHEF/uIv/mLvGqjzOgR/VdVmYcjcgruEyYSCBzTUlEZaBSo7lRrIy/FzklTGVKyYQiXJGW+nrF/cv6GwiHKcqJAfI6k3jbQFXF0kdUhV9cJckiNRf7Rf1E4ichFSCMDfU2V18vPAPxOwqqIAnfdt5EF32kh37DsvI9XeNvU38jwaahyRMSrSyD8oCSe7B1VPQV1cfY18gPzeQNyfL9OoOoON5yuJUQDeDyJxLHWGKfo2zyL5LwKh2ajOXDkAmkVxBaziRwv2PEzlEjxTY2Ao+I0Yb1Ksg4iqZTi+Ruc2mipQm7Xy56rdcR7Z1FSNND0+qix7rtxEtfbvLO2zpuA3/H4zDOuTOb33ipryJyQkJMwTrDtqKf7hv+7DLSnwTUICgH1UGB944AH8yZ/8CT73uc9hcHCwtZySEUqNaRyTmKrMRRddhO3bt/vPAw88EK8jCJ1vVRbjlBS/QM8Hmgt+9z2WYiFK5KisJA8yaii7vqHSkFokk9fH1Kmgk4yUcdPFlvaqSH0Ns0ZOZngfdd5Mx0FlSxZVVbEgOhQlk7edJ3Vnqs+UOQM9Gan2qMaoogfVn6jVt1gfpdpEKt5UEErflOck4eRRZ1sbzkixrIfGiieBl+aMWk+tdLE2+UAsdD2NU9a170TW9YFiok2N5aB0v4ksmsISRB/AJkidQcpj5U1USXGkPpqqXdkx/j1i5Exubrj+m6xbf1w0X5N3fd+mzEtY9Py41xF+w/fZ5J0wTYcbXx8IR4xPdO7MEllMqPGxj30MExMTe13+qquuws6dO2ewRQkJCfsrnnvEEmgF3Lt5DI/s2Pt/NxIS5iv2iTCuX78ejz76KE466STkeY48z3HDDTfgYx/7GPI898qiVAofffRRf27lypXo9XrYunVraxmJgYEBLFq0KPjEoCQpKItwYcjVHU4kKSeazv2ij/wao5EQXV0NU1aexqFNZZLHYioVJyNA6OdI5w0LrkMmcFWoXASqnWgPqXW0EFemClNWcBNPWmBLvyuWusEvrKmMM5OkSJqy7/y+0cU7r8st2BtlOcliYx7kpXSk1+RdT4Bbg/DEnhm/lzRnpTLyd9BRNl+kmupTUIixM+L7VOSCTCVj92b3D/wPNXs/igmo/jhUf3et5rrIp1F1keah3xxwxK83ATOx2/6dnLDmqDyNBhFJ5tcYfLSGyrtQOrMmqXloZtyYI4z8qqIXpoURc9f7F9KmESefNExKhyokC5Djx4+NJ4A6VY/caOL/Vsj5UVXNOmcabZtRT/ZzgOFP//RP94kAXnjhhXjsscdmsEUJCQn7K0aHOnjm6lEAKb1GQgKwjyapp512Gu64447g2Jvf/GY84xnPwHve8x4ceeSRWLlyJa677jo8+9nPBgD0ej3ccMMN+Ou//msAwEknnYROp4PrrrvOJ0reuHEj7rzzTnzgAx940h0ilVERmSl6tepHYAtGpRGqWGVzISQDfgS+XmABUQA0zNa4EsLK0P0bpESYjfoAHY7QtipjRAz2pGpRvTyoiiDD3D+wJjfub5aHC2uXMD4AIzvkC6oMamW2qqAg63D3p/Hn48IITvC7TZEEbP2MHPLItT71A/VdjnPbYthUgdmukfNKKl2xKpga24hqqnQ4FjQGtKkR3KNlr8ePDbz6R9cpaIp1Y59B2QdKQJlxqLJn82oygqtiBBQh4TX9HkxVOiLolMPeBEzP7chWJUAmplnmzFErwAW8UTqzAXHyjkt1wcivIHj8uI9W6iK1GjdeCvDfW02OAT8fgmdEc5vIojNvbw2io3UwXw3oHSwh32VvkUB9SJh1GGNw2mmnIW+LwCswPj4+wy1KSEjYn7HuqKW446HtuOmezXjdsw+Z6+YkJMwp9okwLly4EMcff3xwbGRkBEuXLvXHzz//fFx++eU4+uijcfTRR+Pyyy/H8PAw3vCGNwAARkdHcd555+Hd7343li5diiVLluCCCy7ACSec0Aiis88wlSWK0qyOL9QkGeCkoyyCRXabyqKMqReHLTn6/H0jilgQ7VKaEEoFSxIH3wZH7vbUT0fOOGEK0jswkiiJVdB2WhxX9aLYRFIkqKq0Jntl1Qg+FJjlllV04dwYc62bxFBeS1FBXeAXS0oBoAJFaG0Qdl+n3SzwkVp5YziB5IokJ5hgzyI2dlKZJggzxyj4NaSyOgIekvrIPNXaZpSAII2VJVSqKi1J5Mps2asJWkwlL1mwGt62om9NSsmHkVRGZ4qqdAZKnaHyjiWLdDwHFDqBwsrnVeM9oe+06SPVVXq/aI7LaLMc/BkSgefPyymT5O/olWlHKmkDw6fR4PNbjpOIsuqtF2YDM6EIHoAK43vf+959Kv8bv/EbWLJkyQy1JiEhYX/HuiOX4pP/eS+u//mj2Lh9HKtGh+a6SQkJc4YnnIexDRdeeCHGx8fx9re/HVu3bsXznvc8XHvttT4HIwB85CMfQZ7nOPvsszE+Po7TTjsNV1999ZPOwegXMWXFFvOO3HEFySEMtBISG59qg+XhUzr3ZolB2gEgXHzKcwR3fZCv0C1KY75Y4OWofzFiQ+3WeU1GSQnjSl6E/MTUtuj4VFUzXUNUnVRBxM4gibk3LXXnGOn2kShRBfUBzecm7+3z6CllyWrU568Kf5NaKtDwgZSkkI1jYNYaUbOUGGuPtpx8UymcXC0E6jyAjTHTARkNNjRIhSPSyfxtjc49qVbGBosyWae+NynFzOxZGYOq6Fu/xclxG+Cm6NtIqL0JH/3U6Cr0YwSsEphlLtBNZtVHZ57K++bHid49oI70yseKAuD48XHvGTPbNlnXBegJN2wUmazSI1dhgB0/Vkpb0izyOZrSRm717718fqaCMtZ02Eg1PmHWsK+EMSEh4amNDY/vBgA8trOHF/zVt3HFWSfgnJPXznGrEhLmBsqYAy/c3Y4dOzA6Oort27cH/oyTWx+pSYRbdHpyElHDAghS5k1QmfkbV3NUVda+UVzFIMQW//SdmzLSIp2bKDqC5SOXcnIpSEqQF5GTYmov5RyMKF0Nf0BmwjmlEuvGNxjXmNIVUxB5CgVByPkYB8fk+PG+CDLqSSDL+RgQEK5YciWayk9lLsjGCBDjB0YyI+eC8STTWvKh5aScb3SwseTzkY+fPyfHSxDMwL9WEn1OfnlfnE8vzXVK96GE6WntwzhmyaLzVwzmjMuvaE1P7V81MGj9FgeHoQaGvPqodAbV6TpiWJuH+vHPOiH5l880GCOmlurc5pyU7wSNC39OYkyMzm1QK3oH2Tusyh5UfzIYT9uWvDlnBfJDj/Xf2/5de6Kg+h6772dYtGjhni/Yp7p3YvkRz5i2tibMLqZ7riUkzDds3D6OF/zVt1GJFfL5px2NM5+1GkcuG9ljMMeEhAMBe/v/g2lXGOcUTDUwSqg/prKBbsi3kSstbakDuDkZU9C8j1LEtDPaJkkeydwNTIWK+bPJPI588cnIYCOAi1zo8j7xNnF/rT2ZmAkzX+8n5uqNmkVy8udy2EVTDlCXeXAcpRumfvwe/tmhAlRu1aEKTbNUuWAXUVeNzqGKXn0ui4910KfY+HCVlq7n92LkyY9JVbl2TzH2pOpW/fpWLf+TkuMV+N5SP2IJ5oFwHgEsCFKT6NQRUXs1WXRmqKY3YZXEoo+q14epmFlw5oLb0CZDWdp/gSL9N2VpA9+4tgSqvKnCZwu2mePec+4rGphgc8JfMVNtTujYJoxXI6VpLI2li8KKoudTbNAmijTJbrxjU21OTCdoLk53nQkJCQnzFPdtHmuQRQD46H/8Ah/9j1/g0MVDOPWY5Tj1mOU45WnLsGBgfi2nExIk5tcMp4UxU1Mo56Iyxi7Q2xY6RizoY+pYTIzlJI2TDGlGylWHSAAcf51TSFp9CfnCF7SwLywZlu0SKT6k36PJu3Vbpbkq3YcHmuEKJFfygKYaxtsdIeeyfBDFU4Cfs2Z/ZXDOsCA8yhirgunc++8ZpcJgPYwEqqLXNG+MqcL+BsIElyKfxsrGoJ05MZXlBBfhHPNzVmsYdFgAIRMou0FbidBKosLNaE019SaBJI6yLop8WlW1stjv1/kXyxJVv0DZc5simYbONExVIcv6gM5gKg1U1gxVAc5kVUNVGQwA3el6oibTr9gASkxVdb6H3DSXU2pV9ICMBa6JPWu5qcPeB4X6nSGi6M1YuV8ntUe5YDyuHr5JkpCQkJCw/+OIZSPQCgFpVABOOvwg/PiBHXhw6zj+6dYN+KdbN6CTKZx02GKceszBeMnTl+MZKxcm9TFh3mF+EUYgNLcDPBkyRIYiJn1UzpsukukbD6jByRT/TnCLSJN1mwtsZt5mSPWgck7B8L6GnCzGzNnEQtcnFyfVhBawSiOW0B5gxFGqZ3QdHzsZTZWPY2wcZF0iwqwCmXMarzpGCTF/VrQ4j5EX+u2VvNKl0lC1+avu1GUCJSlCDHnQJEkgwJQ4EY3V18f3GXg9GSlj4fh5Eggdzkc2b4zJmhsYNJ4yd6EgPo2ouZxUxsA2OKLm3L1JZnJqzVKr8TFLHoseyolJlL0CVb+AcRFEVaZRZRq6k0P1+tBwBNul0YDWNlIqKXOUrkK+S1LdU9qOG8S8cBso9r0CbPSfygb5YWpjNGAU+x0ly7It7n5TqonKpepp822eYUyZd/JJ1JmQkJAwX7FqdAhXnHUCLv7ynSiNQaYULj/reJxz8lqMTRa45d4tuOHux/Cdnz+GDY/vxi33Po5b7n0cf/1vP8PBCwes+vj05Xjh05bhoOHunm+YkLCfY/4RRrmwJrKR5TbFBi8nCFOdc7EZJTUWKp8TmSAHolD3yKyNL9zC4CFNlSggZFk3PE/k0NUbBGjhyoip7KIbgji4cooTMaBhuufL8uGNEMwpTXunAq+Lm0pKxZORNk9AG6aVROiYmsPr8EopGqQNFZqRdSWxpKbxMjzVBdXJhyfL63v7nJ8IgjIF5E5G3HV1W+tqYa7bllaDjyGbd619o/bT30DBrklpEAG16MP0e2GAm6KPcmISxUQPpqz8X8ASxqzD0ppkug5uU/SgqsFgTFWnG/rvUjO9n6uC4oGtoMMASnzThzZU5MaEVFFNFSqZAKLm3koD+SCMa481Q+3V/7YYpwjnA41nHJDG2TJHTdgrFEWBiYkJLFiwYK6bkpCQsJ/gnJPX4sXHLMf9m3fj8GXDPkrqyECO045dgdOOtbnD7988hhvufgw33P0Ybr5nCx7dOYl/Xv8g/nn9g9AKeNaag3DqMQfj1KcvxwmHjCLTSX1MOPAwrwijTfXAfotonGQOGkRO9YUdSeHJ2asiJAjSNI75RzVMSDlpYznfognjqe5YShAqK4NuUBsQUQojJndtgVqCxSsnq6yP/nq54K6qQOGSZqWkTFkShzpNAUXf5GAmkrVZn7if0iEZjC26lTVZVWW/Hjc6VZUAMxX0/n6msiQuE8+QE0sfVKWuy0RIX+vzo2dbhcFobF+zun2sr0E/I88m6DM/Jkg/V4x9NF75LOUGCiOxPtci81NEVQbBbapePyCLVa+AcWOmkcPoCqas/F8FwFQl0HfPgwLh6MylnIg8X6V9uhDZ32Duqcyqfo4wRuuCeBclORQbMT5QTta189rNFVP0oNC1GzNlD6o/UUcU5hsVrp3GvrCza6Iqn/d01XkA4hvf+Aa2bNmCc8891x+77LLL8L73vQ9FUeBlL3sZvvCFL2Dx4sVz2MqEhIT9BatGh/aYTuPwZSM4fNkI3njK4Zjol7j9/q244e5HccPdj+HuR3bh+xu24fsbtuEj37obi4c7eNHR1vfxRccsw8ELB6esOyFhf8G8IowyEqo3eSQyxsADhChjgLIfNQlskEpPDHJLAEVQDR/On1SLWGCcNtM1rZvnY4tdqUpyFSZyjNdjHAmmRTQ3T23kdhTqnldsqsKPZ+B7J8Yr8GUk8hY7L9psVSI0x8kFGQmOSUVUw5r9ivtE0xmYKjQFJYJYtiyGSUGMLZa9WsmIoyQMbSlJ6NoYKW9TA2P3pw+ZJfOxUjqYs1HCKe6rqtKSRZe2BEXf+iuOj9XHqgrVxIQnif2xCVT9OkCPyjKrNLI9ApXVgW/00IhXFaEz+3Fz0ZgqDCDDlGTpnxvtR1lYdREIyF/j/WF95r9blVl6D4pe4E+qTF4H1iqFoi/qSek15gYf+tCH8Ju/+Zv+90033YQ///M/x1/+5V/i2GOPxSWXXIL3ve99uPLKK+ewlQkJCQcqBjsZXnj0Mrzw6GW45NXAw9vG8Z9OfbzxF5uxdXcf//qjh/GvP3oYAPDM1Yt88JxfO2wxOpnewx0SEuYG84owEoKInUo38gfyZOa0ECXVy6fLyLrhghtokKdaZevB5N3axJPKCoULQGD2plh9jdQX9JuTLLbQbw1aElMbhXrE29Awu3NRLYPokaQ0ctWFUhn4NgtfuqlAz4OuiShoMmKq/y5NVwllER8PGgZp7snVzKkQ9BfN60j1AmpTU/+8BAnhfpaKpWtx8EqsVBV9HwShd8dM1hVqm9uskH2QRBEIx5iV92Sxqk1Rq3FLFquJ3TATYz4Kan/MEsbejjEUYxO2ikxDd3OosoLONMpMW1PUDqzSWPShu2xntXIRVLNM9M++n6rsWXXPtc+bdzpLAK5aB5YFRc8HhFJijgW5GMV75dPc0DB1QrPw2oxV1YGslPa5UKNRcdE8Niswxn6mu84DEHfeeSc+/OEP+99f/OIXccYZZ+CSSy4BAAwODuJP/uRPEmFMSEiYFqw+aAivf+5avP65a9EvK/zwgW244eeWQN7x0Hb85OEd+MnDO/A337kHCwZyvOBpS7356iEHTa1sJiTMJuYlYfSLeVoMs1QadrHXVMMCUzxJFGMkjMzWHFHkpCuIqthWj3JRTvl5rppwohd0jt3HVLXih5AINlRK8T3waSwLKG5KWVU+mEsQ5EXL9tbExnC1ToyX97ejfokQ/37xL/spxsG3madDcBFRYZipaYSARsciBknaeRsy3fSDdeMVVEHmqkQmeZ18LnKyCSLgJpgj0kRUtjFmKkzBXlQxYUmWn/ctZFEcU8agmhy3imLRh5kcR7V7J8zkBKrdO1Dt3o3+7gmU4z2ULrhNMTGJYmwCZd89oz6g+wV0J0fldkxVppENdi1xpH4zdVGxIFNB4KdI4B6ee1I5gutJOJUhv1ZSGumdVbU/8ZQ+nvwZ8vlA7wMj4j7oDZmNo7IpaxyhldFw99nfN2FasHPnTixdutT/vvHGG/Fbv/Vb/vczn/lMPPzww3PRtISEhHmOTqZx8uFLcPLhS3DBK56Ox3ZO4sZfPoYbfv4Y/vMXm/H4WA///pNH8O8/eQQA8LSDF3j18blHLMFgZw/5xBMSZhDzizDyhR795sQlFlGSztFiTi7S+eJeXAMgmpxbpgGIkhS2APX53kg9kyplpI88GiqVpSVo4/5SlRN55rypJVArh5wgKg2gPtboB0+tQYoukSPZdlPB+3CRyaEz0VOG1RmUZ+PA+uKJMh8jZrZKZo3RjQEaM6N9cnrv1ypJWqwvYgw4gbH3dmawZQtpJdNg3i5Szmg8dQZl2PPiqq/bpGhE1EWtRCIW8Ahg0UPr+9Z1Op/F3TttoJuij2rnVlS7d6IaH7Omp/0CvR27fZCbcqKHkvks+qpLjaqskA92UTkzXyrjyaEzQ1XdQZtug6uunrDldR5G3wdmCu3fO5Z/kgeX4c9PQ0S5FY9Gbmq4d8NvoGRd5x9rIBXiunHsWvbeWf9FsXE1G4j9OzIddR6AWL16NX76059i7dq12LVrF370ox/hIx/5iD+/ZcsWDA8Pz2ELExISnipYvnAA//3Zh+K/P/tQVJXBnQ9v9+rj9zdsxS8f3YVfProLn7rxPgx2NNYdudRFXz0Yhy8dTqk7EmYV84swigVasBiOES9BTLzKJc0BJYHjC1EIgibvQdfxv3Bkhn33x7j5IK+DvvN2VxWUcmZ3WU0cooFweF+cuunVFlUIohjpj0w1EUtJIceNch/yvhgX9ZMrqFrXfoMRgheMC5FFfh/DVGFGkBvEWap0nniWaKjSwNSpP8QxbqJqlK2z3qBgCd2VBkwZjEUd+bUfbgAY0X5+b3m8BSYyXkG6CD7fTGXJYs+alZreBKrtW2B6Eyh37URv5270duxGMTGJ/s7d3hTVlAZVaVD2SmTdDFnXRkVVmUaWheHElTM75UFuADT8d32QGd5Gekc9qSvqcY3B992Sd2tuHs+LGJA/YZFgx809L0rNUfYCP1kqF6iVzlwdpqrfTxbddbZURpvndHoJ3oGaV/K3fuu3cP755+Piiy/GN77xDaxcuRLPf/7z/fnbb78dT3/60+ewhQkJCU9FaK1w4qEH4cRDD8Ifn3Y0tu/u48ZfbvbBcx7ZMYnrf/4Yrv/5Y8BX78LaJcNefVx31FKMDMyv5XzC/od5N8PqSJPkA1c6pUYkkwcY+akXiCbruOMq8DEE4JUoKh8sall9MV+zsJHaR0wNTEplkBJxTVN5ceeyyGPkRKtNNaWi5OOlmovKwGSPL+Dp8qoK6lfGwJTF1O3nh535ZrAANdan1JsZuuvpr/RF8/1CTb59v+Xz4X0TREO2wbZPLOylai39ZYl4R8o2vrs+KK5S879VZBzpuVIAG9ZfnmZFEoRAVRT38WlRytKanjqFsRrbgXL7FvR27sbk1l3o7RyzhHH3BPrjBYqJPspehbJnr9eZRjFRIB/M0RkyyAc7KCd6yAe7yLodZJ0c+WAXyDtQ3UGogSEg71izVJ3V/ov82YqNjthYxtTdoKuU61HpmsgrQRxJGQcAUpr5RgYplFlu1X2nNvJnWav1VT0PJIHkbY29twkzive+9714+OGH8c53vhMrV67E5z73OWRZ/e/A//k//wdnnnnmHLYwISEhARgd7uDVJ67Cq09cBWMMfv7ITq8+3nb/49jw+G589pZf4bO3/AqdTOHkw5f43I9PX7EwqY8J0475uWIRC3PPg/gCnpK7G1Ee8EFZDGDNz3h0TkbAZKoKqTTyIDg+WiqRzQhxbSV4kcUzD3qj5DlJMqQPGI0LtdvVFQ3IA0Y22swytQagm5EhlQ5MBu29sjCgjQkjmvpjxWQ9Nrx/vH5qO/Nn9MfkGIrrbB9rU0bp10qbDJKE8IBJDZjK53Qk4sN9M6k+8rsLFGvZ1hjRjZBhE3u2RK6BxjOW95E5FquxHTagzdhOlDu2YWzT45jcthMTW3agmOhh9+ZxFOMFyn4J41RFU9m75YM5sq72BFJlCp3uYJCPUWXakcVB+7fThcqtD6NXYF0fgwjEfLzYu8hJn98s4vNNKUf8Cl8eKnOqm/Fk0o8RjVlV+fkckDyXMiNoF6mz9J74KHeS7FbtZqwzCamQT1edByCGh4fx2c9+tvX89ddfP4utSUhISNgzlFJ4xspFeMbKRXjrqUdhbLLAzfdswQ13P4bv3P0oHnh8HDfdswU33bMFV3zzZ1ixaMCpjwfjhU9bhtHhSCqzhIR9xLwijIGKKM3Z+HFJ1niuPqmQsYVqI+m2NE2M1Q+2EC17UULAU1zwRTKVNzIID2873df9lfkgyfywoTpx4kRmdkBDpfIklqt6ThH05pq8WrGrZVW8zBJvRJ6RVAsjfWrtu1Bdg2ivfJzb6nCEvuHvFhDnqdWrWJmg/5RTkkiyqgO7RFNDyOi3bePA2smfmUw7ItNJBMomRULtTcBUpU2XMTGGauc2FDu2Y3zLDuzc8AiK3RPY9cgYdjy4A7s3j0NnGipTzhTVRkHVHY2OM0nNB3PoTKO7oONMUHX9N7PBbVTesaTRqY3odN0mTj3vGs840nca40AplIj60pY1meRm2HQ9mVMD1vcQsBsBWRgt1V/j8jDa8u65UB0swE+QQ7ItfUvCrODHP/4x7r77biilcPTRR+PEE0+c6yYlJCQk7BEjAzlOP24FTj9uBYwxuH/Lbtzwc2u6evO9W/DIjkn839sfxP+9/UFoBTx77WJvvnrCIaPQOqmPCfuOeUUYozvpTAGQ5LEthYFVJMuwjthCVKhDjSAmVWXVhhhh8Qpcvag3Og9y5BmlocqiDrghyESbX5KS42CaAXFa/7kwzAdSXOvTYSgNk+lm2ghGJu293HGtYdAJFSAac0pJIEk8b48JfRhlABR6Bp70xkx8OQGh3+L6cAwiz9sRDUn6G/k7I0SA1OyoaXRLvxsmzrx/Jozw6Y/5drbME6Es+nQZpCpufRST23bh8Z/+CpPbxjC+dQL9sR62P7ATu3b1sL1foe/6kCmFjut63wArdmcYXDgApRWqskLZq5VF49K1BEFuiCzmViWmjRLDfV65ihjZbGmMpxhXH0hJ6TqoUZbDMJ9dbxZN9VJwJ4pyyp8Pj85b9mA6w8Hz4nPTAD4PZPA8yAR4tkyGksIY4Hvf+x7OO+883HXXXTCkTiuFZz7zmfjUpz6Fk08+eY5bmJCQkLB3UErhiGUjOGLZEXjTC47ARL/Ebfc/7s1Xf/HoLqz/1Vas/9VWXHnd3Vgy0sWLjl6GU49ZjhcdvRzLFw7MdRcSDhDMP8Iov0fIgF+Mx3IZylyKQP27EbylGZgmOKYREi6gztNGvwURbaiJOlI3tS1itiiDbvDrPVmMBdTh11KbGen1ZEVV9XE+Ptx3z9R5LW0Ze577KlIkS/sX8SA/jDgH/WxTIbk5o1QYuVoV21RoI6x+bExNFmVZTpQ9uctC4qw0jBYK5VSbGwwyJ6bvn9KBHyPNST7HGubJVIdTFquxHah2bUM1thPFtsex+9Ft2HH/Rmz/1VaMPWIJ4+M7JrG5V2JXUWFJN8N4afB4r8TmXgkNYPlAhgW5RkcBS3ZOIutqmNL13c0J3cmRdXPrrzjgTFGdSar3W5TPKTKusfkR/JabDeRnrHM731DViiOrWxnAFL36nkUJ0xkI5wyfJ6YCip7dXOGqI90/thHC3xmuNifMGu666y6cdtppOPbYY/G5z30Oxx57LIwx+OlPf4qPfOQjOO2003DLLbfguOOOm+umJiQkJOwzBjsZXnS0JYP/D4CHto3jP++2qTv+65c2dcdXfvgwvvJDmz7ohENGve/js9cchDxrrn8SEgBAGdPmkLX/YseOHRgdHcX27duxaNEif7y3+UH7RRIAvhgFarNPSc44GYiRiJi/GJ2W5CVGqFToX9hIFk4qGVf3+hNBvkP/N2ZGJxfVVA6o6/DpBWriFRBJqlfcx5OQsmDmlSL5PB+vLA8X70AdfZKNrydQNLbcTLNNhROKcOx4kHIiVof8vTeKH2s7BcyJ+jnSb1KSdObV2TooU6R/kpDEVO1I+3yKFWpqbPOAj2lRWEVxfMySxZ3bsHvDgxjbtAW7HtqM7b/ajt2bx7H1sd14ZLLE470Sj00WyJTCaEdjvDTYUYRtX5RrHDKUY8VAjiVLh7BgxTCGlg5jeNkIBpcuwvDyxRg6+CBko0uhRxZBLzwIesFBQLcmZcHcj/V9DxsFMQLZ8IPkqrBipsKMrPL0MIGqz/yQVdmz8znLm21QOlCDfWArZhpL86ZzyDP8sbZ/154oqL4td92CRQsXPOn6grp37sLS454/bW2dLfz2b/82yrLEl770pUZQCGMMzjrrLHQ6Hfzf//t/56iFs4PpnmsJCQn7P/plhR9s2OYjr9750I7g/MLBHC98mlUfX3zMcqw+aGiOWpowm9jb/x/ML4URaJDDxjm5MCW0KRdiMRpVbjiBIcJFdbgIpHaxyNRGkdCdzEi9OaXS1i8qy8O6ndqnVOX9o6LJx6ldmn0nwkZkjvokryNTWrrepQcIFtdgRMj3L4T3qXM5A31wHJaSw5MrqeJSs6XaFiOLbgzp+QZ+lzFwhZna4AKh7JP5ntKAKYNgNv64bXz4m98fCMnx3iif/DirKwiA1EYSURPaqjdh1UVGFrfd8xDGNm7Dtl9tx44Hd2LjeIHHeyUeGu+j77rRNwYTkyKXqcOuosL2foWRrMLCsT764wU6EwVMWUFlGrqb+3QaQdoWQeQ82ZfHpwJXJsW7a7JudAx9nkwOCm6lWBv5vyX8L338XGbPUdf9aFy/t3MrYUbwne98B9/85jejEQSVUrj44ovx67/+63PQsoSEhISZRSfTeO4RS/DcI5bgf77iGXh05wS+e/dm3HD3Y/juLx7D1t19fPPOTfjmnZsAAMesWOCD55x8xGIM5Bk2bh/HfZvHcMSyEawaTYTyqYT5SRjpr0xTsSdSGFvQxVIbyOtM1SRtpE4gsoinhaaGJzhUH6kRSiz2g0Ti3uzN1kM+jq1KC9XrCJtXC0kFbVMDdTheQUJ0kEoif6v4ApvaFAlAUucrFGVVM9ontUWxMTf7uCAPrjHMl3UqgsnrNzZHIhGORh5AGjdPsJUNdhI8Z0eU0TIvJTHeyz5ytbruX21EUE2Oe7/FavsWTG7egp0bHsHYxm3Y8eBObNuwA/fv7mPTRIGt/b0nNxWAXmUwURlM9koMu2sp4I0pK+u7SH6MHEJ5b+/cFKrrnhTZyPsemLrSceOiKlcuHU/eDQMHub/+fYqlkAGCd5o2qRQKoJwiyu4MQfH5MI11HojYuXMnVqxY0Xp+5cqV2Llz5yy2KCEhIWFucPDCQfzmSYfiN086FGVlcMdD253v46P44QPbcPcju3D3I7vw99+9D0OdDIctHcbPN+2EAaAVcMVZJ+Cck9fOdTcSZgnzjzBKsz76O4Xi6L9LdYkUP8VUPFmXXHAyRa9hpsohFEYK1x/0gZlw1qabJaCrkMyRIijHgMxJ+aKVFo8l8xmsKgCuTp4/rgI75pqq4ILiuB16Vo9XbKhvXoUpfF8Cs03XzkDhk36a9JURYh/oRSzK6RpukhkoVVIdjj3z2DwRJNYfdkQ3yNWo2Pgxcun9HyP1NxLJx1QtkTokrKBJpgMlWCl7/cSYjYjqyGJv61aMP7YNE4/vwNijY9i9eRyPO1/F7ftAFgnjZYVdRYVeZaOnkh+jh46MbWTsG0GNYqqyCfOgKlNZNVH6Dra9qwSvKurG81HGwPBraPOIxpibewP2HclC1TgI1qRz++7wd282ULG2TmedByAOP/xwfO9738OaNWui52+99VYcdthhs9yqhISEhLlFphWeteYgPGvNQfiT04/Gtt093PjLzT54zqM7J/GzTfVmWmWAi798J158zPKkND5FMP8II4SCRL/9D91cjLaYQ7aRh4biEEPbOaWbZDGmUlRVsIA1yhKUILIiX7QJ30RvtgpHrMg/kcr4RW4Vrc+b7FWiPNyCnn7HFr9EQJVupCyxfVG+7w2ixMggJ4kN8kj94qDxosU62LPfF/NGqUzH6qdzNLZZJ2hrkH9SKsxAoGoqzqv4NYLoNv4CjbneuB+NVdlHVfSBoo9qYgzVxBiKsQlMbNmOXY+MYdcju7F12wTGSoPt/Uoaa+4VxkuD0hj0KlMHvWE5GFH0gcym1EDesUojjQGAqO4W29QJVG3X0qqwdQgfYD8GsfexbUOHKcD+PCOV/p60kVKF9bT5zvpUIdm8/Gf3gMA555yDd73rXXj605+O448/Pjh3xx134IILLsAb3/jGOWpdQkJCwv6Bg4a7eM2Jq/GaE1fDGIMv3PYA/uzLdwRlSmNw/+bdiTA+RTC/Vi4thKCRXoGXl4tROi6+87QUXHUEpjDP4oFpYuoKh2ZpM/i9WbCawNxTBtUJ7lkvTr0yysvL5vJcdKxcgzRSf6u+VV6kCkZw55Sp4FMkZHkdDTM25nLsOWGSZbmaGCMIoi2ejOzJjK5N1Wohrg3Vi+4nIsHGyjSIqbyPJI6CTPNx5Eq2iall/rmXMJNWYSx37cLktp3Y/eh27N68G9sfH8fmXokNu/uNgDZ7C7qqNAZVaaAyZf0XM5eDcXDERkYdGKrTabDxUN6nVPQ9Bnr/iMDRdwpyw+cVVyFlPS15LxVcYKOqglLuOlfW8HtCzBGabxFlM0hpM1XfphvG2M9013kA4qKLLsK3vvUtPOtZz8IZZ5yBY489FoCNnvqtb30Lz33uc3HRRRfNcSsTEhIS9h8opXDq05dDK6ssErQCDl82PHcNS5hVzNKKZZYQy78HRM3ZYh9vrkm/meIYRBJli1O+cLUFplAw29okgtB46EhdHG11MxO0QA2JlScyuSdCS2XJtLQqmxE/qf4sD3LYcULNA8sE6qLopzcv9GOR14qlu480LQ1MVOm+9KkK6xtK5or8I4kaJ1zSHJL/5nOl7Ndj4ucPiyZLfntt9cSIMe83ewZtymswBqIuU5YwRd+apPYm0NuxG5PbdmFyxyQmtk5iV1HhvrHeEyaLhB77v4kmwtjpQHdcSo3uIFTegcq79fjqHCbrwui8SRbFuxXkGJXvixK+kG0bCRGC2IC8j3uGJusArq3+uRtjN3zybrjhUhVQRS9MYxMhkgmzh8HBQVx//fW47LLLsHHjRlx11VW46qqrsGnTJrz//e/H9ddfj8HBwbluZkJCQsJ+hVWjQ7jirBOQMeubZ6xclNTFpxDmr8LYohbRgjNQYoj8mSoMVOMXii6xeFVAlYUPVtNQOACx2GeLXR5gRoJUQd7eGH/jdbeRUA4K+98gFSYI1EKJy2uTu6bpaJCM3t3b6KyuT6kgzYdMMi9TCgR1tZGztj7za9j5wF+RpenwJILIfiz/ZoywS6I4VZupvAySFPseKMJFvO+xOcWu83MPAMqejagr+8XHoiqtwliVML0JFBM9lL0CZa9Cb6yHB8YLjEmfwyeAXmVQGiKLCrqTQ2UaWSe3JFHbSKmm6EF1usH7lR9q1Z5iwx3xyqcix5H3wae0EKQ8qjQSKKdiVdSBjZRQgsW8qNOouLmumu94ELlXvA8zDvlOTVedByi63S7e85734D3veU/j3AMPPID3vve9+Id/+Ic5aFlCQkLC/otzTl6LFx+zHP/1yy244J9/hJ9u2oF7HtuFo5ZPb9qmhP0T80thjCg/0cUSLSIrUsuKkADIhT1TQij6KS1EG4oVNUXnzcAQStfHpNJQVUDRayqVVK/WtRI5hZleYzzKolYcparHzUyNCaOVBmNlgo/tX004A38vpr763HNe7TR1u+R1bf2ZymyPPy+uALtzgdLM1clYPfwvtTFGXPlckW2UPrDifkYpP26+766MPyfbErsXVw6VhukM++9TjpnOLHEEUPULlBM99MZ6GOtXGC+r+DX7iNIAmYI1SXUbCCrT0IODUJ2OJYla1wpjDFJt5Zs34hrDjoWRb8Mxiv2lewVRROmarBMEZiLFmOYwmXkbper3soq0kUdLZu8Ef5cS9h88/vjj+MxnPjPXzUhISEjYL7FqdAi/ddKhOP3YFTAG+N/fvXeum5QwS5hfhJGpgzG/Qn4sIHwcLYtMWjTu0WdOEhc6Jk0+iSSS0kB1lXVE0YDs+T5G6qLjkmzyemMkzdVrdNZIPh81+zNVmG8wdj+q1/UjMMtUKvwuxsMv0GV9csylsiTNVBmJ5+lOjFzM+/YWNdmjjQTRNr8xELuWKVe1CTDPn1k0yDgnC42xj91jis0PAH5eerPONsW2rNtR9guUvRLlNBKXBbnGUKbRHekg62bojAw6dbFj/RaJLOZ5SK6qAsWGO6y62DbWrL/+Wv7c+Xn33T+TNtXXVA0CGXzX4caDYYF6Gm107yafB946ga6hdy7vNNOxzBCoPdP9SUhISEh4auKtpx4JAPjS9x/CYzsn57g1CbOB+UUYGUkg8AVOVIGIRflkZMmXi6UzkAqXiGwKIH4skosQYpGvir49l+VN/0MWldETEadaQOkwPUdkMeyJG09O7o7z9BCBCsIWiKRGBudiKimRQH499S+isDQUTjlurA8N81R+TIypX/DTeUYwAz/JqYiKGINYuxr5IHl9jjRyH06vXNFYSBLCzVX5/R0JaZDrGIkBI6JVCXS61o/QPXud6cAn4cliQa4x0tHIh3J0R7pWXezmznexC/VESZLsV4wEBmqu9YMN84RWU5YHED4z7eroDFnfRaF2+uvLorm5I9rrU9nwuZqipSYkJCQkHIB4zmGL8ey1B6FXVPjMTffPdXMSZgHzjjDGdr+l2ZqPoqhsoAo6xoO0qKIX1i0X7dIUjhaD0uRUkLLgHFAvGoWCRD6Bvr1gi1pSGblSp1hgFZ5ig/kVBmCLVU9YOKEMxk+F9bP+eBLklVVGimL35cqlJDj8tyBVMfNT339O1FpIo6+TE0wgvhEQaZ8R963JXiXaYxVOVfaaBIWTkVhfZZuzbqi6ElEEQvPVgMyHaqrRuS2rM4BUPgC6myPr5Mi6GqUx00Yau1qhO9JFPphDd3PkgwPoLhyGGhqxqTTyjlUXuW+p6EMANjak8vpNIK68csg5ouMBmHzZGOi945sKZQ+qP15vSnETcVNBFZN204ORR0XqdVmEmyzlHjYnphPyXZquT0JCQkLCUxJKKbz1xVZl/Owtv8LY5Cz65SfMCebVFndgNqh0Y3FIKqNPM6HRJBmAXyhGVUnAB8ygKKlBFERXNprYmtJWALVfn1MSA38poZBSfSqrTTNteg9BauneShBFjcCH0RNCMo/jpEtWx4hEcK0/GL+uDpwT/g76GFt0ykTqpnLkIm626duksvAeckykKuSVziogE2059Or7hQFTDE8UT+RCKpWxMaLnqLNGn+q6s5qw8pyFpjkOso2+DtdnlWVW4XP5D7XWjtB1cNBQBwvGCzzeK59Q/kXColxjUCsMLOqiM5RDaY3O8CDUwCCUznwbAnVUEMIYsTPsXQyipEbeXXtBSOL9WHOSye/P56J8f6oCquzXdfE6KjGvuOlq3q39FXX9rG3fDGBsoKn+Qz9D55BnPIlR3wvwDZzprPMAxFlnnTXl+W3bts1OQxISEhIOcJxx3EocsWwE920ewxduewBveeERc92khBnEvFIYaXHMFTnvq0iKEMsLWF8o1KLIQjRGPv21HDIVBgv64heitBjN8oYJHPJuu58iJzdV4dNX+GvpHuKacIxU3S7fGaZcMpWxkbzcEc42lSwwKd0bJSI21hHVibeDvnNT1wZ5iqiUQYoNqRyKaxUzBY36wsoNgljb3W+TdWqyF1E/TXe42aey58dTRRb7Dd83poQFPre+vFUZVd5x5TXykUF0hgfRGelgYFEXy7oZFuRP7p+D0Y7G8oEMKlPIB3Pkg13kI4PQgyM+pUbgu8jVQvZ+tvnHNQLTtKmDMcSu4XOX39NYk3DVn/DBsYxSMPlAbVoaeae9L7AniHloQUDVswBH0UBTCTOG0dHRKT+HHXYYfu/3fm+um5mQkJCw3yPTCr//IksSP3XjfSimKXhewv6J+aUwchWCdvZjShYjhtGAKJxo8MtiC1Tps1RWNekDoIoSqPoweiBsR5bbhWfgQ1fVFF4u/J06qRTLw0eLbkX1srLU76lyLBqx6OWqaKCsCpIozTwBNHzzvBpT12WUavpEtimNdE5pplaGaqevx1RQsh5ef6zeKcZDki6uQhql7ZyIlWEqY03syynnoJ4cawYS0jXJsL5zyimp9XgZpaAQUcaUtgqoUFJtu6xpqh5ZhO6inRhYvBDdx7ZhcPEglmwexyFDOXbsjKjWe4FBrTDaydAZzNEZyjGwaBADixeiM8LyLuadYL63mYfyQEXRcrwOyr0aUY8DpTGmADPrgEDZdM9S6Rym6Nnrso5oAymQVfBvgDIGhtUDoPYvdrAmwq6vEPXOBEzpo+NOa50HID796U/PdRMSEhIS5g1+89cOxZXX3o2Hto3j63dsxG8865C5blLCDGFeKYyBuRgHX0yyFBN0TVCUJ3jn5YBmhEAiWrwOQQ54KoWgDOCSfbPw/XwRSgtOYcJa+yfmvr8x30YPIoKijQ3zTX5PRnZaTR+FuhglRG3n+PlYfdQuTpxiJqlCMfTPjdehdJ1onRNtTi6ouoyZS/KmSYIZqMLkU8iUJN52HoE1Au6DSn9N1vEfZM320Di0mTG3KqNZBj004iOWdoYH0V04jIFFA1i0bAiLOxlWDDyxoDQrB3OsGMisOepIF91Fw9Z3cWAQyDJrlpp3WfvbdyIDJVG8z943k5FLudFDKmXg5+grqAk+vTs8WFGQW1X+20BzL/ae+utVfbwsrFIZ2fCAEhs0CQkJCQkJBxgGOxneeMrhAIBP/ue9MAeou0LCnjG/CCOlc6iqeqFNi7mi5wNNqKpsBKdpLC6VDYjDTVxjJo0eStucazy/HG8HEdUqXGBS7rYoXJ3+LwvbDzLdayEHrWqbqs3nAhVRRj0FQuWLR+bkYyHvNQUCsucVUJHXUIyv0ZklTvz6lmfQmh6Bpb7w18cCpkSebzRdgxbmzME4Ft6k1P/mbeIEVZr80jFPRkVZqtPnAjTNZ+BUM6+4sQ0Oo5QNfDM4Aj28EEMHH4SRVUsxtHgQw8uGsHx0AGuGOlgzlGNQ730QnNWDuTVpXdD1dXUWDqO7aNj6TQ6O1OaoAg3CJ8l1xMQ2unHDjoc3iKTOidXPf/M2Ub1VWbeNbdD4/KSUPoau6Y1D98ZYP5tpZPy/RTMMU1Uz8klISEhISDj3+YdhqJPhJw/vwE33bJnr5iTMEOaVSWpjoc0Xj1nuzTNNRE0DEJjEcaiyVxNMri6ALVi1bpI3UyGIIkJqHw+4wxVBr06xKiLt8+RWLmxjY0KElI9NWdQk1LXRKDdGMjos4IOvNNRG2W46JkmMVN+Cyln7GMnxtzAGqPpheTBTRJEyo5HawlRQZa+ZP5MpTcF1/r5M1dqTGSWvy1gzZsMIfRSc0JHZKhixMBWAcCx8e8i0N0baOYlyKrSpCjs3dA49MAQUfZjeIujeBIZX9tDbMYayV0JpDZ1pDG0dx4JcY9NEga39qYnB4o7G6sEcK4ZyDC8bwuDiQQwtXYTBgxYiGxyAHhy2qqaLzuoDSrnnF6iJU4ytnOv+Gk/ecpiKqe9UvyvXCGhkqiDlBh+7RhoWU9kIqU41jMLYYES2zZY81r7ULKiUO4dSmHonJCQkJCQcgFg80sU5J6/B1Tfdj6tuuAcveNqyuW5SwgxgXhHGziHPQP/hu+sD3JcJsAqg0tbnjxZ+ZdEw41RckaJFaabFYtz9bVtAElHTgsBwtCl03ifKLfSzfI/ROwE0o0hKn0SXV07JcaE2EpH0pFjWr9iiWNQtQWWkOiv7GyMBsjz95uocHw+WJiV2rSQKQfva2s3vKZQrn5ZF1OX9G2HnkNE5TGdoShUpUE2VVay8CXNLTj/APYuKqWekmMpUEK593q/RVEDegR4agZkYQWfhAiw4ZDlUpjGwaJvNn7ixg0WPjGFRrrG1X2FXUWG8rFAaoHTt7WqFBbkli8sGLVkcWjyEkYMXYuCgBRhYvABqeCHUyCKbg7HTDZX6oC/1uE21CUK+pNLHMTAzblFa/XtBxFxuILBn0DBZ5uW4f3BZhNeUvXouApbEkr8izRG/uWCayvdMoZoBH8YUrCchISEhweG8Fx6Bf7z5fnz3F5tx18M7cNzqRXPdpIRpxrwijAD87j2AJmHj4IFgeLAZXg8pksK8jwfYUFneXHDKe/DFp0azLXRdWdTtIOXJuDQOPNUEb7NqSTkg+4h6kWzYojZQ2DQYAZGKKpxq4tJASFUwhhiBaxsrSWIjpojB74iS2BhP3kZ+LRtLw8wMTdapUyiw8ZJt5iaOQYAZ3kznDxmNHMvbHYGqyppoMNLfyG/JyJXq92B6E5YI5gNN8uPubbIu1NACoOhDDy+C6fcxdLBto+7Y3IlZV9voqZvHsWKiQH/CptwoDdA3BiOZzd3Y1QqLnRnqyMEjWLh6AYYOPghDBy9GNlwri2pwxJoVM6InyaNpmUfR/IlEGp2K63VvWSbwgY3MJz6HgAaB47lQg3KOLHozVU4+2yLoli49B5F6OY8TEhISEhIOUKxZMoxfP2EVvvbjjfj7796Lj5zzrLluUsI0Y/4RRkKMjIAtPCl6KDcTlXBmgZwkGlYHJQSP+khRvaRqcgWKKVdRgunabDQAZDUp5H3hJrARBUwJktO2IG+FDOxB9wYQREhsUfUCcHUnYgIYbZdc2Mt+GmZSKJSl4Ho+xmyh7nM3srJ+QQ+gYQosnxVdQ0FtWBsCoimJG1fPBAH0gX2qEqoCWl3HRb2qKlDt3gEzOWGvXzhQE2JSK1UGH0xX59Aji2zUVABKawzpzJHFDvLBLoaX7sbkqgn0xvroj/WwaEcPZc8+96o0KHslugs6GFg0gJGDRzC8bASdkUEMHLQQ3YXD0MMLra/k0EjguxiLZhrkO50K/BnwjQ/5/sU2MjgR1Jl91ix9Co1LAywysckHbXt7uz1Z9O8l34xgz0hVpVcV6zqL5gbQTCIpjAkJCQkJM4y3vvgofO3HG/HVHz2M//mKp2P1QUNz3aSEacT8JYx+ISaUKG7mV6GZ87AttQQtSpny6KMsCrVE8fuw9B4ySAddY3QOVfSa6S/8QrZeWNNxuqe/l6l8zrfApFYJ368IwWxcw1NxmKo2k5QkLqK+yfvwexl5De9jW2ASUT5qjkjjIO8hCEbwPGP5gvZF9RFlGhsHfFwEaWxEfPV9MIFpqW+jVKXcmKpiEqa0ZEDpDOh0obqDnkjz6LzyXkZnUN1B6IUH+Wc9oDXywS46w4Po755A2etjctsulBM99Mcm0R8vYKoKprR15YO5NWFdOIyBxQvQGR7C0NJFyEaXQo8uhV54kPVd5O/InsbUCBVfzHuf9iIg3i0kn8au8ez79vdUAXboGnr3ZP38+UYIK5kk+7GXGyryfZlBmLK082Sa60xISEhISCCccOgo1h25FDffuwX/cON9+H9ec9xcNylhGrFPK5ZLL70USqngs3LlSn/eGINLL70Uq1evxtDQEF7ykpfgJz/5SVDH5OQk/viP/xjLli3DyMgIXvva1+LBBx+cnt6ALYwJ5Gckd/Ll4pI+WV5/NDu+N0qAVNvoU1XNYyz5d0A0KrGo5OSTHVdFL1Rm5F9+Pf8NNMhisHiVaTwcwaEoqo1IpTyyrPwrF8SxRXKbMskW+bK9MQLso23GxoHfR46HJM58c8CViSnItFFgOsNWeVLWP7Qx/oKsoCrqiLSSVHpVyqqWiqKtAmFUV6WhiklU42M2T6DOoBaMAlUJ05uAKiaCOS1zZBpqqzMX1QsXQy8+GNnig9FZtgIjhx2CRYevxIJDlmP08FVYdPgqLDpiBRY/bQUWH7UCi592MBY/7WAsWrsMCw5ZhpFVSzGycikWHLIM+aJRqKGR2hy1w8ZE+p2KcW88X9dXP9ZEdok4EgFn59qebRClVJBv2wBdRwUmUu/Hnt5XliJFbroIZTvYuCh7jfQgwb0TEhISEhLmAd566pEAgP/zvQ3YPt7fQ+mEAwn7vMX9zGc+Exs3bvSfO+64w5/7wAc+gCuvvBKf+MQncNttt2HlypU444wzsHPnTl/m/PPPx7/8y7/gmmuuwY033ohdu3bhNa95Dcrp3rHmC0hJgoCmsmgqGyGUEzpBKr2a6FJd8IWtz984FTGlNvD0HjJojlzI5t0GwWyooJlQb2IEVypvZVGnGmF54wDUZFlCki6h/gRE0Ss0NmBPYKYp1aY9KC1cVZQJ3YN8e3zceJvb+sHbuSciKwiNv6e8b0zliplHtpBnHllVFZPAzs1QY1uhxndA9XdDlT2oYgLV2A6YnjVBxcAwAEAvOwRqeIElsLwP8rm4FCkmHwQGhqGGFyAbXYps6Upkyw9BtvwQ5AcfgsHVh2DksEOwcO3BjjSuwujTDsGiw1dh4ZoVWHDIciw4ZDkWrjkYgyuWIV+y3KuKanAEKu/afJL07AOVfmoC5ceBvVtB0chGiU+rQfXTh9612PORv7Pc++laxZfN9d5u+ykmg2uUnE/8PlNt0swWYeQpfabzkzAjeO1rX4u1a9dicHAQq1atwrnnnouHH344KLNhwwaceeaZGBkZwbJly/DOd74TvV4zwnVCQkLCbOLUY5bjGSsXYqxX4p9u/dVcNydhGrHPJql5ngeqIsEYg49+9KO45JJLcNZZZwEAPvOZz2DFihX4/Oc/j7e+9a3Yvn07PvWpT+Gzn/0sTj/9dADA5z73OaxZswbf+ta38IpXvOJJdocpCXJBLskiLdqrCjDCl4ktEo3OQ3NNf59IsBnm7+cTq8fuT0oJKh8BVaEI7uvLlUVdHyoffIbKkVlsEHyH7kdjoBElkb5OpZvKJv+d5TBlYSOk8jJAaGooFsnB/SRhBQLTwyB3oASRc07a6LkE/anrbtQlvvv7sYinSrQtgCQzsh6JqciAzM0oTVldW6rxMZRbH4XKO1CdLtTwQpsSoyqtv2JVQg0O12Okc8CpneHARAgqJyxZFxjQ0N0BKGNQ7twKDI3ATE7AVCV0bwLZ+BgM5S+tSvsdsHkWu4NQnY4jibat0Brg6qJ4fn7eGuG/6MoFhJDGKOv68Q/mQ0SdbCiWpK5mHZ/GhEx2PZk0VR0wy4+RYmVqv0Vfr5zX8h0Q7ZryHUlIAPDSl74UF198MVatWoWHHnoIF1xwAX7rt34LN910EwCgLEu8+tWvxvLly3HjjTdiy5YteOMb3whjDD7+8Y/PcesTEhKeylBK4Q9edCTe/c8/wqf/636c98IjMJBne74wYb/HPhPGX/ziF1i9ejUGBgbwvOc9D5dffjmOPPJI3Hfffdi0aRNe/vKX+7IDAwM49dRTcdNNN+Gtb30r1q9fj36/H5RZvXo1jj/+eNx0002thHFychKTk/Wu/o4dO1rbR0TN/o0UMI50aYQBXYAwKqWpAOVIiYtISn5MnqyUhSVqsHXRwjOWpJtMOX30S3vDWqGIkU2tofqTNnm9rJMWnkXPpsmQaind05RA0YPp5uHiXQNGRnGldrC+oOzBdIacyaVTfFgkUUkCpXISLO450eKkmJMuTqA46WOETgEwCEk7OIFkZdrIUyNq5lSKDz1z0YcYwSVOLf3wgnFuux8nR0pb5a8qYYo+stGlNvop4BS3EuX2LVDDi5oqom+D9T01qKAg2sHHgZN2ANnCxTD9Hsxw6XI2TsAMjljzV0JVwZDvZN6piWLesb6RA0NRn78gGJPOm4F9TNUghEZpKJ/TsEXBBcKgUJE6G9e5MYp9p3L0Lpqs495H2HdCaU9gjc7qiKm8DzyfIw+MxOdebLNhuuFI/rTXmTAj+NM//VP//bDDDsOf/dmf4XWvex36/T46nQ6uvfZa3HXXXXjggQewevVqAMCHP/xhvOlNb8Jll12GRYsWzVXTExISEnDmf1uND/77z7FpxwS+8oOHcfbJa+a6SQnTgH1arTzvec/DP/7jP+Lf//3f8fd///fYtGkTTjnlFGzZsgWbNm0CAKxYsSK4ZsWKFf7cpk2b0O12sXjx4tYyMVxxxRUYHR31nzVr2iefT2oOBIFbgsWyVNCoDOVkJHAz0FKoQECd+D5QM1hSddEuX7ZiC8WyCFREarsyBigLn44Akny4epQxtWkr/wA10TQVVDFhzRlZwnuTda0PXmfYfte1KSoRVCIpASLmgNQmxckeEC6ag/EQhC2mzNB4RT6NQCcthCC8aeV8CCOpD9gYBya0KjQ9jrUhMJ0U5CQ4FmujCoP4EPk1WRemuwBq4WJko0sBAFVnCCYftJ+sA71kZZ0cvjMcmPp6f7wYCeZqmDNP5f02WQfoDkANDkOPLIJecBD06FJkzs9Rjy6FXrzcf88WHwy9cLH1hxwcsWQxCLhTj02gMFPewoDANRXe4Bh/Fzhhj5F3Rup9/kZmChsQxMg4+THMcpjusB93k3U9WfTKpfN9DOaFVJL5u0tjn5AwBR5//HH80z/9E0455RR0Oh0AwM0334zjjz/ek0UAeMUrXoHJyUmsX78+Ws/k5CR27NgRfBISEhJmAt1c4y0vPBwA8Hf/eQ+qqjXme8IBhH0ijK961avwm7/5mzjhhBNw+umn4+tf/zoAa3pKUEIJM8Y0jknsqcxFF12E7du3+88DDzwwdX1uoaeKfnzBzBeWWU0MkOWhKSdgCRQFwQHqxT8RSEE8vTro1AlVTAa5+JQxPvKiV/Ja1C1PHqsy/DhiGdRL58p+SJjJRK/oN/0l2Xg1zHGVDhbBfBysSjoFEYwRSkkEfR9b/CD5byqjWGAZRiJkmpM2c8VAvYqoXwFRpL7QPbjPnR8rEVCJffemyrFInKKewL+T+kgkLuvC5AOoOkNh2g/WVj8mvt31uxRTzTiZazwrag/5OWYdYHAEangB1IJRSyCHFyFbuBh6eKElky7IjR4aAboDdpNBEMFWBVeqnvI4Lxppa+M5y/GP1SGIa+N+RAA5aCzc/OcbQPW717Mk2EES5Gh7Z0FhNM6EeLo/CTOH97znPRgZGcHSpUuxYcMGfOUrX/HnNm3a1NiYXbx4MbrdbuvG675suiYkJCQ8WfyP567FwoEc9zw2hm//7NG5bk7CNOBJrVZGRkZwwgkn4Be/+IX3a5T/w3r00Uf9/9xWrlyJXq+HrVu3tpaJYWBgAIsWLQo+ewQnPEQGeaAbvpDzREjs+JMaGCEEAGzQGMArk7SQ9OkRABf0JQsX6lVdb0DWYt3ghHIqtYgfosUuI4iBwgmm1pQ9S2r7u6H6E3HCxu/lxtLobGpTWd42oWZJgtfoR0Qt4vVLwiejanoTy0CNLeqyXK2lMkxpI2IZzQ8Y89nk4+nuFwRCYWU8oYj1MUaynNoIIpH8WkEUAwJDGwqmNof2mwfGxMcgorh6YuraYNVHq7RhYAgYGHaBbTJHqLrBexQleVxd5aSbjbesI3hu9PEBbYqQ0DPESGMwvpLwA/599cGtdO4jBdf1sjGVEW1jmwj03lWFVfvlZkPCvEYswrj83H777b78//yf/xM/+MEPcO211yLLMvze7/0eDDefjmywTrXxuq+brgkJCQlPBgsHO3jD89cCAD7x7V/ipns2Y+P28TluVcKTwZOyiZqcnMRPf/pTvOhFL8IRRxyBlStX4rrrrsOzn/1sAECv18MNN9yAv/7rvwYAnHTSSeh0Orjuuutw9tlnAwA2btyIO++8Ex/4wAeeZFf2gFhAGTqu7V9FSmLJTBalX6OMSErlJLEMSEzo4+TVMiKQfFHfBl4nLTblop/M5ICatEpFqaoAOFLRG6+JNZg6StDaBgFhY6WqfkDEA0K7B4WIjksSwf3++O/gMj6e9FvpJlkU9+XEzSd6b2kX/Y3m9aP2CkJNidsbwVZ4e+TYtJHhGDlvK9NG5tlGRaN8S3+D8zqHKiYCpRVK2+TzYs4Ffnps3OgZK3EsGBOm4kbTpvBy/L4EVsY/VzEmQUAqej60cSDroX7S/Cd1PnPX9ev/0QUbQtRH7qPIxljFUn7I8Zhp0MbXdNeZsNd4xzvegde//vVTljn88MP992XLlmHZsmU45phjcOyxx2LNmjW45ZZbsG7dOqxcuRK33nprcO3WrVvR7/dbN14HBgYwMBBxL0hISEiYIbzlBUfgf//nvfjhg9vwhr+/FVoBV5x1As45ee1cNy3hCWCfCOMFF1yAM888E2vXrsWjjz6K97///dixYwfe+MY3QimF888/H5dffjmOPvpoHH300bj88ssxPDyMN7zhDQCA0dFRnHfeeXj3u9+NpUuXYsmSJbjgggu8ieu0gBMIRv58MByKkEi8yFR1ZETpw0igY7RGorQYxthAMHRftzAzmt0PYpHLF5c6s/VQInEJuSgTigRPDh6oW1Ul1DKmxoGC4TDVA8yUMUaSvGmrU7AMYDQaZYNIp21K4xT9kYSuQdw4UYmRU0EWZD1c+YtGrWSqGvncyXsH5alONGGybn1OqniNDYUImWsjeBFSHPSDzzHmhxkl9C1E1tDGQ0yBZL+NqN/ItDKSjMr774ksxZ4Rv1a2PUKOg80H8e748+5Zkb+iLK/o3wWlWUocER03NufpFBHoFhV0pjETJqTJJHXfQATwiYCURQr8tm7dOlx22WXYuHEjVq1aBQC49tprMTAwgJNOOml6GpyQkJDwJFEZg9Lw38DFX74TLz5mOVaNDs1dwxKeEPaJMD744IP4H//jf2Dz5s1Yvnw5nv/85+OWW27BYYcdBgC48MILMT4+jre//e3YunUrnve85+Haa6/FwoULfR0f+chHkOc5zj77bIyPj+O0007D1VdfjSybprC7bNGoChvN0/s0uqiRVM7/NlZxMx3nw8hVRUYgPPdzRNSALf7KcDFYJwCnA2W9qCSlkeeGiywkFTej1HlNNKlK3me5uJeLarpWZVGyEKQjoTYBoQlvbKzbjstFfgwt5xqqYLRQC1lo+S1Vnpga5sdZlA9UME4slQ7JIicJZW/v1CPdJCiNsZNK5Z5IB7+epQ2JtbPxO3bPqYKzOFVOGTSJfMuc9BFnwZ414I+Takvn+fhHSZqhjQyRboONRSOPI2sD3LNSRsPwvItM9Te0AcWub2x2APUGAZ8jRgSDivQ9IQEAvve97+F73/seXvjCF2Lx4sW499578ed//uc46qijsG7dOgDAy1/+chx33HE499xz8cEPfhCPP/44LrjgAvzBH/xBipCakJCw3+C+zWONY6UxuH/z7kQYD0DsE2G85pprpjyvlMKll16KSy+9tLXM4OAgPv7xj89cvqjYIlV3LDFw5NArIsz80nQGWAL7kID5nHFUHw8eU1XB4tLfA5YQmrxjVUfhAxUlVIIwcLM+Um+CVBFcOeKLZ6pLKGsm64a+V/4+oUYW5HzkECRT+sbRYr2x4HeLa04oWnPZ0a2kOsbubXi/+XiK/lJZrhIadu+gLJESSpkQjIeYT/wZIEIo+XmuxnFwBVDOgRZ1kY9r0D5SmmOKXqw+cT54XlURBhaKqWZyfJxZcpTYReqgOSEVt4YSLI9zlU5HfI5ZeT/PmBIYBDESc9EA1p+3spsGPkIq9VfrOl9qGbkXbeiwtjbSqviLmnN6RlGVM5BWIymMM4GhoSF8+ctfxnvf+16MjY1h1apVeOUrX4lrrrnGm5RmWYavf/3rePvb344XvOAFGBoawhve8AZ86EMfmuPWJyQkJNQ4YtkItLLKIiFTCocvG567RiU8Ycy7uO6qKuuUEErVipo41yBsZVGTPpcDkROmIJJnpmtTV570217sFrZlk1zGyAH95YvYNhXJRPIL8n4IFYoviqMmnNQssABBrgttZT3xjvWJkYUpg40ANWGI3KctFUdAWGLK2d6omi0KFL8Hf9aBYsW/V4VXFxV/FpHxaBA0rhxTOSKPzDdOkrZgbsjjMci5FmsP6mdBOUYbY7OH8YrNaT+FuC8lq49HE20l/3wcAyXR2DY7ZZDP8ba0HHJOyvdBATYfaNa1z5aCVQGeLNrnU7F2RIi+UBANnfMKvyDzMopuwlMaJ5xwAr797W/vsdzatWvxta99bRZalJCQkPDEsGp0CFecdQLe86U7AABKAZefdXxSFw9QzDvCaBd/OlD6YmUaCkqsrDdNdeco7yILcFOrlnZxaX0XGVn15I2pcbHFOxghcJA+dA2TvQiZ8ed0bs3oYn2TwV9ozKbIfhIoqOx3lBzJBbokqE4RM22kL/I7apIYIzKMjCm+SGf3iZpNoqk8Amj6J0ZMg/l8CkwdRZ+DdipdEx4iVTKYES+/BwIelJXtkqREErFYHfwdaYMgSVECJeuSyhp/PqqZKxFAOF+VhtFsrBlxjyrP1C0xzxTqeeCfWdsGRUl+weH7Jv0j+YYP3S/YaPI3nwVVkYOiMk93nQkJCQkJCVPgnJPX4mcbd+LTN92PVxy3MgW8OYAxyyuXWYBXcYT5Z0DE6hyG3I8wSBPBUl8EH75QkotAxaIsuvu0LrhJJZNtjKUkANrJjlh4cz+8oE65YOegxa3LJ8fLNPI9uhyQti3KplLg92LjIpUvyu8XBFUBwmiadB+ZqoDVp6qCBQ7K4xFBFVOFfNub92mM3Z4IKWBzI1KSe56OA4jXL0kS9UUxBZNSRJg652OgwApiFSUd/Dg9P0o5Qd8lOXZti6Y3iRDoxr1ihLPtuqk2T9wYBLkL6VqpzlF1ggg3NiimajONNRFVNi9VVVjz1LJf5zU1lbVCkBYFsXbF3jH2TpKZtOFzNyEhISEhYR7ipc84GABw58Pb57glCU8G82+1ItWLgHCo6HdVlbX5mVRF+GLQma36ADqoGot0f9zdI0hVMdViny+OfcPi6lcjEmlMsSQSIhbJ4EoXlRWEy5uoxur0ZJD1SaiL/LsPKCNzDLKysfQV0j+Np2/YU4TURpunQoTI+ZkhVT5XXqpRXk2NkSVZh3iekuRE01G0bRKI/hqdBRsgQdRaIBhTI0k2r0qOcdt4y/5yyDkRI1GybsASNfnOyPvF1Ete3x4UvGiwIk74q6I2MwZcJNVOI7pw8F7R7WW/I+PI05G0BnWaRpiyhCmnOUrqNNeXkJCQkDA/8WuHLYZWwINbx7Fx+3gyST1AMe8UxkAlnIIseKWML/aEuua/a+3D6gf+kbH7O5JI97BfdPzvFGpfoDC1EcwWH8CGaWNsQS3VP5ZbkedltARNCR/H+rzvI1c1xb0Myw8ZtJXaSNdKxbWtTpEjMEBbX5myEx3LNsLJz0sySOSC+x22qJJt92kE2Ik9U6Y6Bv0Sdfv5y+szwiyy7SMJfazN8r5t4yLnmHgmRmfx59ZG9IQfJCduypiaiEn1L9JGo7TNM8nmQlTVZO2yyqwJjjU2WaYgw4blYgz8RPdAbBMSEhISEg50LBjIcdzqRQCA2+7fOsetSXiimH8rlrzLdvLZIs8v7EScSUbeAhLI6yDzVB1ZaPNFPavbL2qrwuZZZG3waTXI5JIvQDnBmSIKZLBAFYvtPeZ7a1HfjM5sVNesSchI9ZFk0l/Ho0rKdkllVRJBRr5aF/uMtARBd2T/Y4RSmui2kRm6LSeWsXGOtT220SDaSGaPXl2KKXfivorNmYaPYMs1U2IqoshIzR7JTAv5DUx1eZva2hYdf/EeNlTYelPGZB3flmBeRJ6LH28yPY1tErSRYv6u7ok0A81xoO+xeTPTqKo6Uuq0fWah3QkJCQkJ8wInH74EAHDbfY/PcUsSnijmH2EEXFTDrFUFBBAsPgkxgulNM2lhp8WCLyCWLT5OtODkoIiMPKAHJ42SHAC1v9selElSRRokJqa+caVGDpEggbKM0VmwSG8oqjHwBbMkLjGfzkg/VdmPK4+xe/E62sgiJ9sRMt5Y6E+l9tGYc8Lkx7iZLkKJ5xlEZWXXeaLJ7y82IGR7vK8c76ecO1RXLOCOHNe2fss6paKodJ2qI3YtB58HcgxZea54B/XxfrT5sJrK+8FyxU/6RPr2x8ivU5Z5jsXoBgDvj5yLs0YYp5sszkCajoSEhISEeYvnEmG8PxHGAxXzjzByYifJgWJEUjnTyyxv+hoyEsg/KAv7aSNr8jv95goimTCSmabzM/TRVumTdQOSF/Pz8/WVvSCgCZ33ZIQTDBoHvuCWYycX4lkeJeBcZVRVGaaEiKk3vH5KW8BInFU4B8KFPi24pUo41b3ks4gpZpwk8Db4Z18TOJ/nUCJGkvizlveMBbMRY87JIc+HSMSEE0xV9nykVcSeNTVNkK0G6ZXztS0YE7VHEvnY+EqyKsvxuS43Qeh+tAET20yQ4PNlindF9l0x4hcjpkG7xSaRHDf+XIN3j9+X9b01CNNTHJdddhlOOeUUDA8P46CDDoqW2bBhA84880yMjIxg2bJleOc734lerxctm5CQkJAwt3iOI4w/f2Qnto/357g1CU8E848wclMp3dI9WoRXJVTRt4tSF2wDQKC4BWaYLmJiQCI5JKngBIctvIMk65TUviobKpZXLxz5U2KRHyx0fbvDBSgP78+jjjYIHvlp8cW21jB5t+Fz1fAho3M85YQgeKRG+k+L+ttI18HHjveNjzUtyvl1khxxItWm6EXIOY8w6uuT5JDqYM8vUIN9Zbomg1KF4/3hZCJGYFhd/Ldizzmac5Cpa4qPGT1XOZ/4vWT+UkmaYiSNkfKomTQnxazv/N0IovDGxprfj5+j587nD7tvlLjKumJgpJGeo7cUkOMcmW9BwKRZIoumqmbkM1Po9Xr47d/+bfzhH/5h9HxZlnj1q1+NsbEx3HjjjbjmmmvwpS99Ce9+97tnrE0JCQkJCU8cyxcO4IhlIzAGWP+rpDIeiJifUVIr1AqjRhDdtLGo5MQNgDRLVRALTX4rpRwpdfnjmKmk97OKLaxFXjm5cOQLzSDBvSQWVF4uuDnxiS2MpWkhJyVFz4+DAaBQ1OlFpFpEYyDvzcoZpewY+nHWwfPg+TLb0pD46J9ti3g5pm0LcamkxcbHt5vlkYwpsUyRlEQedAxo5LxUZa8RrVSSw0aQGsCbMAeKIm18uDqlOurvKZUxXs7UEWx9X4ho8XYbNOcAH5tI/Y0NDNbuwExWzl82Lg1VLzIHfdtFHTRuQV+UDokkrz86v8UckfAbInnYX3qWVAc1jZ7ZnubqUxh/8Rd/AQC4+uqro+evvfZa3HXXXXjggQewevVqAMCHP/xhvOlNb8Jll12GRYsWzVZTExISEhL2Eicfvhj3bR7DbfdvxcuesWKum5Owj5h/CiMg1KW4fx6AqJIgU2BwhbGRlkPpQNGU6hkRIu8HyZUu2Vb23ZvyqdqsVC40g7+C/NL1DYWDKz6cpJA6xXLPUbAe1RuH6o/b71XZJHWSQAR5JCMqYlWPKx9nXl9gqgrYtCcsiqsdj+Zz8u2JkYCIP1uMqPOP7J83E+V5F+XzZARPlf1WQtC4f0TVCwg+kbnGfGXzxI+fUDAFeMTOWB8a5q8xBTdC8trI95RE3hHWVpNfQRpl3stYv+T9ae4G56aIQCzHh8pHA01N9RzZdf59pfyiewpMNZ2YQR/GHTt2BJ/JyckZ787NN9+M448/3pNFAHjFK16ByclJrF+/fsbvn5CQkJCw73hOCnxzQGNeEkZPEKtIqgEetAZokBOC0Vltpgn46KHcBxKaTN9CRShqrioJDH1vM38jcze3SJbBUgIFjOoT37mK44OmEBl1JIAT0sA8E/CL6oZ/Fxs/Uv4CciwQ9ZeU7Va12WpAAKkYD7LhxpgHe5HnvQ8ojbvIP+nzHbKFO/e5k1FSA0WMxiaWvoQ+0kezMSg1gQjIUGQDAEBt/hhT42LkjbeVxpcTRNTzCGwcomMg66L7SMLD5ok3QwXiZqdUZ8vYRAPQACGJZW1omGzzfuusNm0V5LYtEnHwfrG65bvAg960vtN8cyc2bgcw1qxZg9HRUf+54oorZvyemzZtwooV4e704sWL0e12sWnTphm/f0JCQkLCvoMC3/z4we2Y6KfAaQca5iVhNEpZs0cii3zxRoqjX9iWzZQQRvgUBkRg6rrqRbzIBckChvA0FN4sUxISoOkXxRf9fOEpFuBeHYosXINzLdEh+WI/MF9sDDQjCDKCqjTJ5X2bSpEBmr6nbfeOpedoS83BSViEIMqxCoiJbDsf9zYiyY/J6/j95DMidZArWNxslbWPf2KKIj3rQHFGC0kS7ZhKoQzQQnCDqqkNMSWxjXDFfvNnGXv2vC+yb7K9gjxL8q34hgpvi6l8kCmvjirt/YP5Jk/0+ct3ZTbIo5kBddHY/9k/8MAD2L59u/9cdNFF0SZceumlUEpN+bn99tv3uksqtjFlTPR4QkJCQsLc47Clw1i+cAC9ssKPH9w+181J2EfMPx9GWtQJBSpYgNNvwJZlvNmTnJh6AtRqIiOGMbLE2xK0wd3DXxdbMEYWyNzXzUfuzLr1grcqarLB27wnZY+UE/E7CDAi66PjAcFoURY5oWD3VlUZRobl96hsGYMwMXtwT04epKkmBd+JqE0Nkifbp7T13aTjFFjG/VbyekmW+O+Yr6qro6EQ82bKOWOqgIAESprScSVQ1C3Nj418jqap6jVIY4zcsw0F7u/X8NVjZWkuU/ng7RHtD9R1VpcknsHskyQvMh5BWT4G/FhbebkJQ0SQ+xpHNmui79IBjkWLFu2Vz+A73vEOvP71r5+yzOGHH75X91y5ciVuvfXW4NjWrVvR7/cbymNCQkJCwv4BpRROPnwxvnHHJtz2/7X37mF2VGW6+Fu1L92dW5MQkk4kIRkSLiFRYhIxiXIRTPQAyjBHUEYGjgxHRgEzwFHR35g4owki6owwonEkKo4TPQeYYVAEHDEMg8jFMIagIJCQQBICJnTuvXtXrd8fVd+qb321aqcD3enune99nv303rVXrfWtVbWT9db7XdZvw9smj+pvkxQHgOYjjPwJvqd+Wpb8puTGNRWQu1x2SKTuZXRu4HGfJDdWuJtOXvQ+RxaLlBq5mQ+yMg8Br+1YoAQabjsnQ5Lk8HWizW5RgXln486KpadEMAeujMUREBgvweTtnWyp/NrIv77vGozvkDxJNBkhtqQ8CBsSllzWS59qSOOyNk6fUu3yncvJmEikU6SyEREL5Fp51EQnOYuvP3mvyOPSVioXU7AOliTSevhKjXDbC8YP9mejnLssecLP58lw2PmB73t+nNtI8ylay/RBCJ97X6MvspoeaH+jR4/G6NGje2XsuXPn4otf/CI2b96McePGAUgS4bS0tGDWrFm9MoZCoVAoeh9zJo3CT9dswSPrtuHjp/W3NYoDQdMRRq72ZVlR/YTOQSOySN+LBDdO5tW0jVPPMR2LXE8DYxJ3VNowBiV/EhlByiwpYfFudMzIzbade+qayuaWU6JoDHKr87XlBMsDXn4kUcJK3rW0JDBgGWRN5K4xa+tTbu3cwpKrKMnNOWDJXmKjq35xgmbYnAMTOwTbcMLMiCtX55wSHGRf+n0hAfSoVN7vhVqXO0+QEW+9SKHgFdF0h4TSOLx2KJ83/4yMtNn1JDVUZiMFkoyudP9KkuhT5cTaGbJLJuGR7zlxlUTet5b2t5tf19y6+MbLLWj2+wSQJ5ANflO9jji2SWp6tc8+woYNG7Bt2zZs2LABURThiSeeAABMmTIFw4YNw4IFCzBt2jRceOGF+PKXv4xt27bhmmuuwaWXXqoZUhUKhWIAY04ax/ibF7Yjig1KoYYRDBYMfp8oiZRsOIlpSuWUZGXxhg3dzlLYeotxBETCvRVw3Uot0UrHLYmNe5owx1HPeHved+C6KzrkjSeuoe9ps+9TZpz5sMQgcoMeMDc6T0mDHCmlDb9NBkKqbvEtlYvXtHaJJEFW5QuyRDjO2ojr6FFzrAuvL3lKep5NfCNIcm6NGGGQyXDkuM4Y8r1QCp1zAZuFlRNVckW18YpUaJ6ybQLZ9QLyGV7ZcTtHfh/Qdz7S6vt98H6kAk39UvwfJ8zseuXsYy8j10iohrx+ZMM6lfKYVAHZwxLnARG/Nvx3Re2L7ic5HiPTAR+Ln3MQ1MXBiM997nOYOXMmFi9ejF27dmHmzJmYOXOmjXEslUr4yU9+gtbWVsyfPx/nnXcezjnnHNxwww39bLlCoVAoGuH4cSMwrKWMnV11/H7Ljv42R3EAaDqF0YLIIuCSPR/BkKqeaJPbSNqNdkJcAgi31AakCWAbUyJacsMZeOLSmIufE8uY/jXlVpt4w57DlDKHOEl1w8Q5NcwhFo7xHvLD+4qJYEZZDCMN61EVHRdWk61zEHVbougkIJLEQNrgUZZy2V8FiSoErUF9H1Cqumqiz+UycGPXuPuvdWH1XQePqlZQCCZrw1Q9APl4XTkG2cIzy5JdRrhXsnM4eS0f9RYAQH3j2vyY7B7mDxus6kjjFyl09rrX8oRRPOBwXLF5P4LccwTGwFiiSS7jbK34ePLfA2mzIJ/kOSBrbsoHGlbFL8gA22dgZTB6tc8+wne/+93CGoyEiRMn4q677uozGxQKhULR+yiFAd561Eg88MwreGz9dpwwvr2/TVL0EM33iJtKYRBpS0tr5MprAF5lj6t4AHKKoEvqEoJjwpJVMWlM21zWaxQKkzeWT6pQPjWCKT1WxRDEiJfKaJgMR27O5TiihIGdP7mfEkETfeRKXfCxPYqPvUYmdmIjeUZZPvdsvetOP96NPkvik8ss6pDaTAWzKlxKFp36leI8kBrIs3eyl+3P54bJCJ1TA5GTT/bX1oOkc30EhJEer72M0NnPNF9BKhGWs+Q/QFqvs+ZkaZW/m1yWUE6uffeZPO4hZbl7URJOeQ/Q954SJ/ZhRpEdZGtBZlfEdaC7BtTrMFH674u8DvxhBvu9Oiq5QqFQKBSHEN42aSQA4JH12/rZEsWBoDkVxriOoF5AxoBM+WAJMEwQJNlSaTMo3cdI/ZKbYMQJOQ1CmHIZQfc++7lwbF9sniBRjn2C8JFSYQu5mzjJmErqDPXB28tNNFc/+DFSejzqj21Dh2N2TroJNkGQkOd6d25utMaUITUh9iLbJW2kiZCXypZsu2pkgfrDFCNHWeRKElvP3FoWIKjvS94QgWBE3VGqROIUGRvqJF0pIix2fesu0Ud2XZwspw3O9V5HIjbSFtmfWNv6xrW5UhNc5QaQJc8JRP1QSVYLHoBY+wTZt7GmRsQJe+/dVEEUCZnsUCX3AYcTi9zgd8v7CYxJFORSWiKHj1P0ezE8lvbg1aAyUQQT9e54vd2fQqFQKA4NzE7jGB9dt03LIQ0iNJ/C6HEnM6VKpjA4CpgsTxDk31OfhNDdDCblO5iSQ2piVM8rCT6lhPXlV92oH3eTnUviIsgS9VOUpdK7aS/aMHOVrGizn84pMCZzAU7nH8RRTqV1sqDaOeWTEwX1bqs8miBwy37Q+QXF17N+POvtm6NjS+gS7VLVP464l6xbMFMNnXkWEEvbRtwTuSygRiTw8dje6Nxcuwak045F8+JlI3iWWD4vOuYZJ+DXTtzvNo7Vp0IKEivVQpl12ARBQmi4bR6Czu9JJy7WxmBGCOpdbkwrLU2pAlSqmS1cXeZrzteZrVfDLMEKhUKhUDQpTpxwGCqlAFt3dmHjtr39bY6ih2hOwshd0CTkpg7INodRd0bU6D3gJtAJQphyNVG+SmV34xelpEG4v3ozoRYRM/aeKzc2sY1Qr5zi85awuglNijbwji2SgPLPknjyjbx0wUzX0mlrbUnWwVF+RBsfseflSECumOmDAMh1KSBcgYfsOOtgSNVkxIfFhHKSllPtaN6SyEr1S65vwRo45M4wF1XRPvfQoIG65XwWLteNXpwsOe64tCbCdpk5NTe3ojkjvc6WiJp8Wx/Egx47r7LHjZTPSySesvek7wFGQckPOx5TnQvbMSLqnFukaPYm4rhvXgqFQqFQHCBaKyW8+cjDAKhb6mBC8xFGwN0M768pbSKjmqsk+AhflLnymXJrskksla3q6FPSnD5QoCywjafdgFK2TNqA+0hDkLkcOsqfJAT7WxNJGiVJ8p0ryQ31wwlTup6mVAEY+XLURRqrVEEQdefINqmWgTEwlZZsHE7qJSFhBMce4kRarIF1oSQiTvF6QrG18YOB6+rJXYF95Ts4SbUEv+h68PlIVayItPLvaN2F3U47/rdIyWPHfHGOlKkVgKM28iQ8AW9LCiW9+P0eZPHAdt5FMHESO9hdY9fZ71KaZThm6iibW77Gav49ZUK26mfBdcs9lJHXrdExhUKhUCgOIcxO4xgfXaeEcbCgOQmjiZ3MmpbIsQ0vvaR7X2DijACwrIeO2xupW0GYkMiojqDOFEnK7inGlCpmIdkBvGqFEQSCFDAnUyavO0fnpvMsTMoiwUlJmpEyl1SnSKGSG/Ow7GY5lWooxQPGkZtlkq8LrV/Xbjf2jIgIV8LoGrI1c1QvvjZEPOXmX5SEkOU3cmsmCCeHL9us46bqI5g+iHslF5earj1Xxvk6Of3wa8+SAXkhbWO1GQvdquU1ZAli7MMC3/0nSJR0NZXKoH2QEEVuPynh54mSbIkcOkfUWA2Ksn6G5ayforl61sF58CEJPzs3iCPEzz7sH7u3QFlSe/ulUCgUCsXrwNsojvEFJYyDBc2X9IYrP1TaQZAorgbwRBQ2/T/fFAdh5q5GyWzSDJF2HBE/lXYCGE+SFqZ+8Vp2zsYzt3H2qBl2DEYgkKhjuZirgJXfSOfqlFgQRMWWWkgJn7WFrZ8R43vB3UUbxP81BFOdqOg7P4/XqOSlLnjsJydXAZBdZ54V1KnHF9rkLbKWo5PARhBIe005wRGZMwuTCXFixhU9vlZyHGmL5yFDbo1ZGycO0fcggPcriSAbxz5gYUmYcgocTw7j68tHtimxStl1U80lmil73Mw5EY7rVimkfoNSKV2DUvpApSADL/Ulr4WdGJsvU5+d0jkpufJ5F3C7FAqFQqE4FDD7qIQwPv/Kbry6qwujh7X0s0WK/aH5FEahTNGT/pwLX6q25TbeQUGMG+vfKZqexjGasJSpjtRfSkjKE2egPHGGOwbF4gFOin/p2sbVKMct1UOCDSt94Nvg5spCFLnF+drwMXm/nIDKF7UhUktlOHr64qCssT5VlK4ZJSvxkHM5T2d+3KWSk3nf2gDud2KuXJ0sIocy421uHE7S+bk0FlNWnWWIo+we5A8EHOPjbJ3S8hik3DmJX9L+vNeTbKK1I3s5seIEmGKK+e+KqaG27A27p00QWFLngyWP3L2Zu7yy9QqMAeqM9JdKbpZP+xsyrgLK11wScr6e/L4SibQAFCqdzjh9CBNHffJSKBQKheL1oH1IBceOHQ4AeEzjGAcFmo8wAjnywhOf5FwVG20C6XzaHFGyh9QNFSbO4hiZmpC96gi692R20fh8Q0kb2gYbR5+rY075oznyjS0nWD51iLsFFqlMfLNMm38Pic7FyUm1K64jqHflyaDJq3BOH/S9PI+RbhtLV25NYj8919W64/qUImrL3Cwt8fOQPkmmLVkVxJETNkkMjW8dffMnMswJGLeXE/JSJTvdQwD5vB2CZmKH1ND5uXUq6IuvhdfVlRNdQd5sN1GUuKzKhFEpaQziyJaH4Lby5Fa5OYsETE5yGxqTr59YAwdScZSknt7z3xRfDz5mOhad09clKkwc98lLoVAoFIrXizmT0zjG9dv72RJFT9B0hNFJAgM4ZCQXzwa4JKCRWxuRwTQxSxBHCLr3ObUQnQQbcT15X+tCtH416hvWwIlz85GRIIuXy5QWUUvPTia/UXeIso8k+sijIK9Oe25b+tdHFnNrx9UeHxEVm2lfn85HoVY5hAkJ+colBeLvKaFR2tb+9blPyoRBvuyXgkTbe6BgfmDX0ElkZISizIiOQz5EX5KESKJE5Iq+88G6TNpOsrUNjIHprtnzc1l+5T0jVUi5/oYpmABQqaZEuJQmeKoA5bKrKDJ1jtoGpZLTJmeXM0FBAlnWVBNFMHUxPzYmj1XOlctICbyjdvtUYvnQhVBmmZWpjczoqlAoFApFk2MOxTGqwjgo0JQ7lVwJCEFKjNzYS5cztllPNqwlV7lIiUSAECaqZwojomxzGdUQGINoz04EtX0I2o9wSzaY2C32zd7b45z4EXnxbUqFzfYz/1u0qfUqnh7yLNcV8BI0IkCFc5Vr7ZuH+BuYGKbcmi9LwOzmDwIK6xSm5M6EZbdeom/dUmLgZAh1Jt9g7X0wsUtSgSzWkl1nJ95NPtzg68e75q6+6WeukyX3buTPCup8z5S9Sube7JQ1oWNgNjRSiIn4yXISNBdOxOC/7+z3Idh9ZtwYxyDLaMptzSmGfO3iCCACWusCqi3ZOfw+FGTRUbylvfTwQI7F/83xEew+hIkNTNS7Y5lY4y4VCoVC8fpBhHHtph3Y3VXH0JampCRNg6ZTGIFMuXFcHX0beq7ksfp+jqooY6SoL9rsldPzQpYchzbu3TWYvbsR795hs406YzMbcoqPHIeRHu886G0gXG0LSGSOVEt1y7OZ5TF+Tiwl+95mY2XHpJ05JbQR0UrnlEsIJDfmqRpEpIyryfba0vhEPEk98rnuUjsaS2zynXW2DxcK5iHmadevQDG09wKPySsirkCSgRRw71Vn/Rhpkg9LfOaGpfw5parjOmndqPl6STdWbgd3CS5SK+m+SUtmOHU2C8YJStnDHE4WfQqrfV8uIyizeF8kBDmXwVXOw3jcoyX5k/HPfF6iv1w8o0KhUCgUhwjGH9aGNx3Whig2WL3htf42R7EfNB9hZBs46zrGvysCJyJiM+hNhJH+tcQhTusCUjKRuI5o+9bE9S3OiBJ3hSVSm7SP2EYyI7wNSzn0BL52UtmSMXISvk1+156sPSPnjr2CuPH52/IlMkmIj+BKW3zv+WdGxnj9Q6cNkZ3UddiJr5QvDxwV1qcEFtkryIclnfbBRSVPOiSpYn8dksRrBtKQ5NJZVP8TGUG0faVlaKyymMY72syivMyEnXvixmprH4qHAobb61lXrr4GpVJG/pmdfJ6+pDiS6FLMI8VNmu7ERZxiKINK1Y2HTOMoG/474XMXBvJqonxgwxRknq2VYjL7EiaK++SlUCgUCsUbwdsmJyrjI+qWOuDRfIQRsBs0p04fi2MjsgbA3byKuMJcwXG54a/vcxLZOPX7TIygbSiCaivC9sMz2wyLW+M2sPNy6h+bFy/b4HOtzWUElWRMrhO3gysiDRRKE5aBaqvbj8f2IC0/EvjmzPq26ybXv0iJ85Ewdg0KwefBM3uCqXoyNk0QNK/6JONRG9gmayLyGEb5cCMwJq+k8nuV7Lbr5RJFEwRZNuBya17pErGXPJGMKbe4RFMofJL4mSBw3Fg5+QRLIEQEzpJKmdmWjem7ZywBTNvZeXLimpJJetlEM3EEU9sHU9uXrYPnd+HEg0oPA3mdPSqxVdn57yvtyybeCcIsJrOnD38UCoVCoWgizJ6UJr5Zp4RxoKP5HIaLlCT6msozwFWEDFfI+Lk8sylTzQKTxqRFVO/POPX7wjhC2DoUptqKsKUtV59P2kxxfgEnCNx+Nm7hvJl655u77I+vlywEb8JyFgcnCFqObDObg6iWEBNJ3Hw2pe8plo/Gs6obdwH29BGwc239yXT+hXUiWa082y+VI2mwtvaeES640j7n3pJ2F1z/3P1I2UTZ+M46SzvLZUC4NVqFkO6JdByHhMlMu5KY2s9uZk9HfWTvTVhyspKiXoeJIyAsZbUUPYlt+JrYGE75O6RTSsztu163NRn5uWQLtSPSGJSr8Dp/yuuR1mk0UQRTLufbyPUhpG7OvOap+5sqZfdfXIdJ3dT7Vl8E+iKrqWZJVSgUCsUbxdvSOMbVG7ejO4pRKekD1IGK5rsyXAngpIjFquWUi1QB4ZksTbk164NvFkWdvaDelaklsnB3SxuCoYdZtcaBVKvS/nLlFuRmlp3jbEZTUpNTHdl5jUqJOLUH+dhc+eHZIelYqZpskmmznq6/LI8AwFtqwVsTkituRBw5cbeqVkagg6hm52/k2gaZC64vztA5R943jRRLaTu7Lrlx5LVmbpu81EtmEyvxIEt2MDdUnwuqCYJMiStaa59i6iFA9rqy9o7bJ6l7UqXkbpZxWjLDF6uXU+eYYigzlMp1EXDKU0j1kxTHctXGL5ooSuIlyUWVZWF1YiD5fcyUTIodde5r8mjg3gmCjNO92KjOpEKhUCgUzY4pY4Zh5JAK9nXHePKlzv42R9EAzUkYUyIjyZMTxyYJAiNeNr7O425mz6dNOJXPIKJEhJXXagNctazABa2wvARTKyxpIhfOBv3xufuUSSKAjvoZZG6i9rNPeaN+LRELnPZW9Ym6bYH2ImXGW+BekEIi05bYs2tqStWEuKbn5/qje4KRD29sJa2njKukzT+zL+d2mNpsHyZQfCKQz24LZPUDfcSyVAVKVT/BAhx30cL4t3I5UfyoD49btUOUmdpoy8dwF0o7eOwSVZZQyMY+UiwgkLiphiLWkLu58t8hrVUoHB+K7h1WooKri5xE0/uexAm6JD0CWHmSpDP2oCQs2fIgHJZgeh40OLUv0+t3MEijxjAqFAqFYiAiCALMOipRGbW8xsBG8xHGBuTJcTcFCpSDTHX0blKLCBpXLoWiYNVHrgB6Nu+uksLGELGRjkJEagWpGj5yx+dKhIcrTOlnRxnzbNK9/fONvod4OjF2RBypPT+fL6VIoGOJDVdgiZzJa8P7YMTPiDk4CYj42FG3Ozcxf9mPzJTK52RrP8qHDQUPIhwX6bCMuNKWfF+vu8XuKUlSOmcvcax1WeLuqL9FDw7svCJbg5FcKPmc7HhEAqOas2aSBHHCVfS+yC7vQxFaW0GmbZxi5LrPmiidT73ujpkSQnpvSW69nh0nyPH574/bTzUlhRIeRN2ZGsnbp8TThH1LGpUwKhQKhWKg4m2T0zjG9dv72RJFIzRfDCNgyVtOUWTfO3+pjejDqmWpQpRLKMP7YO0AQU7l+D6iYuJ8fBURQk4kKQ6Nvpdj8M9CqeGxVdQmEGqaQ3rZRti7ofeNzc7jGS0T2z2qmk9VZUqdj1DZchnCLp75ldRIqdpyN1ZfTGguyYtPoeRqp+zHxFbtzJV1IeXZM3f5MCOo70v7iJLY1lLJrdtpUjUPsUOerJpWzdygbX1Dh/SFufW0fVSqbgwgxRXSMauyunUPbT1IDoph5P0bA9B8oppTA5HGdO6nBmTRvi/lxzBRlGQpTu0IuB30PhYkEoBJ/wYUe0lkOiXGxvfvALebrbVTL5LZ61yTBg+5FAqFQqFoZlA9xsfWb0McG4RhX0f2K14PDnin8tJLL+HDH/4wDj/8cAwZMgQnnngiHn/8cfu9MQZLlizB+PHj0dbWhlNPPRVr1651+ujq6sIVV1yB0aNHY+jQoXjf+96HF1988Y3PBrCbYQB+gsef/vPvrZtYmMUDitT+jourVdAKiCDvn9ljbfKU+6Asmo56JUqDOC6pBf3kjns23TkXyZJbl8790p1Hbn7ShZARCuc8stunKMn+UoLFFUFOxp3j1IVQGJ3POWLoPlSgtfbWCpRqEvVHSqfomz6XJs9CafKsfJwmhyc7LB8/rrRlSVuo9mG6tiaKErJFp/G4OzkPn40UG+pk6GUxhAVknqtsTqZSu7ZMZUyJmanXYOo1xF17bRuy1WZXZQ8anOQ5/DgRrjCLNaSXXRfmVkokMQhLiS30IniIYyAVv3St+Di+e9i6nPJT2VpQCQ3uRpubax/ARBHiXn45aq1CoVAoFK8TJ4xvR2slxPY93XjulV39bY6iAAdEGLdv34758+ejUqng7rvvxlNPPYWvfOUrOOyww2yb66+/Hl/96ldx00034dFHH0VHRwfe/e53Y+fOnbbNokWLcMcdd2DlypV48MEHsWvXLpx11lmIemkT4hTXLiAU9hgVei9VXTdN+WIF4d3BmIuirJsoCZZMxkPH+V/W1ibH4O6oMraQ91e0wffMnQgYxf85SmPBHJw+fGsk5iHdBp1i70Wkkc+Tt5WQihwRN6meCvASKLyN425KxISRdUfZTdeC3FFlsiHpXlyaNBOlSTOtMunMsRFxBtJkPiUbrxfEUUIwal1pvcKsNqLN7BklMYg20Uz6N1cDkWxk95o9R7SxBIF+CwSeTIpqDJaS+oaUGRVMsQvCUlav0aO+5bLDetbEHgMsGbPZUvk9KshiYbygxyXUksZ6HSB7KSmOYfUU2b3M6zjSulvEjMzTFFJ3WSLRCoVCoVAcaqiWQ8ycoG6pAx0H5JL6pS99CRMmTMCKFSvssUmTJtn3xhj8/d//PT772c/i3HPPBQB873vfw9ixY/HDH/4QH/3oR9HZ2YnvfOc7uPXWW3HGGWcAAH7wgx9gwoQJ+PnPf46FCxe+oQk5qeydL9LEKaWqk20zqO/zkztOwgTBcTJqUpucsiBKNwhbnPPlmBzcfdDETlp+rooGrH2OSJo4+Z7+UlMTg8qJ2JIgghg560dr5StNAdhyGtaFkchAuZyRA5Ecx1kDOuZJJuOss7hegVxH9peUNFMdlql5bL3tfNkaW+LB1EOKiQxMbMtw+Opp8sQ69Rf+G4GJE7KY2m/Ljsj7h9aeP1RICRytn4MwrS9YLltXVaswEnlK3VlRLsOkJSgCYxKXyoKHDLxMhUOE4giBKcFITxGrBLPYwajmjwVkxEwqVLmYRHmfBGHixsnak1rnEMGUrPHai0k3TEk8kJhBmgPPnsqS7XBb7H1Ox1O3WxOlYzL3YgCZi3Efl6gwpg/Kavj+jVAoFAqF4nVgzuRR+NXzf8Sj67fhgpMm9rc5Cg8OSGG88847MXv2bHzgAx/AmDFjMHPmTHz729+2369btw5btmzBggUL7LGWlhaccsopeOihhwAAjz/+OLq7u50248ePx/Tp020bia6uLuzYscN5FSIlAUkCimou66KN4+Mp+/nG3TD3R6ZU5hK+MNXRiW8Ttjjg51NmVTouCRTZzNxTffUjG8Y/CQWLu7Y6sYzMPkok4xSR97gn5moxcvUT2caaSEp2nkdBamR3qv7CxMmaEUGh7KuNlFHmTpwkihFJcpjSWKh60vmCgOfWgq2RVJvrG9YgWr863wdT+IoUUVLppOunLRNBqhwRtDSBi+PqyWCiqHieyIgaKZmBMS7xa0AUHLWwVMoypIYlhC1tznfJvLMHC9Kt1NoQdTsJfjJX8Cx+0qqqPDsqKY9pGQ2rvsZpXCNPegNYO4NK1ZvZ1YLWRELYRe6ndi24GhxliYUUCoVCoTjUMWdSojA+sm5bP1uiKMIBEcbnn38eN998M6ZOnYp77rkHl112Ga688kp8//vfBwBs2bIFADB27FjnvLFjx9rvtmzZgmq1ipEjRxa2kVi2bBna29vta8KECcVGkgJGpJHcBSXp4TUFxSZelrDgBC2XjEUojznXxCKXQ59bapG7po+wpnNwbJJ9C1ucpDec3BjmzsmVOW6HnG/RvIBc3JZdO9rEy9p2og8ZC5ZlTTXOGE6SFaH05Y751sfXTqrH1gjXNZnOs67Mxo2HlLGtplSFKbe6rs9cTRV2+EhSooLms4OSAgjhemm6U2KUxjlmSqFxiTYRcPqu1gXTXcuIHBE7qlkYixf1QwliwrKT+dPUa0l/9VqOLFpXzVIDl1G+NvxBApHE9FwnjjKKkv7ShxY0RtjSZuswkm2Io8LxjSC1BOlyautq8uter8Ps2+OQQ0v0icyHJQTlSvG8ewGaJVWhUCgUAxlvnTgSpTDAS6/txabXNExjIOKACGMcx3jrW9+KpUuXYubMmfjoRz+KSy+9FDfffLPTLhAp/o0xuWMSjdpce+216OzstK+NGzc2MNLdCDtupNZA5uZmN+KezJzsWC6BCimERSoZjSvi2+T3to+4DtT25cmDz3WTz0GqjZwQsjFy5Jfmz5Pd8DXxKYgyuQ0nDWz8ZL0St05LXlKCZzfekqjzpSP1SBIEIojyPOlqKmMDufusvBa1fe48KR6P4i0lefTdR/TepzJzOAqZmIMYy0k8QyTaR7JJxa1ULUGyxIYULa6qpTGEqHUlsXlUbzFVvUx3LWlfkAQmKJUSolTrSuIoRf1DvpaWyAIw9W7X9ZIpehxSKcytH/UfhNY1tFE9ysCYjPz2pBYjqX/pWgXlVG0k4hm6D0JydgZhUlqjXE7XPL2eaZ+OilouJ7Uc+7ishkKhUCgUAxlDW8o4YfwIAFqPcaDigAjjuHHjMG3aNOfY8ccfjw0bNgAAOjo6ACCnFG7dutWqjh0dHajVati+fXthG4mWlhaMGDHCeTUEVwQZUeD1/AB4i2vbza4kZGKT77gyChWIxuUuhrmEOpJcpBvgIM6KnjdyHcyNy4idUxqD5skIlZN11KPKyVIbDgri73IkjtZcFn1PSY0DOpeUGKt+FpAkoRY7yXS4jQSpwAIJUU7XHEFo4xLpQQAvK8HvHesaLJTa3Pi8tiGRWD4Fn3qbvrdZTtkxSqjilCmJokTBiiLEe3czBTByyBolm/HBunOWMnfMoFxNzhGulNQejFASwfMVuKdz5dg81pL+cqLmdVEl4sxJKR9PPsxgcysEI4S2HSfLXP1krq65WFEyQyZ5KlcRVFtzbq78YUBfZ0gFVGFUKBQKxcDH7KNGAVDCOFBxQIRx/vz5ePrpp51jzzzzDI466igAwOTJk9HR0YH77rvPfl+r1bBq1SrMmzcPADBr1ixUKhWnzebNm/Hkk0/aNm8EOQXNR27ovSBD1hWVskYKtU/W1bOkUBJPTiI4afCBZ80kVz5SXQQJdcgs+yzHllk6IV1vAZfMSJVLzsGelLblhePld3wMS6xYvBkVg+ekjv7y8gpIyQi5p/pKT9j5Bu5aUp9SVWTn8etrwjLiSlu+bdFDAT6GTyWVRJwIulRk+bVn/ZggyKvLlaol2k5MaJpMBWGYEB1yTY0jNxaPuataAkOqGVe+qPYgqcE82ymQuJeKeoWWRFJ8ZFx3YwlTt8ugXHEIXE71S22kEhwSdt7yYQEb05YbScd2XGDrdZccl/xENruMeTLHEzlZ4s7nwJMWpWvsJOcRD0t6onq+UZjYwMRxL788CrBCoVAoFK8Tb5uchKo9pplSByQOKEvqX//1X2PevHlYunQpzjvvPDzyyCNYvnw5li9fDgAIggCLFi3C0qVLMXXqVEydOhVLly7FkCFDcMEFFwAA2tvbcckll+Dqq6/G4YcfjlGjRuGaa67BjBkzbNbUNwSTxeMZwN10IyFIPIbMiU/0EcuUWHgTktB5lCiGlA5J6gpPLHBvtPMwMEHs1gckWwpcH22pBzafXNkMOSYnJ+lxw8fhamSqgDkuk3wDT8XN4br48gyXDkHykDnU64AnLs0qWeWkTVLiICUdtD6NxqC5cLJYbk3mVO9y1Vq+ppQ8SSqFBdcgp35Z+/0uxACyTLc+gk7v0yy0dk0q1USVjSMErUMSN1EqJVHJSlsEppQjQw5YBk9IAlNvcN9bsprVWgzI7RXISCuHJGF1uJlDoyhzXeVqH/UpCReflySA7EGFc7y7lncD5TGgYn6mnP3+6Dvn3xY2XvJGuG8zZdT+dhQKhUKhUFjMnpQojE+/vBOde7rRPqRv4/sVB4YDIoxz5szBHXfcgWuvvRZ/+7d/i8mTJ+Pv//7v8ed//ue2zSc/+Uns3bsXH/vYx7B9+3acdNJJuPfeezF8+HDb5mtf+xrK5TLOO+887N27F6effjq++93votQo6UVP4dvEs42dE9+XErtcxk/uTlhiqpeHTDhjyrG52gbky1A0cjkNQreEAR+fq1FEBmk8nwqWkmTuRktlNhxCItXYQlIa5OdBRDXwqICyT6lG0ueUBBoqFSFIt1VpjAGomD2VipBrQP1LNU+uIXsYYK85O4cUahMECKIsY21g4qwsgnw4IO83aiYeSNjx6DsiGr51AzIVTcYUpuUbLEkEAKpzKOOJKRmMQFCpWrdXKgeRI3dISBRX3qyqCQD1bpgwRlBlsZNUYzCOgTB0+iGiCiCZg1WKQyCO077JzTdKXVvZP1mCzDrJf5ApknZuNCdOcFmcJ5+vE7dJpUjk+kmyaB9CsfuRf5/am6yv+LegDxFHMeJediHt7f4UCoVCcWhj9LAW/MnooXj+1d14fMM2vOs4f5iaon9wQIQRAM466yycddZZhd8HQYAlS5ZgyZIlhW1aW1tx44034sYbbzzQ4fcLhwByu0j1E5v7XFtJKPjx9K8cw6smcvLGFU/p3srHk4TDozpyUgsgn6iHt5XKmocQW+VEKJBBVHPP5XMsmq9H+QzIVZHiMxG5LpdEkExsawpa99XAHYMIkBNPxhXIOILhw0duTKSXqAKZmkrlO1IlT66FV9lN144T91zSodQGrvra/lg/uQcPHqWSlNogjjJXR0YObZIXHndIa0Vup5I0xlGiznFXU67A8RqGYKQxVeMcYkfmlkpA7JJLea7TN9LrTudRWwCod6dKHxAakyNbNJe4ay8o9jKnqJbLiUtqHDm1SE29O7UjtHMI24Y65JPu10A8qLB9hCV7/zvxnKRMEipZzGJA82D2KxQKhUJxKGPOpFF4/tXduOM3m3D8uBEY1962/5MUBwUHTBgHOnIJX6SyKElUCusSyPsRcMpteNr66hrmXBh9pKCI7DVwpfQm7EmJj1RN6ZhXffT9bUSi5dxjRgDlHIAkY2RYcgu78zY+1RWpWkREU9RxtPXtuLshjd9dy2IhOfHzKadiLYL6vqz+ZJBlkLWEkk+Pq8fcrZRfo0ZqN1d3KdZT1tlkNth+uWpqx8/WwxaJB7xF6k29hrClzakXCMA9j87lkMSPahvy78KSVREdwmZdTGNLBB0lUBImcgslQhqmxCrMyJpB7NwbJggsGQ1En045DKYoWkJqxw1tyQ1SuoFsXR3yy5PfAMmDiiC0dqWDpQa4ngRFSXP6Cn2RpEaT3igUCoWit0G+W//+2034yZpNWHbuDJw/Z2I/W6UAmpAwArAbNSeGjmf39KmDQI5o8b7sd3wz7yEElpwhTzr55tSrhPIkKAQfASHXN1LU6DyKt5TkzsQOGfaSvyJlldtg4kSFY8qdjU3kY7EEN0HUnY9D5ARHKo2Au+l21sxV02y/5EZJG3EipyFbM064hMpHpU+CqGY/8zXNqcnW9dATDytIY+46ex5EeEkz9ZWOYRVMltyFwyHVRERqHpfSshtTaF1a5TXiJJBiCVPiR3UDTRRlpSMY2TL7dlvyaEkZc0klspZTNH0kNSwhKKfnpC633F3ZBLD1Iw0RzDTbroyftHONIjdOUdhk1VPK3sr6sO1onW2ZmCCfxCj9jSZ2FhPDhvGlCoVCoVAcAtjcuRe3Pf6i/Rwb4DO3P4mTjzlClcYBgKYjjD6yxktkcAXS5zrI48pcd0jhLspImCzSLjO1gtnkKBqcuAm1yxINUskEqbJupZ5kNiYsu6SR9yddcamddN/kf/m4Uc2rNHI1hcc42tqJYK6Q9XpWL9C3kU7XjJNNRxGjUhhIFc5KNUvYEoQwKWm1m3Ua10RJjKW8XnEdpjIEcXVokvwGyCmKco7WxdlzXwFwCKpPofTBtuEEnQgrf7DB61GaGNwd1ZaqMAZIY/eIQHLVjStzzvzs/VWyCp51D00zl5p6t40pJELouIIKd9YgLMHU9gFxnGRKTUmZEw/JCWm1NYsvJPJGrqEeZd66KQtFldxyg7QN/fZIGbWJdrprGZFm9vB6lJYkUiZX5paaKa1ZdlgYFufJ1jhLRJS2a5BUqLegCqNCoVAoBjrWvbobMgF3ZAzWv7pHCeMAQNMRRgfS/VIoPQFc1c+Jc/S5tVJRd1FKI9mQhlkcoM+dVNrD7HD+Mnutm6ynxpztr1R1Ers4ipYv5o6rrHx+XB0pUhp9/XD75Lxl7UFSssjVryRcAgkOUTe5mDEb/1WvJ+ez7ylRUC7JiHSFrdcz11XAVRKJQHtcdR1XX58iDGQJhvi5UkGU96ZcL5/KLO9NyshLWXrTNbFz7q5ZlS1XK5HIVdlV3i2RSa+RUzNRxiSm54fkskn9p0piIFTDoNqa9MPiA20MZHqePIcjIca+L8KEoNF8bNuUUJbkbz9y7wnuGstjPfftTteCZWojQkqJmWiNiFxz91ci6jyrMJ2TKqMKhUKhUCiAyaOHIgzgkMYwACaNHtJ/Riks9sMKBh8oxpAXWgfgqkCiPf9LbQG45wOOmyEnSb42DhHkShMnHZwE8LFT1SvXTvbvcSnlmVD5uO6khY3yvbSfExx5LidN0u1TjGu6GQkLy/5sq0wdtK6rvnp5ta7cMdOdlnWo162bKhGnHKS7ItXeTN/zeXMl0ap+VB9Sgt9n4hrJ+zEHH7mkz/weKFJ3CaSKpQojJ3O2NmG1xbHZvqWEOUGYqXaAqxyybKeo15P1pSyjcYSwpc1xfbWJZYBM6WRJb4Jy1aqVoDjEsAQZf5kDW2P7IMLe84H3GsiHEQAccmwz75ZKCVHkWVTZ2vI1p0y9HJyQeu/zgwhjersGY2yzxioUCoVC0RsY196GZefOQIk9GJ49aaSqiwMEzakwGjdmLxd/CDgEjtrQceu2KQlQwSYpV7+xKCENKZj8HEmswnJxdk8ZI0UEx5gsXk+SND4ed1P12OcooT511kccJQoUShMmJMUSwbhu3W2t/eReyYu7cxO5yshLJQA5d0QnU2a1xU2OwjNtijWxrsjsWjqiFj00QIMNMzu/Uc1M2x9fU6H2eWPf+H0m1jooJYRLxsU58XasHepw40WJSDoKZxbTh5hlN+UxiIB127QKHbmZshhFqglpr49ULHmfPK6w3g0Thghbsv84imJj6TNMRgBNqeISY+5SSjGbwp01aBuWZfnlaxFHmbszXMgMrdYu+aAqjvwPMvoA6pKqUCgUisGA8+dMxMnHHIF7127B4jufwmPrt+OZl3fimLHD93+yok/RdAqjBSleBcoiR47wBVl8o6yjR0qUCdJEOmycQjvYi5RDGfcI3h93UaQXU7cyg8jlzlPc1DdnSUyone97qZKRu6JPseH2cSLs65dDuGDychnJ9y6hsBtsT0Ic28aXQKRehwmZeyDVG0yTpeTmyu0uWic5F9/51Faq2AXE3rD7zqpkPvLuU7TT9yYsAS1tiYskj7GjRDAlQerqNVcd85Fbik+U5DUsIahULVEkdZBiHYNyNUmQk7p02iQ0RJaICPLaiHGUlNGw5S7y6rLprmXXUGTQpbWm+EVTr+XuCVI5nfkQIQYypTrtx5fFldd1dB5wcJdrjyuqTdpk3Xe1pIZCoVAoFIRx7W24aN5kvOeEDsQGWPbT3/W3SQo0I2H0ERcfeSH3TQBel82wnCWP8bhrBqJ/wxPDkMuqx92SCKAT4ybUTksKeGyg7F+25cSG9V3kauvMVb4auUvyc9hxu3FnLqe2eRzl+yyKywSs8uSoPuWy3dRTrUFfVk3rhsoLtZMN1Dcyl0FbQ68gHjE3X3nMc2/4J+W6ptpj9FCDuSBbl+ewXDw2/57bwwknJzsFxIcXqKf52KyjUUroUtIVGJNmPy0ohxFniXASl85yQijLVSAMEXftzSXFoYyrmUtrDCOua1CpJvGPPMNrSkxNdy0fn0nr3F1jJT1SN+JaVxbnaUzyMMGTGCju2puUaOEurNyVFnBJYzdbIw7+YKJO/95ksZMHowYjKYy9/VIoFAqFoq/wqfceh3IY4P6nX8F/Pftqf5tzyKPpCGNp8iyXsPnUGKmgSYikNhbSrYzUwLBsi7s7SXO4u6BU6Xh/xhPX6DtfkjA5F6l02jFdBdVROKW61kA9sxtdj3urzVQp3V5J9ZLr51lfI4hIwMgi34hb0kEujIJgOC6Blaq7KS+Xk4QlfC7SNj5vWrei9fK159dBPFiwMaweIg/AJY0eYm7SBxlUCiRHdoVtJiwl6yqS2NA6UKkKSxa5626phKDampC42r5M4Y0zgiXrExpSDaPIT+TktYqjRImsVNN4xkryudqac3EFkNjBx6t3u66ddO9115LYSVI801hL47lfCkHxsDSWcKElJZXmQWqjXcMoO0Y2kjLqQFVGhUKhUCgcTB49FB9++1EAgKU//R1imUJVcVDRdIQRQLGLaIHS6HxG5noKRqxok+51UfRs+B2wvvnmXH7PC8A7ahGvC+hzQ22gElpiIU3ipEUSHKmQSuLiUdcc97sGaqWRm2NyvQScRDdcyXJUINq00yt1i6S2cddeh0TywvSBMY3VX0nWix4oyO8995C3HXcvZvPPFMEsy63vPjLc9iAsJpcN7kEet2ddgFOi7xAdlm01qLZmNRQZSeJJcRIVsZS5oQKZClypJolw6JqmRDUHq0im9zZdf8fNtWL7IeXSUSRNnKiIcZTYTCqqhyQmsbQRTG1fct/QnEkVbYCgVLJE186F124sqK3ouFuzefcl4jjuk5dCoVAoFH2JK0+fiuEtZazdtAP/+sRL/W3OIY3mJIxFCqJPhfMpR/w44BJF+q5IBeT9E9HjbTjYmDwxT87dlZEJr72yHAMjFjniwUiGKVXzhFT241NoWT80TxOW8uopT/jC1sxx22P9WJWShuPKII8VC0tZ7BsdF4lXnKn4Nu+N5uY75lP8fG6ssh3/XvbH7iuedCmXnRcp8a+0ZS60koj77HcaZEqwVRu7a/ZlXVCZiuhkVuWEsFKF6a4lLqaikH0uA2qlyn4P9H0ZplSxxMw+CCDljQghxRSyDKVE0LgK7SiR9TrIlTlsaUvJLnOBpbbdNaDWBRtzyVxvc0vHj3E30lSpNkHgziNdC5mIyb0c7J6VbqwKhUKhUCgwamgVHzttCgDghnuexr5uLUfVX2hewijVwAJFEIBbwgLwbtgtkZPkgLu+StdQSRQ4kaDz0jbeUgyCIAa+74qILJs3LxNhODHk50ubOREVa+e4wwrlMzAGQdTtnztfc88m2UcWKRYOQiWyShNgN+ZELGQMnDVduqH67hM6TmS6iDT6yGbRPeYj5OlDAK4WUkIlqTDSg4IgjhDUu+x1sao30nuY1j0sZ/bL+adjmiDIlFmexIWTPZEgx/lcRIS4AkxTldfao9xmdTQDJw6VyBxYaQ5ukyWlBHJxZTGJnMTSnMl1FnHsdYGVDyssuSuIOaTEQqZey8i2J0aRP9ygbLZFamRvQWMYFQqFQjFY8b/mT8L49lZs6tyHW/5rXX+bc8iiOQkjkHfLE0lEjGcTTxt1Z+NO77lyyMihzW5Jm3SRjKTIvdRHSG3fHgRybP6e5kGKHo/BlBtzRlADX8yjJHjUP40VhJnKJezPlTVIbbI1C5nK5WSopLVi7qM8Gya5PvIsm9mwUaYSpQlTrOtjHDnEk+o7NnQlpTk2cvHkx4tIJXtviSFd+7CcqLuM8PkS4cjrHNT3IYhq2XWTYzMb7D3J7Zd2MUJlFTFaK0EWbdclodZRkhpPKQ+vG2iUrj8pm8yFk9cztGQRaBjjJ5PV8IyuVjXlJE3aGIbJq9riEE8nLrIgyQ93cTZpzCRXuHOlQyhRD1fDDySmUqFQKBSKQwytlRKuWXgsAODm+5/DH3d17ecMRV+gOQmjT4nzqHbW1ZNtrHPlLmR/gEN+uCLk9GdVobpLGnviDkvHKKMqtwNwXSF5n7Ish88VVoxjuJJW5GLJxxJ9WcXLWVdGCMNyPrYRcGLorJsqT0ZDQ6SZME2aiZK7KRYpiTabakoA+EbfsUW6ELPjXlde7mYr14LNz3FhpjVJHxIYeS4ndvS53OqO4bs/gNz9wUs4BCZOEjH5XIBZX3StSHHMEcW0PIdNciPIGcLQuqtSPKC9LpLoUQ1DY1zXVUY47YOC2r5EVYzjhNCVK0C1JSuPQjaFJXuPcTspyY0kaXaZU1UxWfJM3SR7eHu6l+SDDuderbYkKiWLp3WIqnWhjm3m1ob3cC8iUQSjXn6pwqhQKBSKg4NzTnwTThg/Aju76rjxF8/2tzmHJJqXMAJ5F0JW19CbWCTdZHPCZ/uhfguUwFzMmVR5+PmNYt6ka2oBSfB+ln15lDAj1U85L7mG1I8ks0Q47KafkgS5deccpZNejFgCcGsjcrfUShVB6xBWmqGUU4hsGQciL56agZwUcWLskFahvnnXRK6NRz3OxbsC7n0m70VyG7YELnQfXDCVm64fkXxOCrmCmZ3H4gKD0FVXuS2As+60dk520lTple6llBzGEsAwm7ssYg/AS6YSc0UZlHIlIWBpOY1c+Q+JkMUTpoo0EbIgZDGYpJ5Slliyn8peeGJhTRAkSabYuNy9197jlapbysSq3922ZEhiawhfrG1fwcRxn7wUCoVCoTgYCMMAn/0fxwMAfvDwC3j+lV39bNGhh+YkjAS2CXfKXQBZ/TuTj00MpDunx82QE7AcwRTIxR5KGwPmIisIiFUNfW6UBSTVfs+UR/qOkxfrluqzix/jyWtkWx+pSlUtmYnTfi4gYpJgcLdCp11BFsseJ7xh5DZXjB77IdJSHWRr7pzHvgcyJZoeSjguz5wsUtc+11R2PPCUfrEqpi27EWQqHJgixu8tsp2pR6jXM3fQNEMtnW9Jfsl1vcyWhCWhoVISdB6pkKmCaMtvVKqZeya5E/sS39RZLC65sfIan0GYuaFygsbsdK55ELrlRhjJtGtar6VZV7N6ivaesmTf2HqL6GaJc2w8aJgS34otG2LhqTupUCgUCoXCxbwpo3HasUegHhtc/7On+9ucQw59m8+9v8CJTlhGwI/vr0A7d/+UJKroXE7iGMGT2U695wuXWOrHEo0it0k517RtjrSk72UtRsd2IpOSKMssp1Jl7AFkAhFLAiVRK5fBtaugVIKp12HoPUu8YrprWVkF5v7otLMxlBFQh6s67kfhJTXPURo5ced2Au61ssprlgzIBGHmHsr79KnB8vs4UV1NidnHHgSAxhfXnWqEGojrLsdl6w1kBDtsaYMEXR8bb8jWWyqGOQRh0p4+Vlmm0bBcnEQnCIEoSWSDchZLy5PkcOKWsyNVw4IysntJ3HtBpZolqUGmdhLpNACC9F605xgDg3RMcpmus4cWFPdI9yi/P2M/oe0rmLj3k9SowqhQKBSKg41r/8fxWPXMK/jZ2i14bP02zJ40qr9NOmTQnAojJ0cmBqJa8pKEyKf8ic23N6ZRKEoBV3oaESlGBBw3RY/7qbfAu4cYyPO9dSB9BLeRzVLp9LUR3zuupCxxiZcsUgmOWlfexdGjXNl6fmmfJi2B4GTiJCJAilEQJMpaS1sWGymV2/2BK8m++yNdFxljauQ4wlXVlKpJnGJRXU/fODScsFven7l7RvbNxyN3VrjqoSw2D8BxSXVqDfLyGxVWlzDNXmqvZxAmbp2Vqo2LRCVL/ENJgKx9zN0zy3TK3amZizGQEbdUGQ1b2hC2DU1qOlKtxlTdtG669mEJy6YKJCU2rCtrBb7kNPkEP7G7Brw/6aZKsZmA48KrUCgUCoWiGMeMHY7z50wAAHzxp7+D0bJUBw1NuVuR9QALk36YOClFIBU8ZBtzXyZRriiRkmPdCymLJY3lc/mk4+QWm57nfM8h3Ae97cgVkStjkvQ5i9Qgzo5sFiUznHO9sXopUZTJUcT32bxYhkyKIQNzHYyyJCqUCdXUa8UxYMy90n6WhJavibwmRSqsJPiePnLJbDiImHAibt1GuY1MYaa1D8sw5RY/qYJ4sBCktTVpTLJVElO69zwkWNZRBDLCLkmSdVulz2EJplSxxNCEpezhAPsd5B4SyAcdPqIsYggduymxko1lZQl6KtWEPKaKaVZ3se6/XmEpSbDDP3MQceTuqSmxdOzl5TLIDZe1JSKbTKOP4xn7oqSGJr1RKBQKRT/gr884BkOqJaze8Bp+umZLf5tzyKApCaNMvJJLxAJYgmLT/BNYbGPW2I1VLMygydxYiUh6lSyporAxvH1yQsDdV4WS6iid0t3R5/4olVbeJ/8s+jWlai520xcPaJPN8Pg4IKvjCLiuheVyQjLSQvIAnJgvJ8EN4HVjzD0cIJvpOvvUZfosHw54+nHURiAXw5grjyGSEvlchg3vV6iadp3FdTeccAJOHc+c+7Hvr4cs2TWnpDB0nFRDQRp5LJ59OMB/ByZJvGMfCHA1k0qz8HXn5ULIzrCckEXWNyf/dC8iLKeKZaoGpoTQlCo2hpPHvjr2lqpO9lVLMOV9xuMrqy3u/Z66SFtltrD0SxanGTCCGz/7cO56KBQKhUKhcDFmRCsufeefAAC+9LPfo1bXB5gHA01JGHMKEFfduNsn1egTCggAl1hQex+J2w+Z8NoGOIlonP75+JLcUIIU3i+fm7SRqZi5unw+hc1nJ/++SIErOkZf8Vp/cNUXG3NW68oSh7BsqE5RdiBPEmnzXm5JVbvU1ZHPycRWEcpd1+6anyiK61CUBRdgCplY01xSoYI1t7Gn8h6Vx+RDAUvAmB1yLjI+1lMrlMZySmxQ6Qs738BeCycxESuJEcTsFXW7pS26a1k9TgIlkqH29IDFd6+JOp784Ql3w+V1N/m6OQ8s6P6ic+pdzliW0KaZVO0SseyquQdQ3AXVzo8yvmZZXg13bSXySXPqI8RR3CcvhUKhUCj6A//75D/BEcNbsGHbHtz68Av9bc4hgeYljEBOQbLZDNOkK3ZTSPBkpSzs30fsADcLqcxkSRvelCzuN0upPM7JgyTDUnlM1R2r5sl+fHORKCKW1D+LgXOUoQI4rqoUxxa7xNCJe4wjxF17E7JXTlWuctkpsm5j25CSOEmI6LpzoslJVSWrQ2nKrbZkhROzmPZlitYwHZvfC04CIqGkSVKXi5P1kUb6jo1NZTUCft/ych0iiyq3wVEz+ZyEYpwj9wJBWErUs9q+xO0yfcV7d9v6h/aVxg8GxgBde7NYQn5d+NqSvbV9WYZUIE94xZpRzURnzUjhQ3avSS+DgO63Wpdz71u36LCUv6+AfP1Qdq/Ze70iSKOdc/q+poWIFQqFQqHoCYa2lHHVu48BAPzDz5/BfWtfxubOvf1sVXOjObOkAvlNt1AgnKa02aMNrFSo4KoYheNxsDG9CMIk+6JUFfn59LdICRQF3+WcTYBs4ytscVwZi0ihx2YAbrxl2p6yRiZ9ullQrWLlC06m7JFhCWhETDy1FflfxHUEpDrxOZs4c3eluXF012zyFTrH9gE4bsK2LIbox6skp+2tGzOrl5gja6zOou2Pz0HcH76sug74Q4XUBqlME6EN+Dn2y/Q6x1GyZuVyen2T97xeYdI8y36ay/4Zx9YN0wBZFlIqsUHvgbRdPXuIE4SpAszasHULODFOrxllLrVtLcnMHk7Y+4HPo47EPhqnXs8UcSQqofydmAAAS6Zk0gQ9yT1ZBmpducRP5ILqlJARpTx6G31RN1GzpCoUCoWiP/GBWUfia/c9g607u3DprY8hDIBl587A+XMm9rdpTYnmJYwpEjfENIYOsJtRS3AEmXRqrAE2OUmPMqH6SCNXTVgiHacmYpE610ix4y6RUkmiPhkJkq6rtlnBuLachw+CxFDyD5ushmLG2AbdV1PRbpJLpYycAG49PkYWOBElAhMYA8NVT76mbD45ckWfucIszrHEjghdo3UQY3mz6/rOKepbxr567jkThAiYuuqLXeTlPSS84/L+w1JCiMJyssZ0Da2NTCFOlcYcGDlEHMGE6W+tDJco0pj1WqaKs+tvS3IUPczgiqCoG2rvFR5zaQxQKgGs1EXSTZQpgenxoFxxxwcy19lk8vb3bdiaUrkOKgNj72Mno29CxtGHLqk2UU0v96lQKBQKRX/hlV1deGVX5p0TG+Aztz+Jk485AuPa86XBFG8MzemSKjaVuYydvk1+ELrxb1QOgROARu6bBW6DjtuodEss6oPPI21nBMkgomGVTxm7xhVHRqQo9o4XjLenGE+2So+boOPmGoT59SXzeekDIrcU61UuZ/GHpUq2gabEJYB1RSWXP568yCnpQO6BqTtpzk55HTzXx1fL0LoeerLoynXLJp25pDrxpNwOakeKY+oKK7OmWjBSaetliuvpg5uUKFMz3UaMAMljZG96jpMUJ3TLRuQQhv46g5TtNo5sPKCNU02TwDhJYmg8Gr+7lltT6+LqixcVa+PEZUaRq1rLZExkm5wfV3B9D2XkeMJF1d7HtuRKqfHDIYVCoVAoFA7Wvbob0nEtMgbrX93TPwY1OZpTYSTVi2Xu5DX6AGSZF9P2vg2fryC7l2wW9SFVJl5uYz/qYV7Fi9n7VDUNwQhK5hKaS3SSjm2LuTMCawvPB6mLbEG5BW6XEx9m3SRL7pj8HOqfrkuYJiSpVBMbou50vQNX7fWti50rMtJC/2IIZakwkUiRmsuVSM815yqeoQ1/em2c43Z8pvQByVrLWFOuAPrUUcBJiuPEvEr70jGKHlaYuI6Axc9mhjZwi5YPXphKTGUibHmNercoSRFmxJG5oCZ1DTPXUeonOacEedVMFGW/3fSesfcv/9+iXgeqaTtxL1gFES5pDIyBSZW+UCjlyXVrsE6e34ZcR3qY4nOzzp3bRzCRgYl6t1ZVb/enUCgUCsWBYPLooQiDRFkkBAEwafSQ/jOqidGcj7VT1QuAk+iGPttsjYwU2I0nV+VI2SkiEfyzdE+TSDe3NpZPnutRonKqV/py1DY5B6muELFhfVhyQyUJmP2GuThaUsTtCMtJ0XnetygPAmk3GCklEldA7GxheCL4afycBCmVTjkPTsqD0F0PMWbuOjmKVUYC6frz0hey/IVrmFD06BhTq733kHwgUUAe7fhc4WLj2HIbJZFdlr73XBuHtPLvuwtqg7JahDYhkVWFY/9fwJaeSNwzQ7cEBbm2lkqZqhcm7zMlk92LjJDZDK78d53a7Li3prZ7E/kESQkO7rIeMJsA5LO8ynXJXSvK5sqSPMlz+5AoKhQKhULRrBjX3oZl585Aie0hK2GgZTb6CE2rMAIZCeQubTYuqVLNYhgh1KgG7ocWsmacPFf2EYSOImi/Kzqfq0C+TKrsvVVqPCSSEz3ev8zg6ZR2oPYmBqJajmA4CVMk+ZGxXWQjz6jK52rVsVT9rNeS6yVUF66gktLldEWqJc0hrjsurHJtJYJUgXP6ZHMMTJyomo5qlbn1SiLGFTxrKSmk5F7qGOC5tj7liV+v1J0xiMV5Drmr54/Le5DaCXCV11lvjwuqiSME1dbMrVO6o4bumgflqhufSMSxlNVDBMQ9LeuMyrmEJX9iJY/dDnkzBibMHoAY8fsx9E+D78FDEdH3/A6tWlmkUvYR4rj3y2DEmvRGoVAoFP2M8+dMxMnHHIF1r+zG9fc8jSc2voarf/zf+NFH56IU9l1ugEMRTakwyoycsnA81flz6vLZxp6NUKrc5NQ+H2hjS+qGLErO+gSQL4EgVae4nimkRbaxRDNOoXinTei+F+pUrg6gVEuk0sjOcTKT8rnJPvkacfUSyGwhhSetm1hEABylktvGC93Lmn7cJv6ZK8qeefNMqY0UoSCuZ2UueHtB+L01HJkNRdeZz9MIZdHeB5xgcRuK7nN5b7M+pUuv7T9Vy2wsKgCe9CZIFURvDCN9T6AajrysCn8AguxecOYrIF0+eU1JTkDJZuc34zfSe1+ZcmuisAP+h0OCJDoeBUDeu8D30EihANDV1YUTTzwRQRDgiSeecL7bsGEDzj77bAwdOhSjR4/GlVdeiVqt5u9IoVAomhjj2tswb8po3PihmRhaLeGxF7bjOw8+399mNR2afqfCMyDyTSPFFdEGjlzQnI0pc1uVMV85d0fA/ZzWd7MbROEW6xAzriQSmWLHrRoilY0i8sLPl+SCu1py1U/OJSU/fFPsJTrULW2oGyimzhjcfiJldmPuupr6kud414G5VjpzJhTZyO0sgNc9mJ1ra26KhDSkFAdRza4nd3nlqm0urlAQWGcNqFwHc6W292/O3TrOvXLXgiCJEoS66PmcrG0JYUubzUQalKsIKJ4xDK3basBdQ+MIpt7t9GETGSH/4Mc1wlXYLYEt+N7GJlKCGVtbM3CJcQMC5yQbYq6/NmERXzd6OMAy/HrnIh+Y9AFMbPrkpehbfPKTn8T48eNzx6Mowplnnondu3fjwQcfxMqVK3Hbbbfh6quv7gcrFQqFYmBgwqgh+JuzpgEAbrjnGTzz8s5+tqi50JSEMZfshGV0JKLIs2w6aiSLh7PEzqP65BK/MIJmN9o8u2MKZ9NoYv9GkisXJo1ZLFUy1cwXM0jvPZtWh5Cyfm2MpoCXvEgwGwOfgsYIoNdGrkjKPtjLySApyKdViPgGPchcNu18yE1SzqOI3DKi5Ywp1idXm5Pm5iuJQZltPTbkMp06hIaT9HycLSRRLVCyZTIeJ/GRT9V01jRwiI+N/2OuwaZey2oOepS7ooyqRCrt7yksuZ8Bh0A6aypgQlEWh18znp2UvveprjIjbhGxphI57DcfyPPoGqZZgO2/O7xf+xtvyn+KFa8Td999N+69917ccMMNue/uvfdePPXUU/jBD36AmTNn4owzzsBXvvIVfPvb38aOHTv6wVqFQqEYGDh/zgS867gxqEUxrvrxE+jWElC9hqbepdiNpkilz+F8xzbATpIcodp4CR6pPdRGJLiwRLW7lnefI9JatGmUhIuDu7/y7xlxsYoic2fkyW0AWAUsl+0zbZ/LBCpVULH5Djg5lRtk2kzLOcr5+l68DSPPUv1EVLNr40+0UzCebeCSaiJVTp1HH+kQ18e67ZaqrgswKVTCzbSwfiN9JnvY/HJj83VIx/LOm8+9wH5J+m3R+1Il+Uy/sXLmUkrlUYJKpjKa7rSUBpC4n1ZbsgQ4SH9vsf/3amMcPSACazPsMtv4gwUTlrKstvy3QtfFRyTF9TVUtiW9v+w9wa+HXGf+e6xUs2yvgoTmHiT0IpKcQqaXX31m7iGPl19+GZdeeiluvfVWDBmSz/b3q1/9CtOnT3fUx4ULF6KrqwuPP/74wTRVoVAoBhSCIMB1587AYUMqePKlHbjxF8/2t0lNg6YkjDy5DYAshpFvOlOXOIKJIteNlME5JlUEx2UzKwvhK+lAGSC9LqZIlbCijSNXkpyT2Eae2+dD4MYvGq5WMnWFNru2ZmMjhZERNmdz3cjFTibx8RA1L5GR6mOQuZ5S/GHgO1/2lbbPqcM+2+S0hTpX2JZ9R0TDsJd0ac2dy+fDyblP2eXnSVLc4H5oVMMxR0YlOY7rThbRnDtomBC3hDRWgZY2BK1DgErVKn2O6p9mRKX4Qvot2hhJOo/bUjQ3SaKL5sivEVcFUxJp2G+D17EM6vsyd216OCEfjDSyhd+XMka2D2CiuE9eit6HMQYXX3wxLrvsMsyePdvbZsuWLRg7dqxzbOTIkahWq9iyZYv3nK6uLuzYscN5KRQKRTNizIhW/N37pwMA/vH+Z/HfG1/rX4OaBE1JGHlyG4s0IyNP4U9tueJnXdfgJ30oVbMajlYdMLmYRl5jrqgGW0AusVQeIiWtOeIo3Ss5MfCoV4Uql3RnBfIueEDOtY6TCsddNfC4U/rGlcRN2uBTdYqUHrEhD4racfddNg4vleElHJ4583WRKiuPX5NxnNY2qU5KuwFH4bWKFREVThrZ2HIdGibMYeSfJ/fJudX6PqfkkJeF8SWVssSR9UEJZ4I4clVhZOohjWNVQMBV45D9Fp2x0wclQalUHCNI60/vgSyjLlfIWUyvYb8pIo1OmRXKckuK4/4SYvl+H/w+a0TcFU2BJUuWIAiChq/HHnsMN954I3bs2IFrr722YX+B5/8mY4z3OAAsW7YM7e3t9jVhwoRemZdCoVAMRJz9lvE4683jEMUGV/34CezrVreYN4qm3KXkFA8gi2MMs1dQrrptWQ02HjvHSWRyQCpd4juPPZaEMvIo6w8CgPT1klkWs9pu+aylNH6u3h/gKCRSqQxMnG1+03M5qbIlNyQEefSpejmFsicbY0kamWpo2Macq4m5TKZFJFMkpilSoHKup+y9Q7jIRbSAJMh4UPuZzhHfOy67kniyvg1XiOk8z/i5eFc+ThFM7Dy08Mb4IiOD9BDGeTBiYzZNFgMpFc+Kv1YkOBGjMYMwUx1Tm0jhpNjFnMou1rWhgi8emhT1sV/1mv82Zd/8vmQPEbz3Ty/CRKZPXoqe4/LLL8fvfve7hq/p06fjF7/4BR5++GG0tLSgXC5jypQpAIDZs2fjoosuAgB0dHTklMTt27eju7s7pzwSrr32WnR2dtrXxo0b+3bCCoVC0c/4u/dPxxHDW/DcK7vx5Xue7m9zBj2asw4jUKjq+drx8gCyxp+v5p/9Lo3tS2r+Ib8hRkYWA2OsS6wBMnJaKjm2BpVqpoD4xmeKR9JAkDZpI9/QEvkjosFi83zkzhlD9Ol9jk1k08ROjUHqN6e88fPScewcPQTIS1rlcb45b+SOKNbFUW1lWQwTuxlYpRLL1TpBap35Fdho1zOuJ6qWTyFm4/G6jqZUQRB158u++BLveNaJSqIEEXPXDkIYKu5YrzvX0t6vpNinbta8jqJ1CSf3Ujlvx/4C91xmr63BaX+jwh04CDPyKe8rHxEzsSWyTltae37/UV1Gex4jex7X6tz57OFNlnwpsgS60OVb0VQYPXo0Ro8evd92X//61/GFL3zBft60aRMWLlyIH/3oRzjppJMAAHPnzsUXv/hFbN68GePGjQOQJMJpaWnBrFmzvP22tLSgpaWlF2aiUCgUgwMjh1bxpT+bgY989zHc8l/r8O5pY/H2Pzm8v80atDgghXHSpEleV5qPf/zjABKXmCVLlmD8+PFoa2vDqaeeirVr1zp9dHV14YorrsDo0aMxdOhQvO9978OLL77YezNKQcohf+USZ7AYR+7SZmMRTZbgJlMA6zahilPsXpKEFL6MrQDcMhvcRlJi2ObeSdpSRD7oe6lYsXYOWbR9+1VKH0HjMYPkemmC0EkKw8kTj8HzksUCFdHaQH/T0gVSybH2U7+NCKKYmySLTqkTj2rkPSa+s/GUPCENqYmNsm8W2cnWka85j9UMom6/bXxMlvCIvjelatYHfU/rwW0sl5NXHOUebiTrz7KbhpmS7sTpMtLkhaybya4LlVkBkCiP3EbZB+B1TaVjPEuq94GSkao1S5bDCSW3D9nvQpbV2G8CI37+/u7bN4DeT3iTvPoC69evxyWXXILJkyejra0NRx99NBYvXpyrMdisdQgnTpyI6dOn29cxxxwDADj66KNx5JFHAgAWLFiAadOm4cILL8Tq1avxH//xH7jmmmtw6aWXYsSIEf1pvkKhUAwovOu4sTh/9gQYA1zzf/8bu7rylQEUPcMB7VIeffRRbN682b7uu+8+AMAHPvABAMD111+Pr371q7jpppvw6KOPoqOjA+9+97uxc2dWC2XRokW44447sHLlSjz44IPYtWsXzjrrLEQ9VAR7CnKDszX9osiJaTT1NGtjHDkuozJGixf/Tg6wLKmcnDlkSWym0s0nqi2JEpImvjHdteRFtjKiSuflSAV3qeSbTp51M/1slUi2MbUEgqkjPpXDSXxDG2VOkriqJuYvz7fnUDtaO+kiKImFr25iIJLHFBEdOsYT+cgNvEP2sli6XF9CrZMKaW7DL8kR2eF0IlTDlMTJ/nNEW64RPSTghJSTdNFOJjKy/RZcR2suKd9EIKstriov3MC98b8cYszcfUIEjbtKAw55c9r6EgDx/jhKVb8iaeIk+ymrP2ofJNA94kkU5bhv02/Lc9/w33lW/7XgAc8hit///veI4xjf+ta3sHbtWnzta1/DN7/5TXzmM5+xbQ71OoSlUgk/+clP0Nraivnz5+O8887DOeec4y3BoVAoFIc6/r+zjsebDmvDi9v34os/eaq/zRm0CIwpqoy9fyxatAh33XUX/vCHPwAAxo8fj0WLFuFTn/oUgERNHDt2LL70pS/hox/9KDo7O3HEEUfg1ltvxfnnnw8gcbmZMGECfvrTn2LhwoU9GnfHjh1ob29HZ2en94lq9PR/5dPXk+rCM6imcY373dymIJXCkklRIzDw5Jp3ar8B2SYyTSRiumvJ5tuqg8ZN/sE38vyv6DNHnoIw2fiS8iUInnVF9JAP+d4SmbhuXe64CyMnIM7GX5JKsk3OhW/A2fhWsTP+GMogrmduwZJARd3u+jN1jhOqwqQvpGpaBTJPqOncnA2+ubJ5SoIu51Z4TXi/aX+mVC0ko7atT+ULwjzJlH3QuUX9ChJbFOso70tnPHbf+q4lKdiWFKb3heNCy+3lY9BfOp/fbz57xIMKrm7yB0hB1O0kv3HGJ7tZCQ5OIrkbu7Rl9+FTG/67dqCgfyfvP+NkDKv0bvTBru46Tvv5A71mayN8+ctfxs0334znn38eQFKj8KyzzsLGjRttaYmVK1fi4osvxtatW1Vl6wH293+oQqFQNBN+9dwf8aFvPwwAWHHxHJx23Jh+tmjgoKf/H7xuP6harYYf/OAH+MhHPoIgCLBu3Tps2bIFCxYssG1aWlpwyimn4KGHHgIAPP744+ju7nbajB8/HtOnT7dtegOUNRFARuRi4QLKy1vU68kLHnWQ+hSuqTkiaGJnk5yL3ZIvrjpSG3lezoi8G2RmXwOVSapUvJYfU1OcMWRfHqInlTWnNEGjOXDXPV6WQ6qYZDObs1VkZCynUEJ9brxEPLlrZw5UVgFIspay5DQ5QitVS0mo+PiSUDCiYBPn8HIN1IdMUBR1O98TcfImH6J5C0UZlgwJlU6SclJ4U/JswjLiSpt7rZg7qSlVkhd/kMLhub58rRwXb7Y2XDm38+F9ygzB/BhfFyJxLG7XtiHCKx+kUBtyQ7cPIsT96nvwkI5rhEu14deA7sc+Lq3RV5ClGrq6unp9jM7OTowaNcp+1jqECoVCoTgQzD36cHxk/mQAwKdu+y1e2zP4QxgONl43YfzXf/1XvPbaa7j44osBwGZtk1naxo4da7/bsmULqtUqRo4cWdjGhwOtISVLWfC6bo57aQobQ+gji4KA2PO5osHdO8MGZTmkWsTd2+QGVCZeofP5RrhIHWLnETH0bcZzNtBpwu2uYTkIw7KoCtscdztS44gs5TbrLmmVLrG5tWClEjhxdRXEwDuO1w3Qt+HnpS18bZltORdZNpccafQRcCJN3E2XkavM5biUuUmm8bQBi6l1xkRGFr1Kqs9mEwNde4HaPrdPsk8QJukK7cxb3lsOERT1TmkuItbTibmV5JzfbzxOU97jtO6SaIq+DHNZz4h8aqcgsXJdcvOTx0tZRticguy7b3oRsTGI415+pdduwoQJTrmGZcuW9artzz33HG688UZcdtll9tjrqUOoUCgUikMbn3zPsTj6iKHYurML1/zf3+Kh517F5s69/W3WoMHr3qV85zvfwXvf+17nKS+AXB2oRrWhetrmgGtIUWwii0W0MVaOIuYf00mcIRVBH3kA/OqfJIPye36+HZwd99XV86hVXpLiawu4xK5okxoIxY8URXIRZXYVuYp6y0wEWR3AHKSiQ+fIODDhfsvJpxM/xm2XihKNR/bL68FKQuQ2/5zgcqLH57Wfa+ysj824mZWIyK0bT7pSboUpt2R917pg9u4CukWiHSCt7didJ8OytIgYL6D4PnpgkNrLFdfcNaS2viQ8QjF1VHoak5ePISJaqiauwZUWmHJLXhHl/XJyTd95fqvWbdxTfzT3wIYnuOJqM+B/OMBB57AESGS/U6+TEdn6xrXF/b0R9EVJjTTpzcaNG51yDUX1A3tah5Bj06ZNeM973oMPfOAD+Mu//EvnuwOtQ6hQKBSKQxutlRK+et6JCALg5797GRd8+9eYd90vcMuD6/rbtEGB1+UH9cILL+DnP/85br/9dnuso6MDQPL0l1J9A8DWrVvt0+COjg7UajVs377dURm3bt2KefPmFY537bXX4qqrrrKfd+zY0ZA0BpWqW6pCZEgEYD8bxG4bwLqnWpRdhcum+fdtNOVmtYjMpX3lviva7FJ7SUbpOJGE1KUul83RxMl3fCyfyuY77rPFWcu0bAYjEbyURk6N8akyvr6FYmP4+rDPMkNrERFy5ijtp+8sIWS1OIUSmNwrGQHOEQ+edZSTgkbqF70vIiE0TkoakarGaC075DWo78vuD7HOTrkTIngFaiZKTOVrcA0DIOnTJltqUC7Ckq0gy1yKOHe9OInPrkGalZjHlfLrycYIuN20HvaYZ2359RKlMsglFkBCHqUrtFTVWRyzSW2zmYLpmvAHISn5NvwaDCKMGDGiRzFwl19+OT74wQ82bDNp0iT7ftOmTTjttNMwd+5cLF++3GnX0dGBX//6186x/dUhVCgUCoVizIgW8FphxgB/e9dT+Pp//AFTxw7DlDHDcPQRw3D0mGGYcsQwvOmwNoRhgM2de7Hu1d2YPHooxrW39d8E+hGvizCuWLECY8aMwZlnnmmPTZ48GR0dHbjvvvswc+ZMAEmc46pVq/ClL30JADBr1ixUKhXcd999OO+88wAAmzdvxpNPPonrr7++cLwDrSFFWRttke8Sy4BJEBtqniXVkNoTRwjCEuwysfY50sg3rp7Net5IoVpxAkjnyz44mRR9BnHk1G+UrqCJvXA2zzk7uLJoXMKQjFHPSItQAg0fk97T5t0zb8feBooQPH3m2vANP5BXGZn7qvM3KEj8EpbtZl8SaP5gISACQYSA1kmusSC6uTp9AGwdTw42NieFTgZarvrK7LlBmChzZJckh9QHX186zmMGiejxpDSMYAXp9ed1DAMZG8vXLggBE9ljTps4ApCua1QDyq1A1I2gtstx67S2BywpDpDdD2RrWM67osq2fK2deyOCCZP5O3PnayDIqvffHLID2XU0bC7e5Eu9iDiKEQe923ccHVh/Pa1DCAAvvfQSTjvtNMyaNQsrVqxAGLq/i9dTh1ChUCgUinWv7oYvU8lre7vx6PrteHT9dud4SznEqKFVbO7cBwAIA2DZuTNw/pyJB8HagYUDJoxxHGPFihW46KKLUGbKWxAEWLRoEZYuXYqpU6di6tSpWLp0KYYMGYILLrgAANDe3o5LLrkEV199NQ4//HCMGjUK11xzDWbMmIEzzjij92ZVrycFxFmaf9TrbmbUuEGSG3ILjFkpDkEuHYVEqnlSNfIQFYtG33sURPtZblR9rlic9EH0XbT55WTC44LKCYqPVMi1yoHIDt8Dys13SjSJhBpGTmQ/fG1sbUEnprScJ0r0Oa4nrpyAm1XXxPm2tNEPpVtzaAliIK85X39KpuJJTJRL0CLXRdhBV9rIa0XEgzJyFjwcsNlzpQrKiTH1aeftyQQryXz6lyvN7oOHlGjHkUOsKMbY+b3S77O+z10vXv+UXDzpHCKqguRnamGU/Q442Dz5AwGve7C8l6SaTPcRr/1Itjcim2I9D1Vs2rQJp556KiZOnIgbbrgBr7zyiv2OvFh4HcIvf/nL2LZtm9YhVCgUCsV+MXn0UIQBELOtfxgAt1w8B517u/Hc1l149pVdeG7rbqx7dTe66rEli0By3mdufxInH3PEIac0HjBh/PnPf44NGzbgIx/5SO67T37yk9i7dy8+9rGPYfv27TjppJNw7733Yvjw4bbN1772NZTLZZx33nnYu3cvTj/9dHz3u99FqVTK9fe6EUcJ2XA2oFGiGCJRDok4SnB1MiBymX4nazM6cY6Au/H2bfTJzZHAyYkgGE4ZCMCNw5OkpkjBlOpn4HEVlJtrcTynKLE52bIWnCBwda+oX94PV/WY+55twkmQtIPZYueHVOHbj1pmvy+Xsyy55bJ/LVn/OWWXbCKFj5cIKepD2uBr55sjv1c81wNwCWxuLBM78w/S9va4vD8a3Bfee17OMQgzQl5hWUIR298ekcXMfkawPC7UAbu/TKmSfBVlRNWqjt173Fjd9KGKfchDIAUyJazO+Ow34zx8IAId1fzu6WwsZ+lYKRCah1UafXG/vQQTGZjgdVdPKuyzL3Dvvffi2WefxbPPPmsL1dsx0/WkOoQf+9jHMH/+fLS1teGCCy7QOoQKhUKhaIhx7W1Ydu4MfOb2JxEZg1IQYOm503HqsfkyG1FscOcTL+Gvf/zf7nFjsP7VPYccYXxDdRj7Cz2qwwiXMJruGsjVNAhLXsJooijbyAoFhOo3FpHMtOO8sXJzL1UvvtnmCofMDGpEXB1TiLwbfK4Isppvhe5vXHFix4gM5txS5Vw4maG1IOWPz1fMybYX7oY0JlfMpG1OP9IW6kMkzXHsl/ZwtY+Oye/lgwCmNAVxlJAYIjdRd+aCydx4HddGSeobkWJ6nyZN8danZATQG0cq+yQSJ+8lasavO58v+55cNqlf/pDDJvOhe9p37zH1H+Vy9mCG1yMV4zuZfNOyJL56lraOo490s/XyraF9H7BsrYYl/JHzk/cGJ6GeBw5OAqq4jp07dmDUm0/u9TqM986bi6HlA3422BC763UseOhXWsdvkELrMCoUikMZmzv3Yv2rezBp9JCGxG9z517Mv+4XjiIJAJ9/3zRcNG9yH1t5cNDndRgHC6waWKkmimFKFoGMFDr1E9PSGwF3aU1LcjjnyHN9RIK5zfGNYk7hY987JTs4gjBPFtn7XLkKPiZTfXKuoyz2zdYDZJtrb0mJbqGUFBGg9K+XpFE7XjYhR56F+54kab65CTLL1zxw5hrlrxW3gc+LiIH8Tq4LP19+T+sqbefn8r6K7pGQFZVvoIbyOEerigXCDVU8JHAygKZ2ZPUhu3N22pIivBZjms00U+VKyX3L6hBa5Y0+p3VRSeG1pWtMDEQ1x/2UzqOsrbL0Cc/gyuMEG/0e6bOTHVlcD5vxVKwjj3127imwB1a+3xDdr/xe8mUP7gX0doZUmylVoVAoFIpBiHHtbZh79OH7VQlJkSzR//Xp8S/85Hd48A+v9rGVAwuDs1r0/sBjD1PYrKlhKfme3gNWPTT1WkIqDSOU5MpKbSkDa+r2ikpeGcvBo2g5io5PWZJKVxE58KllBaqT095Halif1l2RujAsK2kpWUPjM0kqN9wWj7pj4yR96iiQuXnyIbjyGZbdDKeyX5+6BICSrhSSNs8xSoJCqpYzzzRulp8nM/M66hQ/1wcfmZUQaiLN10skhbLF4wCNIOpEJHkmUNtGuBzb60DzA7KEN+xhgLXPQ3SdhD/8ejBl2bo+e8ihfVAiyTp/0ECqbLo+gbx+YOQvzj9Isg8OZLxpECb/bpSEqzkAmCjv4upMXD7AURKmUCgUCsVAwvlzJuLkY47A+lf3YOKoNiy7+/e467eb8dFbH8OPPjoX09/U3t8mHhQ0J2FMSaHhbm4sFpHa2EyqLBU+wpJDHmW/nHgm7mZso8qVIH6cQJ9T5cMpMk/ulDLjI9/Iy1g8sXl2xgH8ykZurcRmmxEUb0xVqhpZNUUSQjlXWfPRt6GX59KxAsXFkkCfWsc/SyWQkRLDzzcxi0+Vn1n5lVoXu+4imQmfN60pJWDhWVq5wiXJtU9p9JC/wMSJ/awdJ/jSVVXeI1Yh86iLQEL4SJ2zRM1znQI2r4CRzIxwiVISZAsnSp77x5Y54fMVn7MPYe57Z41IVaTfC89Qy21jfXrjkwky424QAuVymqDJZLGwQJ4s8t8Yh+2rb2oIDoQsqQqFQqFQDFaMa2+zauRXznsL/rirhl89/0dcvOJR3P5X8zDx8CH9bGHfo0C6GNwISonbKcUsUlINUgGoMDmv1QgAQbmatSHX1bCEoFx1M6fG7nleN1BJisR3kuDl3FTZd143R8Pc2rhroWzP7ZDueAVExbq4io1tIDbVznfCHS/Xv7TFnlfPF7wHJzkmfx5zEQ3kOtMaMAWSXs7aMRdHytrJFUHTXYPpriVxaHGU2BGWYGr7EO3cbgkFuWrahw91Vt4ifU9EwpmLb624/fKekdfFc7/kypqwfrm7buC53/g6UbbZHFkEEqWO3EulekqEL3VD9cZXFqml/Nqkc5W1ChHVnIcA1vXVdx+QIpgmmnFUSLZmROjtNa7X7UMRC9+1E79z8lJAHNn2ORdXHo8pYoH3uy4KhUKhUCj6HS3lEr71F7Nw/LgReHVXF/7ill/j1V1d/W1Wn6OpdynWjTTdzFPSGopRBJAjf1JB9IJvJn0bUH5cguKq2KaXb3DFBDJiI9wyaZO5P/fDnC0+FZQ2sGlbXiLBOd9nY3rcRJG7OfbZ4CNCPlWNjW1rNTIbHPWHxxryJeDqEl+7uJ6QPDovZg8TWHwgAMR7dsLs24147+6EPAIw9RoQxwmh3LsLcdfeLFFRmdxrTZ5IyDnytZfrUnAvBfLayIcFfJ1ZG28MqTwuxjZBmLmWetoZ333E748gcftMMol6HniQrYIE2v4K3Eyde0w+QEntzh4EiH5pDWXcLZDFTZY9D1WQf0Di9pk+PCiVHAXa9ikVZXauSz77xiXVGAMT9/JL3WcVCoVCcYhiRGsF3/tfc/Cmw9qw/o97cMl3H8Xurr7JQzBQ0JSEsSibKSeHPD7RB1mSw55HmVZl/z7ywjf1UuHgCiF/MRUpV0ePDxcIt0IfyeAbVFnYndoAmQIWR8mr3pXUv+NEUpIOnoSEr0cBAZS22++KiKVcEyJzqfpjSyrEUUYARbF4m+SGShhw8livA117k4RG1J+Jbd2/oFJFqf1wqyqaerd1UzbdNZh6N1DvBuIYcdoPgMQ9MYoy1ZElUHJcFD1kxkfsTSAIGb+f0nOce0hcY69bMWvvrBEd9yWGEeuac4EmRY8nB0rVO5vwh9rwe5DmyVTggN93fD0IPEmTifMKssfm3O/BY4N9WZuNvY6WqHYnpTTQXctUSSDvrSAVRkmaTeyule869RLiyPTJS6FQKBSKQxVjRrTi+5e8DSOHVPDfL3biY//8G3Q3cbhGUxJGICWNlaobpxgyt0Egy5bqIY08WyqQKkvIVEu3sUdl9KlofOPPzxXtbbZSvokXimJhmYSeHPMpcqyciFULTZxkRJUba8/55IboZMDk60Fkj2/8mZrl2Mv7ti6hYs3S2nmmu2bttZkqGQkK6vs82VNLQLU1IYH7dtuYu4R8ZSUdTKmCYOgIBNVWmNq+5NqXKwhaWmH27U6JZA2odyfv9+3J1CZSHYPQVZr43CW5F9favUB5F1XvNRVE3vm+YGx7v7E6gbnz6Bp6CL0vsyg9eACQlaPwXV+uKPrqZVL2VXv/uFmETZD/7Xjvb9aeZ3XN/WaBzC01fSiRnJfVizTd7jrZh08ig7I9j8+ZjWezHvcxYVQoFAqFQtH7OPqIYbjl4jloq5Sw6plX8Knbftu0HjhNSxg5yFUsdwwJAfSSwBS2HiO5qLIsq46bGm16nZM9m0DpcuchVfZcSZK8BgoVrhGxcDbWWZbQJN4szRBZSpIEGebO65Ktcp44+DbBfDxJhIRylXOZtEqU634YMIJi9u2xJD43TVG2AVEtLQ1Ry1SwuI5g6AigXEkUwn27k2FY6RIiYMGQYVZVDMpVhENGJMS6a1+iMgJAGCIoVx2354bXgJMtH2HgCiAnR4At8eCLRWyo2KafnRIsPmLFSJezljLjrM1aysrSpO8tSQYS4shcb205DlZqg8bjyimNa+MZw3Li0i1JcVh26l/myBlfO04cfao8AFRbnd8yJcEhpZgeRNk1Y8eccjxAdn1918X3vg+QlMGIe/nVnP8hKhQKhUJxIJg5cST+8c9nohQGuP03L+H6e55+Xf1s7tyLh557FZs79/ayhb2DpsySymMW6TMAp5yG6a7BlssoIIyBMUmpBO5+Wi7bshuBMUn2TKkcSUUxCHMqlw+2lIGvP8/mN7FBkAk5Bi+DwMeSxA6A8ZSgMHA3tpYa8HkK0shdKQPel29t5HylYlWpZpkt7VwDhC3+2jkmihL1sFTN7LXkK70nmPts0DokJZ/dCCvVJEsqm6MJy0C5FUHLNgTV1mRJd72WfN02FEG5kpVnIZWW7ic5X7lWEA8dfO1YH47rqbwvfCot7yN9mMDvDwMgoO+ZC6jNuFqqZuU0uIJZAK7OOrak3zmZWzlZpLaevq3NVI/R9keENs4ylALZwwy2JvZeJFdWICOt6Xxzqid/b5IY3eS3z1xQ089ObDS7d50arfJaeR8m9U2WVIVCoVAoFH2Hdx03FsvOnYFP/r/f4uZfPocxw1vwnukdWPfqbkwePXS/9R5/9OgGXHv7GsQGCANg2bkzcP6ciQfJ+p6hKQljOOXtiH73QPohI4eIYyAMAVZX0cRRRoI8tRud2DM6npaVsN8TqaKagZKccTIniRaPRYPY3KaffTUROQmz9egkaZBEkatEHhsDuZH1bWyL3OfEJp1KO0j7C2Pq2JgmzDbYttxIjnwEzudkDoFbPkXM3yDO18sLQoQtbck9wlXB1OU1wL4kEUq1NVFe9+0BAJTaD8/uqZi5IpZFqQZSROEe8ymtDvbz0KBw7fjDCXEO3VMB4K6RjBfk57HrGsRR8lDBVxokXV/vHKgeIcUckkpI57E1d661JPx8zfi82UMRp2wGzblo3egcsN+mr/96tj7OvwX1eq6cR27+8h6QNhwEmMjANLb0dfWpUCgUCoUiwXmzJ+CVnV348j1P4/P//hT+9t+fgkFCAL9wznS8e1oHtu2uYdvuGrbvSf/urmHj9j348WMv2n5iA3zm9idx8jFH7JdoHkw0JWEEkKmHAkFabsMhkBI8yQ1gs1+yzt0+ibDA3aQ79eSk4sePsU2ys5l3xogzMsAzmjLlyLaRdvrUPLHZD2RbaheWEUTdOeVNbqgd4kyqKiO9ufXzESR+jCtiwjYn86Qva2tcT+oCsmLtGcFGbmxTqgAUr0bjUbxabR9Qg1UXg9YhSZZUSn5UrsDEiTuqVZzkAwb5YEEqaVzdi6O8MuVpZ4+zBw6GEyDAzcgrSTeQEXp+zdP3vMaiHTJV0IwkYfx8D7nP2cz7Sq9x7t52FtBDtLiSzX8/JrZu0yYIgCj7XpbqcOyh+0SOQ23iCM4/l5UqG9PYhwV2XlEEsORbpHyTq7W9J7hy6SO2CoVCoVAoBgU+durReP6VXbjtNy/ZvXxsgM/c8SQ+c8eTPe4nMgbrX92jhPGgQpbNqHcn8WbSFVW+T0klJ52cDNi/pCp5wEsgGCC3yTaMVHldD6UKZe0TcV5F4JtpRjCsakd9NFK3CEJBdBSmtHB50fmFG3Hqg/cpFdAi+9g5BrHN9BoeOx8AEP3uAQQtbTDl1oxEs34dxYeTz5QsUkbUoJwQySS5TS1TFOMoIZFhCQHgKJtSTcqp1D7Vi6lxPONqQxIh1jFzz/SsH6lcTEX1lrvYn4IsP3vsI0Jk6rXEnjCJ8eMJYGwGUrINyJF7C6Ea2jhHNkcinbZNEenm7s0+BT2quYQ+LCMomeTfAv4wgJNFVlLFjl0uJ/cRkcZy8uDFrhEp3ek1zqmPvYg4Moh7WWHULKkKhUKhULgIggB/OvNI3Pabl7zfjxpaxcghlfRvFaOGVlEthbj14Rec/6VLQYBJo4ccHKN7iKYljJzo2SyoYZhu+ONCsmgVAU4Wa11AtSVRouI6UOtKNsBFg3s23KToOC52+zkHYMqfHIKpb1xRlDGDAeDUxnP65H897niJshi4ZMdnj09tyhksxqTDVEqBExVLcAR58alP6ZgmAMCyU8Zp9tOgDZkLZKpgObURaaNP7pomcd4LylVbczH5PkoeNpCyWG0FuTOb2FWTAGSqa1hyiaklSyKTplyXelq2oVJ123Fyy5Q96/LLS4gA7KEFu1vZudyd17eu2eBJP05Be999ZMdI5xfHyboBKWmEm+SI+k3VP1NuzWU6JTdT/luw6jXFIjKlEiZ2yJm7sMVEFyZG6eiT/OcdBJR27Oi3sRUKhUKhULxxHD1mKMIgURYJYQA88MnTcORIPwk84U0j8Onb1lgPsaXnTh9Q6iLQxISRkCuZkbqgmjhK3Ah95wRBdh4RhLCcZdKMI5iuvVniFb7ppo0uVyns5lwoOfyvhNysMzdX3saE5ST7JycJ6TmFCWroL1edpOJi4lw9S6vk0VwlUeTmxxFMmD9u23KCw+0iGzghotMkuZEkt1xG/OzDiLv2Zi6kcQSErpLGy6zYc8kFlcYqlYC4ZMkOkLmfot4NE0cIw1RhlLGvrBwLZaOVpNCZg2xXLmdZbMlewFWyuXulWFubAZURL5mQpb/JkeLgwcSx/4HAG+xToVAoFAqFi3HtbVh27gx85vYnERmDUhBg6bnTC8kiAJw/ZyJGD2vBJd97DC2VEO8/8U0H0eKeoXkJY1jKlV0g1ziAbcIJnEAEWSKUeN/uhBDs2w1UW4BSNSE5XXthumuOAkTn8r9W+QFccuhRb3Lxg1L5E+TLAE7tPK6w5NwMJXzHhILnxF8BicrGyorAEuaCuDXmBlsYb+hxdQyMQbx3N4Jhh2VkjsauZNk1KVaNCDPCMkxcTx4EUN1NTuJpPSvVpL5kHAHSJF6vEwBSl1RLCuM0Fg2pYhZFKKVusArFQIS6pCoUCoVCcfBw/pyJOPmYI7D+1T2YNHpIj9TCdx03BuPaW7G5cx8e/MOrOGPa2INgac/RvISRkCa2ccgiizGy4G6pcZQUbQcQ1PYlxypVRDu2oTR8JEwUId6zM4ljax2KsG1o1g9X6NJYwaJi9blEMxJOTBaL9ytyBZTj8M88NkyM5UvUko0bZCprpepmiOXZQYGsnEn6vqG93BZGiEuTZwE4RAqEKhQKhUKhUCiaDuPa2w7IrTQIAiyYNhbf+9ULuGftFiWMBwumti9xP6UsqKlqJAtuO+dQspsojU0LAoRDRyDu2msJVX3riwhSZS2otgJxhHj3juR9QW1AisWzLqNUPgDIu2wyl1ZeioLKZpiwhMAgLUDPYhN5fGIQojRp5utZNoVC0WQwcR+U1YhVYVQoFAqFojex8IQOfO9XL+Dnv3sZ9ShGuTRw5JOmJYwEKqMBwF9cO/TEmsWJSoZKFeHRc6zalS/SoVAoFAqFQqFQKBRvDG+bPAqHDalg+55uPLp+O+YefXh/m2QxKAmjSQnfjkZZBY+a0zuDaeZChUJxEED/nhnTy+pdFMOY3k16A016o1AoFApFr6JcCnHG8WPx/x5/Efes3aKE8Y1i586dAIAJEyb0syUKhULRu9i5cyfa29v72wyFQqFQKBQHGQtP6MD/e/xF3Lt2CxafPQ1BL2c5f70YlIRx/PjxeOqppzBt2jRs3LgRI0aM6G+TDgg7duzAhAkTBqXtgNrfnxjMtgNqfyMYY7Bz506MHz++V/uNI4O4l1XLWGMYFQqFQqHodbxz6mgMqZawqXMf1rzUiTcfeVh/mwRgkBLGMAzxpjclNUpGjBgxKDeewOC2HVD7+xOD2XZA7S+CKosKhUKhUBy6aK2UcMoxR+DuJ7fgnrVbBgxhHDjpdxQKhULR6zCR6ZOXQqFQKBSK3sfCEzoAAPesfbmfLckwKBVGhUKhUPQMsekDl9TeTsyjUCgUCoUCAHDacWNQDgM8u3UXnt26C1PGDOtvkwavwtjS0oLFixejpaWlv005YAxm2wG1vz8xmG0H1H6FQqFQKBSKRmhvq2DelNEAgHvWbulnaxIEptdzuCsUCoWiv7Fjxw60t7fjB0cciyFh71aR3RNH+PArT6Ozs3NQx6IeqqB7Q6+fQqFQDEz8869fwGfveBJvObId/3b5O/psnJ7+fzBoFUaFQqFQKBQKhUKhaDa8e9pYBAHw3y92YnPn3v42RwmjQqFQNDMi0zcvhUKhUCgUfYMxw1vx1okjAQD3DoDkN0oYFQqFQqFQKBQKhWIAYeEJYwEMjDhGJYwKhULRxIiM6ZOXQqFQKBSKvgOV1/j1um3YvrvWr7YMSsL4jW98A5MnT0ZraytmzZqF//zP/+xvkwAADzzwAM4++2yMHz8eQRDgX//1X53vjTFYsmQJxo8fj7a2Npx66qlYu3at06arqwtXXHEFRo8ejaFDh+J973sfXnzxxT63fdmyZZgzZw6GDx+OMWPG4JxzzsHTTz89KOy/+eab8eY3v9kWU587dy7uvvvuAW93EZYtW4YgCLBo0SJ7bCDPYcmSJQiCwHl1dHQMCtsB4KWXXsKHP/xhHH744RgyZAhOPPFEPP7444PGfoVCoVAoFM2How4fiuM6hiOKDX7+u/51Sx10hPFHP/oRFi1ahM9+9rNYvXo13vnOd+K9730vNmzY0N+mYffu3XjLW96Cm266yfv99ddfj69+9au46aab8Oijj6KjowPvfve7sXPnTttm0aJFuOOOO7By5Uo8+OCD2LVrF8466yxEUdSntq9atQof//jH8fDDD+O+++5DvV7HggULsHv37gFv/5FHHonrrrsOjz32GB577DG8613vwvvf/367qR+odvvw6KOPYvny5Xjzm9/sHB/oczjhhBOwefNm+1qzZs2gsH379u2YP38+KpUK7r77bjz11FP4yle+gsMOO2xQ2N8TaAyjQqFQKBSDE6Qy3tPfcYxmkOFtb3ubueyyy5xjxx13nPn0pz/dTxb5AcDccccd9nMcx6ajo8Ncd9119ti+fftMe3u7+eY3v2mMMea1114zlUrFrFy50rZ56aWXTBiG5mc/+9lBs90YY7Zu3WoAmFWrVg1K+0eOHGn+6Z/+aVDZvXPnTjN16lRz3333mVNOOcV84hOfMMYM/LVfvHixectb3uL9bqDb/qlPfcq84x3vKPx+oNvfCJ2dnQaA+dbIqeb7hx/Xq69vjZxqAJjOzs5+m5/i9YPuDb1+CoVCMbCx9qVOc9Sn7jLHfPanZndXd6/339P/DwaVwlir1fD4449jwYIFzvEFCxbgoYce6iereoZ169Zhy5Ytju0tLS045ZRTrO2PP/44uru7nTbjx4/H9OnTD/r8Ojs7AQCjRo0CMHjsj6IIK1euxO7duzF37txBYzcAfPzjH8eZZ56JM844wzk+GObwhz/8AePHj8fkyZPxwQ9+EM8///ygsP3OO+/E7Nmz8YEPfABjxozBzJkz8e1vf9t+P9DtVygUCoVC0bw4ftxwTBjVhq56jFVPv9Jvdgwqwvjqq68iiiKMHTvWOT527Fhs2dL/GYQagexrZPuWLVtQrVYxcuTIwjYHA8YYXHXVVXjHO96B6dOnW9vIliLb+tP+NWvWYNiwYWhpacFll12GO+64A9OmTRvwdhNWrlyJ3/zmN1i2bFnuu4E+h5NOOgnf//73cc899+Db3/42tmzZgnnz5uGPf/zjgLf9+eefx80334ypU6finnvuwWWXXYYrr7wS3//+961tA9n+niBCH7ik9vekFAqFQqE4BBAEARZOI7fU/ttTlPtt5DeAIAicz8aY3LGBitdj+8Ge3+WXX47f/va3ePDBB3PfDVT7jz32WDzxxBN47bXXcNttt+Giiy7CqlWr7PcD1W4A2LhxIz7xiU/g3nvvRWtra2G7gTqH9773vfb9jBkzMHfuXBx99NH43ve+h7e//e0ABq7tcRxj9uzZWLp0KQBg5syZWLt2LW6++Wb8xV/8hW03UO1XKBQKhULR3HjP9A7804Pr8B+/34paPUa1fPD1vkGlMI4ePRqlUin31H7r1q05BWCggbJGNrK9o6MDtVoN27dvL2zT17jiiitw55134v7778eRRx5pjw90+6vVKqZMmYLZs2dj2bJleMtb3oJ/+Id/GPB2A4lL49atWzFr1iyUy2WUy2WsWrUKX//611Eul60NA3kOHEOHDsWMGTPwhz/8YcCv/7hx4zBt2jTn2PHHH2+TaA10+3sCLauhUCgUCsXgxVsnjsToYS3Yua+OXz3/x36xYVARxmq1ilmzZuG+++5zjt93332YN29eP1nVM0yePBkdHR2O7bVaDatWrbK2z5o1C5VKxWmzefNmPPnkk30+P2MMLr/8ctx+++34xS9+gcmTJw8q+yWMMejq6hoUdp9++ulYs2YNnnjiCfuaPXs2/vzP/xxPPPEE/uRP/mTAz4Gjq6sLv/vd7zBu3LgBv/7z58/PlY955plncNRRRwEYfPe9QqFQKBSK5kIYBnj3tOQBdH+5pQ46l9SrrroKF154IWbPno25c+di+fLl2LBhAy677LL+Ng27du3Cs88+az+vW7cOTzzxBEaNGoWJEydi0aJFWLp0KaZOnYqpU6di6dKlGDJkCC644AIAQHt7Oy655BJcffXVOPzwwzFq1Chcc801mDFjRi4RSm/j4x//OH74wx/i3/7t3zB8+HCrqLS3t6Otrc3WBRyI9n/mM5/Be9/7XkyYMAE7d+7EypUr8ctf/hI/+9nPBrTdhOHDh9tYUcLQoUNx+OGH2+MDeQ7XXHMNzj77bEycOBFbt27FF77wBezYsQMXXXTRgF//v/7rv8a8efOwdOlSnHfeeXjkkUewfPlyLF++HAAGvP09QV/EHGpZDYVCoVAoDh4WnjAW//LIBtz31Mv4wvunIwwPcshLr+dnPQj4x3/8R3PUUUeZarVq3vrWt9rSD/2N+++/3wDIvS666CJjTJKif/Hixaajo8O0tLSYk08+2axZs8bpY+/evebyyy83o0aNMm1tbeass84yGzZs6HPbfXYDMCtWrLBtBqr9H/nIR+z9cMQRR5jTTz/d3HvvvQPe7kbgZTWMGdhzOP/88824ceNMpVIx48ePN+eee65Zu3btoLDdGGP+/d//3UyfPt20tLSY4447zixfvtz5fqDbXwRKlf337VPMtw47tldff98+RcsyDGJoWQ2FQqEYXOjqjsz0z/3MHPWpu8xj6//Ya/329P+DwBgNRlEoFIpmw44dO9De3o6vjJiCtqDUq33vNRGu3vEsOjs7MWLEiF7tW9H3oHtDr59CoVAMHlz5L6tx539vwv8++U/wmf9xfK/02dP/DwZVDKNCoVAoDgya9EahUCgUisGP90zPymscbL1PCaNCoVAoFAqFQqFQDGCccswRqJZDvPDHPfj9lp0HdWwljAqFQtHEiE2a+KYXX7EKjAqFQqFQHFQMbSnj5KmjARz8bKlKGBUKhUKhUCgUCoVigGPBCeSW+vJBHXfQldVQKBQKRc8RGYMIvSsJagyjQqFQKBQHH2ccPxZhAPxu8w5s3LYHE0YNOSjjqsKoUCgUCoVCoVAoFAMco4ZW8bbJowAA31r1HDZ37j0o4yphVCgUiiZGb8cv0kuhUCgUCsXBx5jhLQCAH/x6A+Zf9wv86NENfT6mEkaFQqFQKBQKhUKhGODY3LkXd/12s/0cG+Aztz/Z50qjxjAqFApFEyMy6IMYxl7tTqFQKBQKRQ+w7tXduUzlkTFY/+oejGtv67NxlTAqFApFEyMhjL3fp0KhUCgUioOLyaOHIgzc8lalIMCk0X2b/EZdUhUKhUKhUCgUCoVigGNcexuWnTsDpSAAkJDFpedO71N1EVCFUaFQKJoaWlZDoVAoFIrmwflzJuLkY47A+lf3YNLoIX1OFgEljAqFQqFQKBQKhUIxaDCuve2gEEWCEkaFQqFoYhgAcR/0qVAoFAqF4tCAxjAqFAqFQqFQKBQKhcILVRgVCoWiiaExjAqFQqFQKN4IVGFUKBQKhUKhUCgUCoUXqjAqFApFE0PrMCoUCoVCoXgjUMKoUCgUTQx1SVUoFAqFQvFGoC6pCoVCoVAoFAqFQqHwQhVGhUKhaGKoS6pCoVAoFIo3AlUYFQqFQqFQKBQKhULhhSqMCoVC0cTQGEaFQqFQKBRvBKowKhQKhUKhUCgUCoXCC1UYFQqFookR90EMY6wCo0KhUCgUhwxUYVQoFArFgMH73vc+TJw4Ea2trRg3bhwuvPBCbNq0yWmzYcMGnH322Rg6dChGjx6NK6+8ErVarZ8sVigUCoWiuaGEUaFQKJoYkTF98uornHbaafjxj3+Mp59+Grfddhuee+45/M//+T+z+UQRzjzzTOzevRsPPvggVq5cidtuuw1XX311n9mkUCgUCsWhjMAYzV6gUCgUzYYdO3agvb0d/wsTUO3lZ4M1xFiBjejs7MSIESN6tW+JO++8E+eccw66urpQqVRw991346yzzsLGjRsxfvx4AMDKlStx8cUXY+vWrX1uTzOA7o2Dcf0UCoVCMXDR0/8PNIZRoVAomhg1xH3W544dO5zjLS0taGlp6bVxtm3bhn/+53/GvHnzUKlUAAC/+tWvMH36dEsWAWDhwoXo6urC448/jtNOO63Xxm9W0HNief0UCoVCcWiB/h/Yn36ohFGhUCiaENVqFR0dHfjnLS/1Sf/Dhg3DhAkTnGOLFy/GkiVL3nDfn/rUp3DTTTdhz549ePvb34677rrLfrdlyxaMHTvWaT9y5EhUq1Vs2bLlDY99KGDnzp0AkLt+CoVCoTg0sXPnTrS3txd+r4RRoVAomhCtra1Yt25dnyWDMcYgCALnWJG6uGTJEnz+859v2N+jjz6K2bNnAwD+z//5P7jkkkvwwgsv4POf/zz+4i/+AnfddZcdT45bZI/Cj/Hjx2Pjxo0YPnz4QV+zHTt2YMKECdi4ceMh6Q57KM9f535ozf1QnDMw+OZtjMHOnTsdrx0flDAqFApFk6K1tRWtra39bQYuv/xyfPCDH2zYZtKkSfb96NGjMXr0aBxzzDE4/vjjMWHCBDz88MOYO3cuOjo68Otf/9o5d/v27eju7s4pjwo/wjDEkUce2a82jBgxYlBspvoKh/L8de6H1twPxTkDg2vejZRFghJGhUKhUPQpiAC+HlBcRVdXFwBg7ty5+OIXv4jNmzdj3LhxAIB7770XLS0tmDVrVu8YrFAoFAqFwkIJo0KhUCgGBB555BE88sgjeMc73oGRI0fi+eefx+c+9zkcffTRmDt3LgBgwYIFmDZtGi688EJ8+ctfxrZt23DNNdfg0ksvHTRPcxUKhaian1cAAArJSURBVEKhGEzQOowKhUKhGBBoa2vD7bffjtNPPx3HHnssPvKRj2D69OlYtWqVjY8slUr4yU9+gtbWVsyfPx/nnXcezjnnHNxwww39bL2iJ2hpacHixYt7NZvuYMKhPH+d+6E190NxzkDzzlvrMCoUCoVCoVAoFAqFwgtVGBUKhUKhUCgUCoVC4YUSRoVCoVAoFAqFQqFQeKGEUaFQKBQKhUKhUCgUXihhVCgUCoVCoVAoFAqFF0oYFQqFQqE4hLFs2TLMmTMHw4cPx5gxY3DOOefg6aefdtoYY7BkyRKMHz8ebW1tOPXUU7F27Vr7/bZt23DFFVfg2GOPxZAhQzBx4kRceeWV6OzsdPr54he/iHnz5mHIkCE47LDDemzjmjVrcMopp6CtrQ1vetOb8Ld/+7fgOfsuvvhiBEGQe51wwgmHxPwB4B//8R9x/PHHo62tDcceeyy+//3vD/q579u3DxdffDFmzJiBcrmMc845J9dm8+bNuOCCC3DsscciDEMsWrSoR30frLmvX78el1xyCSZPnoy2tjYcffTRWLx4MWq12n5t3N91P9C5N8OcH3zwQcyfPx+HH3442tracNxxx+FrX/ta08/7l7/8pfffuN///vf77btXYBQKhUKhUByyWLhwoVmxYoV58sknzRNPPGHOPPNMM3HiRLNr1y7b5rrrrjPDhw83t912m1mzZo05//zzzbhx48yOHTuMMcasWbPGnHvuuebOO+80zz77rPmP//gPM3XqVPNnf/Znzlif+9znzFe/+lVz1VVXmfb29h7Z19nZacaOHWs++MEPmjVr1pjbbrvNDB8+3Nxwww22zWuvvWY2b95sXxs3bjSjRo0yixcvPiTm/41vfMMMHz7crFy50jz33HPmX/7lX8ywYcPMnXfeOajnvmvXLnPZZZeZ5cuXm4ULF5r3v//9uTbr1q0zV155pfne975nTjzxRPOJT3yiR30frLnffffd5uKLLzb33HOPee6558y//du/mTFjxpirr766oX09ue4HOvdmmPNvfvMb88Mf/tA8+eSTZt26debWW281Q4YMMd/61reaet7333+/AWCefvpp59+6er3esO/eghJGhUKhUCgUFlu3bjUAzKpVq4wxxsRxbDo6Osx1111n2+zbt8+0t7ebb37zm4X9/PjHPzbVatV0d3fnvluxYkWPScM3vvEN097ebvbt22ePLVu2zIwfP97Ecew954477jBBEJj169f3aAyOwTj/uXPnmmuuucY57xOf+ISZP39+j8YgDLS5c1x00UVewshxyimn9JgwShyMuROuv/56M3ny5Ib2HOh9/3rmPtjnTPjTP/1T8+EPf7hh3xyDcd5EGLdv396TKfY61CVVoVAoFAqFBblYjRo1CgCwbt06bNmyBQsWLLBtWlpacMopp+Chhx5q2M+IESNQLpffkD2/+tWvcMoppziFsBcuXIhNmzZh/fr13nO+853v4IwzzsBRRx11wOMNxvl3dXWhtbXVOa+trQ2PPPIIuru7ezzWQJv7wcTBnHtnZ6cdpwiv574/UDTDnFevXo2HHnoIp5xySsO+pS3A4Jz3zJkzMW7cOJx++um4//77G/bbm1DCqFAoFAqFAkASx3PVVVfhHe94B6ZPnw4A2LJlCwBg7NixTtuxY8fa7yT++Mc/4u/+7u/w0Y9+9A3btGXLFu/Y3DaOzZs34+6778Zf/uVfHvBYg3X+CxcuxD/90z/h8ccfhzEGjz32GG655RZ0d3fj1Vdf7dE4A3HuBwsHc+7PPfccbrzxRlx22WUNbTrQ+/5AMdjnfOSRR6KlpQWzZ8/Gxz/+8R7/3gfrvMeNG4fly5fjtttuw+23345jjz0Wp59+Oh544IGGffcWBs+jH4VCoVAoFH2Kyy+/HL/97W/x4IMP5r4LgsD5bIzJHQOAHTt24Mwzz8S0adOwePHiAxr/hBNOwAsvvAAAeOc734m77767cGzfcQD47ne/i8MOO8ybIGV/GKzz/5u/+Rts2bIFb3/722GMwdixY3HxxRfj+uuvR6lU6tHYA3XuBwMHa+6bNm3Ce97zHnzgAx9wCE5v3PcHisE+5//8z//Erl278PDDD+PTn/40pkyZgg996EP7m/agnfexxx6LY4891n4/d+5cbNy4ETfccANOPvnk/c77jUIJo0KhUCgUClxxxRW488478cADD+DII4+0xzs6OgAkT7rHjRtnj2/dujX3VHznzp14z3veg2HDhuGOO+5ApVI5IBt++tOfWhfKtrY2O758yr9161YAeUXAGINbbrkFF154IarV6gGNPZjn39bWhltuuQXf+ta38PLLL1s1Yvjw4Rg9evSgnfvBwMGa+6ZNm3Daaadh7ty5WL58ufPdG73vDxTNMOfJkycDAGbMmIGXX34ZS5Ys2S9hbIZ5c7z97W/HD37wg4Zz7i2oS6pCoVAoFIcwjDG4/PLLcfvtt+MXv/iF3YgRJk+ejI6ODtx33332WK1Ww6pVqzBv3jx7bMeOHViwYAGq1SruvPPOXExdT3DUUUdhypQpmDJlCt70pjcBSJ6kP/DAA05q+nvvvRfjx4/HpEmTnPNXrVqFZ599FpdcckmPx2ym+VcqFRx55JEolUpYuXIlzjrrLIRh8VZvoM+9L3Ew5/7SSy/h1FNPxVvf+lasWLEid03e6HU/1OdsjEFXV9chN+/Vq1c7BLdPcZCS6ygUCoVCoRiA+Ku/+ivT3t5ufvnLXzrp2vfs2WPbXHfddaa9vd3cfvvtZs2aNeZDH/qQk3J+x44d5qSTTjIzZswwzz77bGHa9xdeeMGsXr3afP7znzfDhg0zq1evNqtXrzY7d+4stO+1114zY8eONR/60IfMmjVrzO23325GjBjhpJwnfPjDHzYnnXTSITf/p59+2tx6663mmWeeMb/+9a/N+eefb0aNGmXWrVs3qOdujDFr1641q1evNmeffbY59dRT7XkcdGzWrFnmggsuMKtXrzZr164dEHN/6aWXzJQpU8y73vUu8+KLLzptGqGn9/2BzL0Z5nzTTTeZO++80zzzzDPmmWeeMbfccosZMWKE+exnP1vYbzPM+2tf+5q54447zDPPPGOefPJJ8+lPf9oAMLfddlvDvnsLShgVCoVCoTiEAcD7WrFihW0Tx7FZvHix6ejoMC0tLebkk082a9assd9Tynffi5OWiy66yNvm/vvvb2jjb3/7W/POd77TtLS0mI6ODrNkyZJcmv3XXnvNtLW1meXLlx9y83/qqafMiSeeaNra2syIESPM+9//fvP73/++KeZ+1FFHec/b3zyOOuqoATH3FStWFLbZH3py3x/I3Jthzl//+tfNCSecYIYMGWJGjBhhZs6cab7xjW+YKIoK+2yGeX/pS18yRx99tGltbTUjR44073jHO8xPfvKT/fbbWwiMSaMqFQqFQqFQKBQKhUKhYNAYRoVCoVAoFAqFQqFQeKGEUaFQKBQKhUKhUCgUXihhVCgUCoVCoVAoFAqFF0oYFQqFQqFQKBQKhULhhRJGhUKhUCgUCoVCoVB4oYRRoVAoFAqFQqFQKBReKGFUKBQKhUKhUCgUCoUXShgVCoVCoVAoFAqFQuGFEkaFQqFQKBQKhUKhUHihhFGhUCgUCoVCoVAoFF4oYVQoFAqFQqFQKBQKhRdKGBUKhUKhUCgUCoVC4cX/D6B0jugpTaEFAAAAAElFTkSuQmCC", "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + "
" ] }, "metadata": {}, @@ -917,49 +469,83 @@ } ], "source": [ - "# requires matplotlib and jupyter-widgets to be installed: https://ipywidgets.readthedocs.io/en/latest/\n", - "%matplotlib widget\n", - "import sweets.plotting\n", - "\n", - "\n", - "sweets.plotting.browse_ifgs(\n", - " file_list=file_list,\n", - " cor_list=cor_list,\n", - " unw_list=unw_list,\n", - " conncomp_list=conncomp_list,\n", - " vm_cor=1,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "id": "a0ac7947-30dd-43db-b23a-4c891cb02793", - "metadata": {}, - "source": [ - "## Preparing outputs for MintPy\n", + "fig, axes = plt.subplots(ncols=2, figsize=(11, 6))\n", + "ax = axes[0]\n", "\n", - "The [`prep_mintpy.py` script](https://github.com/isce-framework/sweets/blob/d9ea016adb521534a7696c3082f1810a9e51d373/scripts/prep_mintpy.py) has been added to `sweets` in order to prepare the geocoded unwrapped outputs for further time series analysis in MintPy:\n", + "last_displacement = load_gdal(file_list[-1], masked=True)\n", "\n", - "Note: This requires that `\"input_slcs/\"` has the `static_layers_` files in addition to the SLCs. \n", - "MintPy needs them to create the `geometry/` HDF5 stack.\n", - "\n" + "axim = ax.imshow(\n", + " last_displacement - last_displacement[0].mean(), cmap=\"RdBu\", vmax=30, vmin=-30\n", + ")\n", + "fig.colorbar(axim, label=\"LOS [radians]\")\n", + "\n", + "ax = axes[1]\n", + "row, col = np.unravel_index(np.argmin(last_displacement), last_displacement.shape)\n", + "dates = [get_dates(f)[1] for f in file_list]\n", + "timeseries_values = [\n", + " io.load_gdal(f, rows=slice(row, row + 1), cols=slice(col, col + 1))\n", + " for f in file_list\n", + "]\n", + "\n", + "ax.plot(dates, np.array(pixels).squeeze(), \".-\")" ] }, { "cell_type": "code", - "execution_count": 37, - "id": "e5422c36-d8c4-4f83-8dff-26681c7ac157", + "execution_count": null, + "id": "5d290767-41c8-4c92-8fcd-d6fdf37221f9", "metadata": {}, "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "11b35d32-896a-4333-96b2-1e315b6c9d73", + "metadata": {}, "source": [ - "cmd = \"\"\"~/repos/sweets/scripts/prep_mintpy.py -m input_slcs/ -c \"interferograms/stitched/*cor\" -u \"unwrapped/*unw.tif\" --single\"\"\"\n", - "# subprocess.run(cmd, shell=True)" + "### Apppendix: More on the output folders\n", + "\n", + "For each stack of SLCs (which may be > 1 when processing COMPASS CSLCs), the workflow creates a folder for\n", + "1. persistent scatter outputs (`PS`)\n", + "2. linked phase optimized SLCs (`linked_phase`)\n", + "3. (virtual) interferograms formed using the optimized SLCs (`interferograms`)\n", + "\n", + "Here we have two of these subdirectories named `t042_088905_iw1` and `t042_088906_iw1`.\n", + "Additionally, you may notice\n", + "- The `slc_stack.vrt` is a VRT file pointing to the input SLCs for that burst stack.\n", + "- The `nodata_mask.tif` has been created from the COMPASS GSLC metadata to skip over the nan regions\n", + "\n", + "Last, there is a top-level directory for `interferograms` that have been stitched together, and an `unwrapped` folder for the outputs of phase unwrapping.\n", + "\n", + "```\n", + "$ tree -L 1 work-walkthrough/\n", + "work-walkthrough/\n", + "├── dolphin.log\n", + "├── interferograms\n", + "├── t078_165573_iw2\n", + "├── t078_165574_iw2\n", + "├── timeseries\n", + "└── unwrapped\n", + "\n", + "$ tree -L 1 work-walkthrough/t078_165574_iw2/\n", + "work-walkthrough/t078_165574_iw2/\n", + "├── bounds_mask.tif\n", + "├── combined_mask.tif\n", + "├── interferograms\n", + "├── linked_phase\n", + "├── nodata_mask.tif\n", + "├── PS\n", + "├── slc_stack.vrt\n", + "├── timeseries\n", + "└── unwrapped\n", + " \n", + "```" ] }, { "cell_type": "code", "execution_count": null, - "id": "2ec31206-c2ab-4b3a-8d6a-8fcb9ab9465c", + "id": "92157827-09d3-49ee-b834-99cd617fde17", "metadata": {}, "outputs": [], "source": []