forked from SWE-agent/SWE-agent
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaggregate_results.py
219 lines (189 loc) · 7.52 KB
/
aggregate_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import argparse
import glob
import json
import numpy as np
import os
import pandas as pd
import warnings
warnings.filterwarnings("ignore")
from pathlib import Path
from rich import print
COLUMNS = [
"Model",
"Dataset",
"Setup",
"Temp.",
"Top P",
"Cost",
"Install",
"Run",
"Not Generated",
"Generated",
"Applied",
"Resolved",
"Resolved IDs",
"Costs Success",
"Costs Failure",
"Costs Overall",
]
def get_folders(path):
return [entry for entry in Path(path).iterdir() if entry.is_dir()]
def parse_folder_name(folder_name):
"""
Parse the folder name to get the different parts
"""
parsed_folder = folder_name.split("__")
if len(parsed_folder) == 7:
parsed_folder.append("")
return parsed_folder
def convert_experiments_to_rows(folder_name, runs_max):
"""
Convert each experiment to a row in the csv
"""
rows = []
directories = get_folders(folder_name)
for directory in directories:
folders = get_folders(directory)
for folder in folders:
# Skip debug folders
if "debug" in folder.name:
continue
# Skip fine tuned models
if "ft_gpt-3.5" in folder.name:
continue
# Skip folders without a results.json file
json_file = folder / "results.json"
if not json_file.exists():
# print(f"No json file in {folder}")
continue
# Extract run attributes
folder_data = parse_folder_name(folder.name)
model = folder_data[0]
dataset = folder_data[1]
if dataset.startswith("swe-bench-dev-easy-"):
dataset = dataset[len("swe-bench-dev-easy-") :]
elif dataset.startswith("swe-bench-dev-"):
dataset = dataset[len("swe-bench-dev-") :]
setup = folder_data[2]
if len(folder_data) != 8:
# TODO: This might be too strict?
continue
temperature = float(folder_data[3][len("t-"):].strip())
top_p = float(folder_data[4][len("p-"):].strip())
cost = float(folder_data[5][len("c-"):].strip())
install = "Y" if folder_data[6].strip() == "install-1" else "N"
# Parse out run number
run = folder_data[-1]
if "run" not in run:
continue
try:
if "run-" in run:
run = int(run.split("run-")[-1].split("-")[0].replace("_", "").strip())
else:
run = int(run.split("run")[-1].split("-")[0].replace("_", "").strip())
except Exception as e:
print(run)
raise e
if runs_max is not None and run > runs_max:
continue
# Load results.json file
with json_file.open() as file:
results_data = json.load(file)
report = results_data.get("report", {})
# Extract resolved ids (to calculate pass@k)
resolved_ids = []
if "resolved" in results_data and isinstance(results_data["resolved"], list):
resolved_ids = results_data["resolved"]
elif "counts" in results_data and isinstance(results_data["counts"]["resolved"], list):
resolved_ids = results_data["counts"]["resolved"]
# Extract instance costs from trajectories
costs_overall = []
costs_success = []
costs_failure = []
for x in glob.glob(os.path.join(str(folder), "*.traj")):
traj_data = json.load(open(x))
if "model_stats" not in traj_data["info"]:
continue
run_cost = traj_data["info"]["model_stats"]["instance_cost"]
inst_id = x.split("/")[-1].split(".")[0]
costs_overall.append(run_cost)
if inst_id in resolved_ids:
costs_success.append(run_cost)
else:
costs_failure.append(run_cost)
# Create run row, write to csv
rows.append(
[
model,
dataset,
setup,
temperature,
top_p,
cost,
install,
run,
report.get("# Not Generated", 0),
report.get("# Generated", 0),
report.get("# Applied", 0),
report.get("# Resolved", 0),
resolved_ids,
costs_success,
costs_failure,
costs_overall,
]
)
return rows
def get_results_df(folder_name, runs_max):
rows = convert_experiments_to_rows(folder_name, runs_max)
return (
pd.DataFrame(rows, columns=COLUMNS)
.sort_values(by=COLUMNS[:8])
)
def get_results_csv(folder_name):
get_results_df(folder_name).to_csv("results.csv")
print("Experiment results written to results.csv")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Aggregate results from experiments")
parser.add_argument("--folder", type=str, help="Folder containing experiment results", default="../trajectories")
parser.add_argument("--model", nargs='+', type=str, help="Model(s) to filter results by.")
parser.add_argument("--dataset", nargs='+', type=str, help="Dataset to filter results by.")
parser.add_argument("--setup", nargs='+', type=str, help="Setup to filter results by.")
parser.add_argument("--runs_min", type=int, help="Minimum number of runs that experiment should have been run for.")
parser.add_argument("--runs_max", type=int, help="Maximum number of runs taken into account")
args = parser.parse_args()
df = get_results_df(args.folder, args.runs_max)
grouped_data = (
df.groupby(COLUMNS[:7])
.agg(
{
"Run": "count", # Count the number of runs
"Not Generated": "mean",
"Generated": "mean",
"Applied": "mean",
"Resolved": "mean",
"Resolved IDs": lambda x: len(set([item for sublist in x for item in sublist])),
"Costs Success": lambda x: np.mean([item for sublist in x for item in sublist]),
"Costs Failure": lambda x: np.mean([item for sublist in x for item in sublist]),
"Costs Overall": lambda x: np.mean([item for sublist in x for item in sublist]),
}
)
.round(2)
.reset_index()
.rename(columns={"Resolved IDs": "Pass@K", "Run": "Runs"})
)
# Filtering
if args.model:
grouped_data = grouped_data[grouped_data['Model'].isin(args.model)]
if args.dataset:
grouped_data = grouped_data[grouped_data['Dataset'].isin(args.dataset)]
if args.setup:
grouped_data = grouped_data[grouped_data['Setup'].isin(args.setup)]
if args.runs_min:
grouped_data = grouped_data[grouped_data['Run'] >= args.runs_min]
print(f"Total experiments run: {grouped_data.shape[0]}")
grouped_data_sorted = grouped_data.sort_values(by=['Dataset', 'Resolved'], ascending=[True, False])
pd.set_option("display.max_rows", None)
grouped = grouped_data_sorted.groupby('Dataset')
for name, group in grouped:
print(f'\n-----------------\nDataset: {name}\n-----------------')
print(group.to_string(index=False))