-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathgrpo_r1.py
431 lines (367 loc) · 13.8 KB
/
grpo_r1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import numpy as np
import shutil
from transformers import (
BaseImageProcessor,
DataCollatorWithPadding,
FeatureExtractionMixin,
GenerationConfig,
PreTrainedTokenizerBase,
ProcessorMixin,
Trainer,
TrainerCallback,
TrainerControl,
is_wandb_available,
)
from vllm import LLM, SamplingParams
from accelerate import PartialState
from datasets import load_dataset
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training, PeftModel
from transformers import (
AutoModelForCausalLM,
AutoModelForSequenceClassification,
AutoTokenizer,
HfArgumentParser,
EarlyStoppingCallback,
)
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from trl import ModelConfig, PPOConfig, PPOTrainer
from trl.trainer.utils import (
OnlineTrainerState,
batch_generation,
disable_dropout_in_model,
exact_div,
first_true_indices,
forward,
get_reward,
prepare_deepspeed,
print_rich_table,
truncate_response,
)
import pickle
from accelerate import Accelerator
import multiprocessing
from datasets import Dataset
import json, os
from typing import Dict, List, Optional, Tuple, Union
from utils.toolkit_for_MATH.latex_answer_check import latex_answer_check as latex_equiv
from utils.eval.eval_script import is_correct as is_correct_dk, eval_ocwcourses
from tqdm import tqdm
from trl.core import masked_mean, masked_whiten
from trl.models.utils import unwrap_model_for_generation
import time
from dataclasses import dataclass, field
from typing import List, Literal, Optional
from accelerate.utils import broadcast, gather_object
from grpo_r1_trainer import GRPOTrainer
from memory_profiler import profile
import psutil
from multiprocessing import Process, set_start_method, Queue, get_start_method
import sys
import random
random.seed(0)
torch.manual_seed(42)
set_start_method("spawn", force=True)
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
INVALID_LOGPROB = 1.0
# ALL parameters -----------------------------------------------------------------------------------------------------------
base_model_name_or_path = "Qwen/Qwen2-1.5B"
experiment_name = "r1-v0"
os.environ["WANDB_PROJECT"] = experiment_name
@dataclass
class GRPOConfig(PPOConfig):
memory_log: str = field(
default=f"{base_model_name_or_path}/{experiment_name}/memory_whiten.log"
)
save_value_model: bool = field(default=True)
early_stopping_patience: int = field(default=1000000)
accuracy_before_train: bool = field(default=True)
use_lora: bool = field(default=True)
lora_r: int = field(default=64)
lora_alpha: int = field(default=16)
lora_dropout: float = field(default=0.0)
lora_target_modules: list[str] = field(
default_factory=lambda: [
"q_proj",
"k_proj",
"v_proj",
"o_proj",
"gate_proj",
"up_proj",
"down_proj",
]
)
modules_to_save: list[str] = field(
default_factory=lambda: ["embed_tokens", "lm_head", "score"]
)
lora_bias: str = field(default="none")
q_lora: bool = field(default=False)
train_dataset_name: str = field(default="meta-math/MetaMathQA")
train_dataset_split: str = field(default="train[:100%]")
accuracy_dataset_name: str = field(default="HuggingFaceH4/MATH-500")
advantage_whiten: bool = field(default=False)
grpo_sample_N: int = field(default=4)
training_args = GRPOConfig(
exp_name="r1-v0",
whiten_rewards=False,
kl_coef=0.0, #0
cliprange=0.2,
temperature=0.9,#0.75
learning_rate=9e-6, # 9e-6
warmup_steps=0, # 4
lr_scheduler_type="cosine_with_min_lr",
lr_scheduler_kwargs={"min_lr_rate": 0.1},
response_length=8000,#1500
## mini_batch_size = per_device_train_batch_size * gradient_accumulation_steps
## batch_size = per_device_train_batch_size * gradient_accumulation_steps * num_mini_batches
per_device_train_batch_size=4, # 4
gradient_accumulation_steps=8, # 8
num_mini_batches=16, # 16
num_ppo_epochs=1,
total_episodes=250000, # 100000
local_rollout_forward_batch_size=16,
bf16=True,
gradient_checkpointing=True,
missing_eos_penalty=None,
report_to="wandb",
sft_model_path=base_model_name_or_path,
eval_strategy="steps",
eval_steps=1,
save_strategy="steps",
save_steps=1,
save_total_limit=6,
log_level="info",
output_dir=f"{base_model_name_or_path}/{experiment_name}",
logging_dir=f"{base_model_name_or_path}/{experiment_name}/logs",
logging_strategy="steps",
logging_steps=1,
metric_for_best_model="eval_objective/rlhf_reward_old",
greater_is_better=True,
load_best_model_at_end=True,
stop_token="eos",
# torch_compile=True,
)
# define correctness function ------------------------------------
def call_with_timeout(func, *args, timeout=0.015, **kwargs):
# from .utils/eval/, this is to prevent long computing, such as 2^(2^100000). 0.015s is the magic time for you to decide.
output_queue = multiprocessing.Queue()
process_args = args + (output_queue,)
process = multiprocessing.Process(target=func, args=process_args, kwargs=kwargs)
process.start()
process.join(timeout)
if process.is_alive():
process.terminate()
process.join()
return False
return output_queue.get()
def get_boxed(box_answer):
pos = box_answer.find("boxed{")
if pos == -1:
return ""
pos = pos + len("boxed{")
box_answer = box_answer[pos:]
lef = 1
right = 0
right_pos = 0
for i in range(len(box_answer)):
if box_answer[i] == "}":
right += 1
if box_answer[i] == "{":
lef += 1
if lef == right:
right_pos = i
break
box_answer = box_answer[:right_pos]
box_answer = box_answer.replace(" ", "")
return box_answer
def iscorrect(answer, correct_answer):
if answer == "":
return False
if answer.strip() == correct_answer.strip():
return True
if call_with_timeout(latex_equiv, answer, correct_answer) or call_with_timeout(is_correct_dk, {"prediction": answer, "answer": correct_answer}):
return True
return False
# prepare dataset hash map for training accuracy evaluation and MATH-500 accuracy evaluation ------------------------------------
template = "# Question:\nQUESTION\nPlease reason step by step, and put your final answer within \\boxed{}.\n# Answer:\n" # my template
def get_MetaMathQA_answers(response):
a_idx = response.find('The answer is: ') + len('The answer is: ')
answer = response[a_idx:].strip()
return answer
train_dataset = load_dataset(training_args.train_dataset_name, split=training_args.train_dataset_split)
accuracy_dataset = load_dataset(training_args.accuracy_dataset_name)
accuracy_dataset = accuracy_dataset['test']
train_dataset_index = {}
for qa in tqdm(train_dataset,desc="train dataset eval indexing"):
train_dataset_index[qa["query"]] = get_MetaMathQA_answers(qa["response"])
accuracy_prompts = []
accuracy_solutions = []
for qa in tqdm(accuracy_dataset,desc="eval dataset eval indexing"):
accuracy_prompts.append(template.replace("QUESTION", qa['problem']))
accuracy_solutions.append(get_boxed(qa["solution"]))
del accuracy_dataset
# define reward function, reward =1 if correct, otherwise 0. ------------------------------------
def reward_func(pmt_and_responses, responses_ids, tokenizer):
rewards = torch.zeros(len(pmt_and_responses))
for p_i, pmt_and_response in tqdm(enumerate(pmt_and_responses),desc='rewarding'):
problem_start_idx = len("# Question:\n")
problem_end_idx = pmt_and_response.find("\nPlease reason step by step, and")
problem = pmt_and_response[problem_start_idx:problem_end_idx]
solu_idx = pmt_and_response.find("\n# Answer:\n", problem_end_idx) + len(
"\n# Answer:\n"
)
endix = pmt_and_response.find(tokenizer.eos_token, solu_idx)
solution = pmt_and_response[solu_idx:endix]
if endix == -1:
solution = pmt_and_response[solu_idx:]
solution = get_boxed(solution)
if iscorrect(solution, train_dataset_index[problem]):
rewards[p_i] = 1
return rewards
# define accuracy evaluation on MATH 500.-------------------------------------------------------------
def accuracy_func(model, args):
num_of_question = len(accuracy_prompts)
device = model.policy.device
model.to("cpu")
policy = model.policy
torch.cuda.empty_cache()
sampling_params = SamplingParams(
temperature=0,
top_p=0.95,
n=1,
max_tokens=args.response_length,
ignore_eos=False,
seed=42,
)
save_model_path = "/data/temp_vllm_model"
shutil.rmtree(save_model_path, ignore_errors=True)
if policy.peft_type:
save_adapter_path = save_model_path + "/adapter"
policy.save_pretrained(save_adapter_path)
temp_policy = AutoModelForCausalLM.from_pretrained(
policy.name_or_path,
trust_remote_code=True,
torch_dtype=torch.bfloat16,
device_map="cpu",
)
temp_policy = PeftModel.from_pretrained(temp_policy, save_adapter_path)
temp_policy.merge_and_unload()
save_full_model_path = save_model_path + "/full_model"
temp_policy.base_model.model.save_pretrained(save_full_model_path)
del temp_policy
tokenizer.save_pretrained(save_full_model_path)
llm = LLM(model=save_full_model_path)
outputs_ALL = llm.generate(accuracy_prompts, sampling_params)
else:
save_model_path = "/data/temp_vllm_model"
shutil.rmtree(save_model_path, ignore_errors=True)
policy.save_pretrained(save_model_path)
tokenizer.save_pretrained(save_model_path)
llm = LLM(model=save_model_path)
outputs_ALL = llm.generate(accuracy_prompts, sampling_params)
shutil.rmtree(save_model_path)
outputs_sample = []
for o in outputs_ALL:
for o2 in o.outputs:
outputs_sample.append(o2.text)
break
is_corrrect_res = torch.zeros(num_of_question)
for p_i, response in enumerate(outputs_sample):
answer = get_boxed(response)
if iscorrect(answer, accuracy_solutions[p_i]):
is_corrrect_res[p_i] = 1
accuracy = torch.mean(is_corrrect_res).item()
del llm
torch.cuda.empty_cache()
model.to(device)
print(f"acc = {accuracy}\n")
return accuracy
if __name__ == "__main__":
shutil.rmtree(training_args.output_dir, ignore_errors=True)
tokenizer = AutoTokenizer.from_pretrained(
training_args.sft_model_path,
padding_side="left",
trust_remote_code=False,
)
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
ref_policy = AutoModelForCausalLM.from_pretrained(
training_args.sft_model_path,
trust_remote_code=False,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
).eval()
policy = AutoModelForCausalLM.from_pretrained(
training_args.sft_model_path,
trust_remote_code=False,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
)
if training_args.use_lora:
lora_config = LoraConfig(
r=training_args.lora_r,
lora_alpha=training_args.lora_alpha,
target_modules=training_args.lora_target_modules,
lora_dropout=training_args.lora_dropout,
bias=training_args.lora_bias,
task_type="CAUSAL_LM",
modules_to_save=training_args.modules_to_save, # This argument serves for adding new tokens.
)
if training_args.q_lora:
policy = prepare_model_for_kbit_training(
policy, use_gradient_checkpointing=training_args.gradient_checkpointing
)
policy = get_peft_model(policy, lora_config)
policy.print_trainable_parameters()
if training_args.gradient_checkpointing:
policy.enable_input_require_grads()
# load dataset ---------------------------------------------------------
train_dataset = load_dataset(training_args.train_dataset_name,split=training_args.train_dataset_split)
def prepare_dataset(dataset, tokenizer):
def tokenize(element):
outputs = tokenizer(
[
template.replace("QUESTION", i)
for i in element["query"]
],
padding=False,
)
return {"input_ids": outputs["input_ids"]}
return dataset.map(
tokenize,
batched=True,
remove_columns=dataset.column_names,
num_proc=training_args.dataset_num_proc,
)
train_dataset = prepare_dataset(train_dataset, tokenizer)
# training ---------------------------------------------------------------------
trainer = GRPOTrainer(
config=training_args,
processing_class=tokenizer,
policy=policy,
ref_policy=ref_policy,
train_dataset=train_dataset,
reward_func=reward_func,
accuracy_func=accuracy_func,
callbacks=[
EarlyStoppingCallback(
early_stopping_patience=training_args.early_stopping_patience
)
],
)
trainer.train()