forked from toshi-k/kaggle-denoising-dirty-documents
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1_data.lua
59 lines (39 loc) · 1.24 KB
/
1_data.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
torch.setdefaulttensortype('torch.FloatTensor')
---------- library ----------
require 'torch'
require 'image'
require "lib/getfilename"
require "lib/window"
require "lib/patch"
require "lib/calc_rsme"
-- read dataset:
---------- functions ----------
function load_imgs(folderpath)
filepaths = getFilename(folderpath)
images = {}
for i, finame in pairs(filepaths) do
images[i] = - image.load(folderpath .. finame)[1] + 1
end
return images
end
---------- main ----------
patch_size = 50
overlap = 40
train_images = load_imgs("dataset/train/")
train_cleaned_images = load_imgs("dataset/train_cleaned/")
test_images = load_imgs("dataset/test/")
print(" num_all_images: " .. #train_images)
valid_images = {}
valid_cleaned_images = {}
for i = 1,10 do
valid_images[i] = table.remove(train_images)
valid_cleaned_images[i] = table.remove(train_cleaned_images)
end
print("num_train_images: " .. #train_images)
print("num_valid_images: " .. #valid_images)
train_data = img2patch(train_images)
retrain_images = patch2img(train_data, train_images)
train_cleaned_data = img2patch(train_cleaned_images)
retrain_cleaned_images = patch2img(train_cleaned_data, train_cleaned_images)
test_data = img2patch(test_images)
valid_data = img2patch(valid_images)