-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathlogistic_regression.py
88 lines (70 loc) · 2.96 KB
/
logistic_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
from __future__ import print_function
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
import os
# Hide TensorFlows warning messages
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
# Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
# Parameters
learning_rate = 0.01
training_epochs = 25
batch_size = 100
display_step = 1
# tf Graph Input
x = tf.placeholder(tf.float32, [None, 784]) # mnist data image of shape 28*28=784
y = tf.placeholder(tf.float32, [None, 10]) # 0-9 digits recognition => 10 classes
# Set model weights
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
# Construct model
pred = tf.nn.softmax(tf.matmul(x, W) + b) # Softmax for output probablity
# Minimize error using cross entropy
cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(pred), reduction_indices=1))
# Gradient Descent
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
# Initializing the variables
init = tf.global_variables_initializer()
# Launch the graph
with tf.Session() as sess:
sess.run(init)
# Training cycle
for epoch in range(training_epochs):
avg_cost = 0.
total_batch = int(mnist.train.num_examples/batch_size)
# Loop over all batches
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
# Run optimization op and cost op (to get loss value)
_, c = sess.run([optimizer, cost], feed_dict={x: batch_xs,
y: batch_ys})
# Compute average loss
avg_cost += c / total_batch
# Display logs per epoch step
if (epoch+1) % display_step == 0:
print(">>> Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost))
print(">>> Optimization Finished!")
# Test model
correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
# Calculate accuracy
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(">>> Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels}))
# For fun show a few visual test cases
f, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2)
test1_index = 0
test1_x = mnist.test.images[test1_index].reshape(1, 784)
test1_img = mnist.test.images[test1_index].reshape((28,28))
test1_y = mnist.test.labels[test1_index].reshape(1, 10)
test1_pred = sess.run(pred, feed_dict={x: test1_x, y: test1_y})
ax1.imshow(test1_img, cmap='gray')
ax2.bar(list(range(0,10)), test1_pred[0])
test2_index = 1
test2_x = mnist.test.images[test2_index].reshape(1, 784)
test2_img = mnist.test.images[test2_index].reshape((28,28))
test2_y = mnist.test.labels[test2_index].reshape(1, 10)
test2_pred = sess.run(pred, feed_dict={x: test2_x, y: test2_y})
ax3.imshow(test2_img, cmap='gray')
ax4.bar(list(range(0,10)), test2_pred[0])
plt.show()