-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
76 lines (61 loc) · 1.89 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import re
import string
import nltk
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import Optional
from transformers import pipeline
from pyngrok import ngrok
import nest_asyncio
from fastapi.responses import RedirectResponse
# Download NLTK resources
nltk.download('punkt')
nltk.download('wordnet')
# Initialize FastAPI app
app = FastAPI()
# Text preprocessing functions
def remove_urls(text):
return re.sub(r'http[s]?://\S+', '', text)
def remove_punctuation(text):
regular_punct = string.punctuation
return re.sub(r'['+regular_punct+']', '', text)
def lower_case(text):
return text.lower()
def lemmatize(text):
wordnet_lemmatizer = nltk.WordNetLemmatizer()
tokens = nltk.word_tokenize(text)
return ' '.join([wordnet_lemmatizer.lemmatize(w) for w in tokens])
# Model loading
lyx_pipe = pipeline("text-classification", model="lxyuan/distilbert-base-multilingual-cased-sentiments-student")
# Input data model
class TextInput(BaseModel):
text: str
# Welcome endpoint
@app.get('/')
async def welcome():
# Redirect to the Swagger UI page
return RedirectResponse(url="/docs")
# Sentiment analysis endpoint
@app.post('/analyze/')
async def Predict_Sentiment(text_input: TextInput):
text = text_input.text
# Text preprocessing
text = remove_urls(text)
text = remove_punctuation(text)
text = lower_case(text)
text = lemmatize(text)
# Perform sentiment analysis
try:
return lyx_pipe(text)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
# Run the FastAPI app using Uvicorn
if __name__ == "__main__":
# Create ngrok tunnel
ngrok_tunnel = ngrok.connect(8000)
print('Public URL:', ngrok_tunnel.public_url)
# Allow nested asyncio calls
nest_asyncio.apply()
# Run the FastAPI app with Uvicorn
import uvicorn
uvicorn.run(app, port=8000)