-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvanilla_AE.py
77 lines (57 loc) · 2.2 KB
/
vanilla_AE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# -*- coding: utf-8 -*-
"""
Created on Sat Jun 16 00:51:11 2018
@author: jaydeep thik
"""
from keras import datasets, models, layers, optimizers
import matplotlib.pyplot as plt
(X_train, y_train),(X_test, y_test) = datasets.mnist.load_data()
latent_dim = 10
X_train = X_train.reshape((60000, 28,28,1))
X_test = X_test.reshape((10000, 28,28,1))
X_train = X_train.astype('float32')/255.
X_test = X_test.astype('float32')/255.
X_tr = X_train[:50000]
X_valid = X_train[50000:]
#encoder model
model = models.Sequential()
model.add(layers.Conv2D(16,(3,3) , padding="SAME", input_shape=(28,28,1)))
model.add(layers.BatchNormalization())
model.add(layers.Activation('relu'))
model.add(layers.MaxPool2D((2,2)))
model.add(layers.Conv2D( 32 ,(3,3) , padding="SAME"))
model.add(layers.BatchNormalization())
model.add(layers.Activation('relu'))
model.add(layers.MaxPool2D((2,2)))
model.add(layers.Conv2D( 32 ,(3,3) , padding="SAME"))
model.add(layers.BatchNormalization())
model.add(layers.Activation('relu'))
model.add(layers.MaxPool2D((2,2)))
model.add(layers.Flatten())
model.add(layers.Dense(128, activation='relu'))
#bottleneck
model.add(layers.Dense(latent_dim, activation='relu'))
#decoder model
model.add(layers.Dense(32*7*7, activation='relu'))
model.add(layers.Reshape((7,7,32)))
model.add(layers.UpSampling2D())
model.add(layers.Conv2D(32, kernel_size=(3,3), activation='relu', padding='same'))
model.add(layers.UpSampling2D())
model.add(layers.Conv2D(16, kernel_size=(3,3), activation='relu', padding='same'))
model.add(layers.Conv2D(1, kernel_size=(3,3), activation='sigmoid', padding='same'))
model.compile(optimizer=optimizers.Adam(lr=0.01), loss='binary_crossentropy', metrics=['acc'])
summary = model.fit(X_tr, X_tr, validation_data=(X_valid, X_valid), batch_size=128, epochs=20)
model.save('ae_model_200.h5')
#visualize results
idx=36
regen = model.predict(X_tr[idx].reshape((1,28,28,1)))
regen = regen*225
regen = regen.astype('int32')
regen =regen.reshape((28,28))
print("recreated image")
plt.imshow(regen, cmap=plt.cm.gray)
plt.show()
print("\n original Image")
xx = 255*X_tr[idx]
plt.imshow(xx.reshape((28,28)), cmap=plt.cm.gray)
plt.show()