forked from intel/pti-gpu
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cc
292 lines (238 loc) · 10.4 KB
/
main.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
//==============================================================
// Copyright (C) Intel Corporation
//
// SPDX-License-Identifier: MIT
// =============================================================
#include <math.h>
#include <string.h>
#include <chrono>
#include <iostream>
#include "ze_utils.h"
#include "utils.h"
#define ALIGN 64
#define A_VALUE 0.128f
#define B_VALUE 0.256f
#define MAX_EPS 1.0e-4f
static float Check(const std::vector<float>& a, float value) {
PTI_ASSERT(value > MAX_EPS);
float eps = 0.0f;
for (size_t i = 0; i < a.size(); ++i) {
eps += fabs((a[i] - value) / value);
}
return eps / a.size();
}
static float RunAndCheck(ze_kernel_handle_t kernel,
ze_device_handle_t device,
ze_context_handle_t context,
const std::vector<float>& a,
const std::vector<float>& b,
std::vector<float>& c,
unsigned size,
float expected_result) {
PTI_ASSERT(kernel != nullptr);
PTI_ASSERT(device != nullptr);
PTI_ASSERT(context != nullptr);
PTI_ASSERT(size > 0);
PTI_ASSERT(a.size() == size * size);
PTI_ASSERT(b.size() == size * size);
PTI_ASSERT(c.size() == size * size);
ze_result_t status = ZE_RESULT_SUCCESS;
uint32_t group_size[3] = { 0 };
status = zeKernelSuggestGroupSize(kernel, size, size, 1,
&(group_size[0]), &(group_size[1]), &(group_size[2]));
PTI_ASSERT(status == ZE_RESULT_SUCCESS);
if ((size % group_size[0]) != 0 || (size % group_size[1]) != 0) {
std::cout << "Non-uniform workgroups are not supported" << std::endl;
return 0.0f;
}
void* dev_a = nullptr;
ze_device_mem_alloc_desc_t alloc_desc = {
ZE_STRUCTURE_TYPE_DEVICE_MEM_ALLOC_DESC, nullptr, 0, 0};
status = zeMemAllocDevice(context, &alloc_desc, size * size * sizeof(float),
ALIGN, device, &dev_a);
PTI_ASSERT(status == ZE_RESULT_SUCCESS);
void* dev_b = nullptr;
status = zeMemAllocDevice(context, &alloc_desc, size * size * sizeof(float),
ALIGN, device, &dev_b);
PTI_ASSERT(status == ZE_RESULT_SUCCESS);
void* dev_c = nullptr;
status = zeMemAllocDevice(context, &alloc_desc, size * size * sizeof(float),
ALIGN, device, &dev_c);
PTI_ASSERT(status == ZE_RESULT_SUCCESS);
status = zeKernelSetGroupSize(
kernel, group_size[0], group_size[1], group_size[2]);
PTI_ASSERT(status == ZE_RESULT_SUCCESS);
status = zeKernelSetArgumentValue(kernel, 0, sizeof(dev_a), &dev_a);
PTI_ASSERT(status == ZE_RESULT_SUCCESS);
status = zeKernelSetArgumentValue(kernel, 1, sizeof(dev_a), &dev_b);
PTI_ASSERT(status == ZE_RESULT_SUCCESS);
status = zeKernelSetArgumentValue(kernel, 2, sizeof(dev_a), &dev_c);
PTI_ASSERT(status == ZE_RESULT_SUCCESS);
status = zeKernelSetArgumentValue(kernel, 3, sizeof(size), &size);
PTI_ASSERT(status == ZE_RESULT_SUCCESS);
ze_command_list_desc_t cmd_list_desc = {
ZE_STRUCTURE_TYPE_COMMAND_LIST_DESC, nullptr, 0, 0};
ze_command_list_handle_t cmd_list = nullptr;
status = zeCommandListCreate(context, device, &cmd_list_desc, &cmd_list);
PTI_ASSERT(status == ZE_RESULT_SUCCESS);
status = zeCommandListAppendMemoryCopy(cmd_list, dev_a, a.data(),
size * size * sizeof(float),
nullptr, 0, nullptr);
PTI_ASSERT(status == ZE_RESULT_SUCCESS);
status = zeCommandListAppendMemoryCopy(cmd_list, dev_b, b.data(),
size * size * sizeof(float),
nullptr, 0, nullptr);
PTI_ASSERT(status == ZE_RESULT_SUCCESS);
status = zeCommandListAppendBarrier(cmd_list, nullptr, 0, nullptr);
PTI_ASSERT(status == ZE_RESULT_SUCCESS);
ze_event_pool_desc_t event_pool_desc = {
ZE_STRUCTURE_TYPE_EVENT_POOL_DESC, nullptr,
ZE_EVENT_POOL_FLAG_KERNEL_TIMESTAMP | ZE_EVENT_POOL_FLAG_HOST_VISIBLE,
1};
ze_event_pool_handle_t event_pool = nullptr;
status = zeEventPoolCreate(context, &event_pool_desc,
0, nullptr, &event_pool);
PTI_ASSERT(status == ZE_RESULT_SUCCESS);
ze_event_desc_t event_desc = {
ZE_STRUCTURE_TYPE_EVENT_DESC, nullptr, 0,
ZE_EVENT_SCOPE_FLAG_HOST, ZE_EVENT_SCOPE_FLAG_HOST};
ze_event_handle_t event = nullptr;
zeEventCreate(event_pool, &event_desc, &event);
PTI_ASSERT(status == ZE_RESULT_SUCCESS);
ze_group_count_t dim = { size / group_size[0],
size / group_size[1],
1 };
status = zeCommandListAppendLaunchKernel(cmd_list, kernel, &dim,
event, 0, nullptr);
PTI_ASSERT(status == ZE_RESULT_SUCCESS);
status = zeCommandListAppendBarrier(cmd_list, nullptr, 0, nullptr);
PTI_ASSERT(status == ZE_RESULT_SUCCESS);
status = zeCommandListAppendMemoryCopy(cmd_list, c.data(), dev_c,
size * size * sizeof(float),
nullptr, 0, nullptr);
PTI_ASSERT(status == ZE_RESULT_SUCCESS);
status = zeCommandListClose(cmd_list);
PTI_ASSERT(status == ZE_RESULT_SUCCESS);
ze_command_queue_desc_t cmd_queue_desc = {
ZE_STRUCTURE_TYPE_COMMAND_QUEUE_DESC, nullptr, 0, 0, 0,
ZE_COMMAND_QUEUE_MODE_ASYNCHRONOUS, ZE_COMMAND_QUEUE_PRIORITY_NORMAL};
ze_command_queue_handle_t cmd_queue = nullptr;
status = zeCommandQueueCreate(context, device, &cmd_queue_desc, &cmd_queue);
PTI_ASSERT(status == ZE_RESULT_SUCCESS && cmd_queue != nullptr);
status = zeCommandQueueExecuteCommandLists(
cmd_queue, 1, &cmd_list, nullptr);
PTI_ASSERT(status == ZE_RESULT_SUCCESS);
status = zeCommandQueueSynchronize(cmd_queue, UINT32_MAX);
PTI_ASSERT(status == ZE_RESULT_SUCCESS);
status = zeCommandQueueDestroy(cmd_queue);
PTI_ASSERT(status == ZE_RESULT_SUCCESS);
status = zeCommandListDestroy(cmd_list);
PTI_ASSERT(status == ZE_RESULT_SUCCESS);
status = zeMemFree(context, dev_a);
PTI_ASSERT(status == ZE_RESULT_SUCCESS);
status = zeMemFree(context, dev_b);
PTI_ASSERT(status == ZE_RESULT_SUCCESS);
status = zeMemFree(context, dev_c);
PTI_ASSERT(status == ZE_RESULT_SUCCESS);
ze_device_properties_t props{};
props.stype = ZE_STRUCTURE_TYPE_DEVICE_PROPERTIES_1_2;
status = zeDeviceGetProperties(device, &props);
PTI_ASSERT(status == ZE_RESULT_SUCCESS);
ze_kernel_timestamp_result_t timestamp{};
status = zeEventQueryKernelTimestamp(event, ×tamp);
PTI_ASSERT(status == ZE_RESULT_SUCCESS);
status = zeEventDestroy(event);
PTI_ASSERT(status == ZE_RESULT_SUCCESS);
status = zeEventPoolDestroy(event_pool);
PTI_ASSERT(status == ZE_RESULT_SUCCESS);
double time = static_cast<double>(
timestamp.global.kernelEnd - timestamp.global.kernelStart) /
props.timerResolution;
std::cout << "Matrix multiplication time: " << time <<
" sec" << std::endl;
return Check(c, expected_result);
}
static void Compute(ze_device_handle_t device,
ze_driver_handle_t driver,
const std::vector<float>& a,
const std::vector<float>& b,
std::vector<float>& c,
unsigned size, unsigned repeat_count,
float expected_result) {
PTI_ASSERT(device != nullptr && driver != nullptr);
PTI_ASSERT(size > 0 && repeat_count > 0);
std::string module_name = "gemm.spv";
std::vector<uint8_t> binary = utils::LoadBinaryFile(
utils::GetExecutablePath() + module_name);
if (binary.size() == 0) {
std::cout << "Unable to find module " << module_name << std::endl;
return;
}
ze_result_t status = ZE_RESULT_SUCCESS;
ze_context_handle_t context = utils::ze::GetContext(driver);
PTI_ASSERT(context != nullptr);
ze_module_desc_t module_desc = {
ZE_STRUCTURE_TYPE_MODULE_DESC, nullptr,
ZE_MODULE_FORMAT_IL_SPIRV, static_cast<uint32_t>(binary.size()),
binary.data(), nullptr, nullptr};
ze_module_handle_t module = nullptr;
status = zeModuleCreate(context, device, &module_desc, &module, nullptr);
PTI_ASSERT(status == ZE_RESULT_SUCCESS && module != nullptr);
ze_kernel_desc_t kernel_desc = {
ZE_STRUCTURE_TYPE_KERNEL_DESC, nullptr, 0, "GEMM"};
ze_kernel_handle_t kernel = nullptr;
status = zeKernelCreate(module, &kernel_desc, &kernel);
PTI_ASSERT(status == ZE_RESULT_SUCCESS && kernel != nullptr);
for (unsigned i = 0; i < repeat_count; ++i) {
if (i == 0) { // Enable data collection for the first iteration
utils::SetEnv("PTI_ENABLE_COLLECTION", "1");
}
float eps = RunAndCheck(kernel, device, context, a, b, c,
size, expected_result);
std::cout << "Results are " << ((eps < MAX_EPS) ? "" : "IN") <<
"CORRECT with accuracy: " << eps << std::endl;
if (i == 0) { // Disable data collection for the rest iterations
utils::SetEnv("PTI_ENABLE_COLLECTION", "");
}
}
status = zeKernelDestroy(kernel);
PTI_ASSERT(status == ZE_RESULT_SUCCESS);
status = zeModuleDestroy(module);
PTI_ASSERT(status == ZE_RESULT_SUCCESS);
status = zeContextDestroy(context);
PTI_ASSERT(status == ZE_RESULT_SUCCESS);
}
int main(int argc, char* argv[]) {
ze_result_t status = ZE_RESULT_SUCCESS;
status = zeInit(ZE_INIT_FLAG_GPU_ONLY);
PTI_ASSERT(status == ZE_RESULT_SUCCESS);
ze_device_handle_t device = utils::ze::GetGpuDevice();
ze_driver_handle_t driver = utils::ze::GetGpuDriver();
if (device == nullptr || driver == nullptr) {
std::cout << "Unable to find GPU device" << std::endl;
return 0;
}
unsigned size = 1024;
if (argc > 1) {
size = std::stoul(argv[1]);
}
unsigned repeat_count = 4;
if (argc > 2) {
repeat_count = std::stoul(argv[2]);
}
std::cout << "Level Zero Matrix Multiplication (matrix size: " << size <<
" x " << size << ", repeats " << repeat_count << " times)" << std::endl;
std::cout << "Target device: " << utils::ze::GetDeviceName(device) <<
std::endl;
std::vector<float> a(size * size, A_VALUE);
std::vector<float> b(size * size, B_VALUE);
std::vector<float> c(size * size, 0.0f);
auto start = std::chrono::steady_clock::now();
float expected_result = A_VALUE * B_VALUE * size;
Compute(device, driver, a, b, c, size, repeat_count, expected_result);
auto end = std::chrono::steady_clock::now();
std::chrono::duration<float> time = end - start;
std::cout << "Total execution time: " << time.count() <<
" sec" << std::endl;
return 0;
}