-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_teste.py
155 lines (118 loc) · 4.03 KB
/
main_teste.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# -*- coding: utf-8 -*-
"""
Função main()
"""
import fileinput
import csv
import math
import sys
import bootstrap
import decisionTree
import errorMeasures
import header
import kFoldStratified
import preProcessing
import tree
import voting
import random
import sampling
"""
Como executar:
> python3 main_teste.py <datafile.format> <num_trees>
"""
def main(filename, n_trees):
# coletando os argumentos
#filename = str(sys.argv[1])
#n_trees = int(sys.argv[2])
n_folds = 10
list_forest = []
# definindo seed
random.seed(1)
# abrindo o arquivo
#datafile = preProcessing.openDataFile(filename)
# TO DO: FIX THIS PIECE OF CODE
with open(filename) as csvfile:
csv_reader = csv.reader(csvfile, delimiter=',')
datafile = list(csv_reader)
#print("\n============= DATA FILE =============")
#print (*datafile,sep="\n")
m = math.ceil(math.sqrt(len(datafile[1])))
# Fazendo amostragem para as m colunas com maior ganho
if m > len(datafile[0]):
print("valor m é maior que quantidade de atributos")
return -1
datafile = sampling.sampleAttributes(datafile, m)
# Setando o cabeçalho
dataheader = header.Header()
dataheader.setHeader(datafile)
# Lista que vai armazenar os folds
fold_list = []
fold_list = kFoldStratified.kFoldStratified(datafile, n_folds)
# Quantidade de entradas testadas é o tamanho de um fold
# vezes a quantidade de testes que sera feito
tam_testfold = len(fold_list[0]) * n_folds
'''
print("\n============= FOLD lIST =============")
for i in range(n_folds):
print("\nFold N " + str(i))
print(*fold_list[i], sep="\n")
'''
# inicializa a matriz de confusão
value_classes = kFoldStratified.countPossibleAttributes(datafile)
errorMeasures.initConfusionMatrix(len(value_classes))
# chamando o bootstrap (K-Fold posteriormente)
for i in range(n_folds):
aux_fold_list = []
test_fold = []
training_folds = []
# copia a lista de folds para uma lista auxiliar
aux_fold_list = list(map(list, fold_list))
# pega o fold de teste
test_fold = aux_fold_list[i]
# DEBUG
#print(*test_fold,sep="\n")
#print("\n")
#
#print (*aux_fold_list,sep="\n")
# pega os folds de treinamento
aux_fold_list.remove(test_fold)
# transforma lista de listas em uma lista só, para facilitar implementação
for j in aux_fold_list:
training_folds += j
list_forest.append(decisionTree.makeForest(training_folds, n_trees, dataheader))
final_votes = decisionTree.startClassification(test_fold, list_forest[i], dataheader, value_classes)
# DEBUG: impressão das medidas de erro
errorMeasures.compactConfusionMatrix(value_classes)
print("\n\n ===========================================")
print("Num Folds: " + str(n_folds))
print("Num Trees: " + str(n_trees))
print("RESULT MATRIX:")
errorMeasures.printResultMatrix()
print("CONFUSION MATRIX:")
errorMeasures.printConfusionMatrix()
print("Accuracy: ")
print(errorMeasures.accuracy(tam_testfold,value_classes))
print("Error: ")
print(errorMeasures.error(tam_testfold,value_classes))
print("Recall: ")
print(errorMeasures.recall(value_classes))
print("Precision: ")
print(errorMeasures.precision(value_classes))
print("FMeasure: ")
print(errorMeasures.FMeasure(errorMeasures.precision(value_classes), errorMeasures.recall(value_classes), 1))
print("===========================================")
# Limpando Matriz de Confusão
errorMeasures.resetConfusionMatrix(len(value_classes))
'''
#(*)
# DEBUG: impressão das florestas
for i in range(len(list_forest)):
for j in range(len(list_forest[i])):
#for k in range(len(list_forest[i][j])):
#tree.printTree(list_forest[i][j][k])
tree.printTree(list_forest[i][j])
'''
'''
Executando a main()
'''
#main()