-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathppo.py
165 lines (143 loc) · 6.22 KB
/
ppo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
from matplotlib.pyplot import get
import torch
import torch.nn as nn
from copy import deepcopy
from actor_critic import ActorCritic
from aggregate_observation import aggregate_observations
from memory import Memory
from agent_utils import eval_actions
from graph_pool import get_graph_pool_mb
from params import device
class PPO:
def __init__(
self,
lr,
gamma,
k_epochs,
eps_clip,
n_j,
n_m,
num_of_layers,
input_dim,
hidden_dim,
num_of_mlp_layers_feature_extract,
num_of_mlp_layers_actor,
hidden_dim_actor,
num_of_mlp_layers_critic,
hidden_dim_critic,
):
self.lr = lr
self.gamma = gamma
self.eps_clip = eps_clip
self.k_epochs = k_epochs
self.policy = ActorCritic(
n_j=n_j,
n_m=n_m,
num_of_layers=num_of_layers,
use_learn_epsilon=False,
input_dim=input_dim,
hidden_dim=hidden_dim,
num_of_mlp_layers_for_feature_extract=num_of_mlp_layers_feature_extract,
num_of_mlp_layers_actor=num_of_mlp_layers_actor,
num_of_mlp_layers_critic=num_of_mlp_layers_critic,
hidden_dim_actor=hidden_dim_actor,
hidden_dim_critic=hidden_dim_critic,
)
self.policy = self.policy.float()
self.decay_step_size = 2000
self.decay_ratio = 0.9
self.policy_old = deepcopy(self.policy)
self.policy_old.load_state_dict(self.policy.state_dict())
self.optimizer = torch.optim.Adam(self.policy.parameters(), lr=lr)
self.scheduler = torch.optim.lr_scheduler.StepLR(self.optimizer,
step_size=self.decay_step_size,
gamma=self.decay_ratio)
self.v_loss = nn.MSELoss()
self.critic_loss_coefficient = 1.0
self.policy_loss_coefficient = 2.0
self.entropy_loss_coefficient = 0.01
self.lr_decay_flag = False
def update(self, memories: 'list[Memory]', n_operations):
# array of minibatches over all environments
# each minibatch contains the feature at the timestep for all environment
# for example: Minibatch for action may contains actions at time step 2 for all environments
all_env_mb_rewards = []
all_env_mb_adj_matrices = []
all_env_mb_features = []
all_env_mb_candidate_features = []
all_env_mb_masks = []
all_env_mb_actions = []
all_env_mb_old_logprobs = []
all_env_mb_machine_feats = []
# store data for all environments
for i in range(len(memories)):
rewards = []
discounted_reward = 0
for reward, is_terminal in zip(
reversed(memories[i].r_mb),
reversed(memories[i].done_mb)
):
if is_terminal:
discounted_reward = 0
discounted_reward = reward + (self.gamma * discounted_reward)
rewards.insert(0, discounted_reward)
rewards = torch.tensor(rewards, dtype=torch.float).to(device)
rewards = (rewards - rewards.mean()) / (rewards.std() + 1e-5)
all_env_mb_rewards.append(rewards)
# process each env data
all_env_mb_adj_matrices.append(
aggregate_observations(torch.stack(memories[i].adj_mb).to(device), n_operations)
)
feature_minibatch_t = torch.stack(memories[i].fea_mb).to(device)
feature_minibatch_t = feature_minibatch_t.reshape(-1, feature_minibatch_t.size(-1))
all_env_mb_features.append(feature_minibatch_t)
all_env_mb_candidate_features.append(
torch.stack(memories[i].candidate_mb).to(device).squeeze()
)
all_env_mb_masks.append(
torch.stack(memories[i].mask_mb).to(device).squeeze()
)
all_env_mb_actions.append(
torch.stack(memories[i].a_mb).to(device).squeeze()
)
all_env_mb_machine_feats.append(
torch.stack(memories[i].machine_feat_mb).to(device).squeeze()
)
all_env_mb_old_logprobs.append(
torch.stack(memories[i].logprobs).to(device).squeeze().detach()
)
graph_pool_mbs = [get_graph_pool_mb(torch.stack(memories[k].adj_mb).to(device).shape, n_operations[k]) for k in range(len(memories))]
for _ in range(self.k_epochs):
loss_sum = 0
v_loss_sum = 0
for i in range(len(memories)):
pis, vals = self.policy(
x=all_env_mb_features[i],
adj_matrix=all_env_mb_adj_matrices[i],
candidate=all_env_mb_candidate_features[i],
mask=all_env_mb_masks[i],
graph_pool=graph_pool_mbs[i],
machine_feat=all_env_mb_machine_feats[i],
)
logprobs, entropy_loss = eval_actions(pis.squeeze(), all_env_mb_actions[i])
ratios = torch.exp(logprobs - all_env_mb_old_logprobs[i].detach())
advantages = all_env_mb_rewards[i] - vals.view(-1).detach()
surrogate_1 = ratios * advantages
surrogate_2 = torch.clamp(ratios, 1 - self.eps_clip, 1 + self.eps_clip) * advantages
v_loss = self.v_loss(vals.squeeze(), all_env_mb_rewards[i])
p_loss = -torch.min(surrogate_1, surrogate_2).mean()
entropy_loss = -entropy_loss.clone()
loss = \
self.critic_loss_coefficient * v_loss + \
self.policy_loss_coefficient * p_loss + \
self.entropy_loss_coefficient * entropy_loss
loss_sum += loss
v_loss_sum += v_loss
self.optimizer.zero_grad()
loss_sum.mean().backward()
self.optimizer.step()
# copy new weights into old policy
self.policy_old.load_state_dict(self.policy.state_dict())
if self.lr_decay_flag:
self.scheduler.step()
return loss_sum.mean().item(), v_loss_sum.mean().item()