-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
254 lines (213 loc) · 10.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
from platform import release
from agent_utils import select_action
from fjsp_env.fjsp_env import FJSP
from stochastic_arrival_times.fjsp_env.stochastic_arrival_times import calculate_problem_release_times
from params import config, device
from ppo import PPO
from memory import Memory
from graph_pool import get_graph_pool_step
from save_progress import save_progress
from uniform_instance_gen import uniform_instance_gen
from validate import validate
import copy
import torch
import numpy as np
import datetime
import time
import os
if config.stochastic:
from stochastic_arrival_times.fjsp_env.fjsp_env import StochasticFJSP
FJSP = StochasticFJSP
def train():
envs = [FJSP(n_j=config.n_j, n_m=config.n_m, num_of_operations_ub_per_job=config.num_of_operations_ub_per_job) for _ in range(config.num_of_envs)]
memories = [Memory() for _ in range(config.num_of_envs)]
validation_data_path = f'./validation/{config.size}_validation_set_4.npy'
if config.stochastic:
validation_data_path = f'./stochastic_arrival_times/validation/job_durations/{config.size}_validation_set_4.npy'
data_loaded = np.load(validation_data_path)
release_times = None
if config.stochastic:
release_times = np.loadtxt(f'./stochastic_arrival_times/validation/job_release_times/{config.size}_0.95.txt').astype(np.int32)
validation_data = []
if config.progress_config.save_training:
if not os.path.isdir(config.progress_config.path_to_save_progress):
os.makedirs(os.path.dirname(f'{config.progress_config.path_to_save_progress}/'), exist_ok=True)
elif os.path.isdir(config.progress_config.path_to_save_progress):
if len(os.listdir(f'{config.progress_config.path_to_save_progress}/')) != 0:
print(f"ERROR: {os.path.dirname(config.progress_config.path_to_save_progress)} is not empty")
quit()
else:
os.makedirs(os.path.dirname(f'{config.progress_config.path_to_save_progress}/'), exist_ok=True)
for i in range(data_loaded.shape[0]):
validation_data.append(data_loaded[i])
torch.manual_seed(config.torch_seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(config.torch_seed)
np.random.seed(200)
ppo = PPO(
lr=config.learning_rate,
gamma=config.gamma,
k_epochs=config.k_epochs,
eps_clip=config.epsilon_clip,
n_j=config.n_j,
n_m=config.n_m,
num_of_layers=config.num_of_layers,
input_dim=config.input_dim,
hidden_dim=config.hidden_dim,
num_of_mlp_layers_feature_extract=config.num_of_mlp_layers_feature_extract,
num_of_mlp_layers_actor=config.num_of_mlp_layers_actor,
hidden_dim_actor=config.num_of_hidden_dim_actor,
num_of_mlp_layers_critic=config.num_of_mlp_layers_critic,
hidden_dim_critic=config.num_of_hidden_dim_critic
)
training_log = []
validation_log = []
record = 100_000
training_iteration = 0
if config.progress_config.save_training:
if len(os.listdir(config.progress_config.path_to_save_progress)) != 0:
checkpoint = torch.load(f'{config.progress_config.path_to_save_progress}/saved.pth')
training_log = checkpoint['training_log']
validation_log = checkpoint['validation_log']
record = checkpoint['best_record']
training_iteration = len(checkpoint['training_log'])
ppo.policy.load_state_dict(checkpoint['model_state_dict'])
ppo.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
start_training = time.time()
for i_update in range(training_iteration, config.max_updates):
ep_rewards = [0 for _ in range(config.num_of_envs)]
adj_envs = []
fea_envs = []
candidate_envs = []
mask_envs = []
machine_feat_envs = []
env_indexes_envs = []
graph_pool_step_envs = []
# INITIALIZE ALL ENVIRONMENTS
for i, env in enumerate(envs):
problem = uniform_instance_gen(
num_of_jobs=config.n_j,
num_of_machines=config.n_m,
lowest_num_of_operation_per_job=config.num_of_operations_lb_per_job,
highest_num_of_operation_per_job=config.num_of_operations_ub_per_job,
lowest_num_of_alternatives_per_op=config.num_of_alternatives_lb,
highest_num_of_alternatives_per_op=config.num_of_alternatives_ub,
duration_lb=config.duration_low,
duration_ub=config.duration_high
)
if config.stochastic:
adj, fea, candidate, mask, machine_feat = env.reset(
problem,
config.num_of_operations_ub_per_job,
calculate_problem_release_times(problem, config.machine_utilisation, config.n_j, config.n_m)
)
else:
adj, fea, candidate, mask, machine_feat = env.reset(problem, config.num_of_operations_ub_per_job)
adj_envs.append(adj)
fea_envs.append(fea)
candidate_envs.append(candidate)
mask_envs.append(mask)
machine_feat_envs.append(machine_feat)
graph_pool_step_envs.append(get_graph_pool_step(env.num_of_operations))
env_indexes_envs.append(i)
ep_rewards[i] = - env.initial_quality
# COLLECT EXPERIENCES FOR ENTIRES EPISODE
while True:
fea_tensor_envs = [torch.from_numpy(np.copy(fea)).to(device) for fea in fea_envs]
adj_tensor_envs = [torch.from_numpy(np.copy(adj)).to(device).to_sparse() for adj in adj_envs]
candidate_tensor_envs = [torch.from_numpy(np.copy(candidate)).to(device) for candidate in candidate_envs]
mask_tensor_envs = [torch.from_numpy(np.copy(mask)).to(device) for mask in mask_envs]
machine_feat_tensor_envs = [torch.from_numpy(np.copy(machine_feat)).to(device) for machine_feat in machine_feat_envs]
env_indexes_before_envs = copy.deepcopy(env_indexes_envs)
with torch.no_grad():
action_envs = []
action_index_envs = []
for i in range(len(fea_tensor_envs)):
pi, _ = ppo.policy_old(
x=fea_tensor_envs[i],
adj_matrix=adj_tensor_envs[i],
candidate=candidate_tensor_envs[i].unsqueeze(0),
mask=mask_tensor_envs[i].unsqueeze(0),
graph_pool=graph_pool_step_envs[env_indexes_before_envs[i]],
machine_feat=machine_feat_tensor_envs[i].unsqueeze(0),
)
action, action_index = select_action(pi, candidate_envs[i], memories[env_indexes_before_envs[i]])
action_envs.append(action)
action_index_envs.append(action_index)
adj_envs = []
fea_envs = []
candidate_envs = []
mask_envs = []
machine_feat_envs = []
env_indexes_envs = []
# QUESTION: if let's say that environment 3 is done, but environment 1, 2, 4 is not done yet
# there will be 3 elements in the array
# because we iterate over 4 environments, hence on the 4th element, we get index out of bounds
# but even if we don't get index out of bounds, how do we know, which environment's memories to insert
# because if environment 3 is done, the fourth environment's content will be in index 3
# so Index no longer maps or implies directly the environment
# One solution is to have a parallel array, where every element in the array indicates the environment of the content
# Example: environments = [0, 1, 3]
# Other contents: adj = [adj0, adj1, adj3]
# so we can iterate over this environment, and insert into its corresponding memories
# we then need to clear this environment every time
# INSERT EVERY EXPERIENCE FROM EVERY ENVIRONMENT INTO THE MEMORIES
for i in range(len(fea_tensor_envs)):
i_memory = env_indexes_before_envs[i]
memories[i_memory].adj_mb.append(adj_tensor_envs[i])
memories[i_memory].fea_mb.append(fea_tensor_envs[i])
memories[i_memory].candidate_mb.append(candidate_tensor_envs[i])
memories[i_memory].mask_mb.append(mask_tensor_envs[i])
memories[i_memory].a_mb.append(action_index_envs[i])
memories[i_memory].machine_feat_mb.append(machine_feat_tensor_envs[i])
adj, fea, reward, done, candidate, mask, machine_feat = envs[i_memory].step(action_envs[i])
if not done:
adj_envs.append(adj)
fea_envs.append(fea)
candidate_envs.append(candidate)
mask_envs.append(mask)
machine_feat_envs.append(machine_feat)
env_indexes_envs.append(i_memory)
ep_rewards[i] += reward
memories[i_memory].r_mb.append(reward)
memories[i_memory].done_mb.append(done)
# FINISH EPISODE
if all([env.done() for env in envs]):
break
for j in range(config.num_of_envs):
ep_rewards[j] -= envs[j].positive_rewards
num_of_training_operations = [env.num_of_operations for env in envs]
_, v_loss = ppo.update(memories, num_of_training_operations)
for memory in memories: memory.clear_memory()
mean_rewards_all_env = sum(ep_rewards) / len(ep_rewards)
training_log.append([i_update, mean_rewards_all_env])
print(f'Episode {i_update+1} \t Last reward: {mean_rewards_all_env:.2f} \t Mean V Loss: {v_loss:.8f}')
if (i_update + 1) % 100 == 0:
validation_result = - validate(
validation_set=validation_data,
model=ppo.policy,
ub_num_of_operations_per_job=config.num_of_operations_ub_per_job,
release_times=release_times).mean()
print(f'The validation quality is: {validation_result}')
save_progress(
training_log=training_log,
validation_log=validation_log,
validation_result=validation_result,
record=record,
model=ppo
)
if validation_result < record:
record = validation_result
end_training = time.time()
with open(f'{config.progress_config.path_to_save_progress}/training_duration.txt', 'w') as logfile:
str = f'''Start training
Timestamp: {datetime.datetime.fromtimestamp(start_training)}
Time: {start_training}
End training
Timestamp: {datetime.datetime.fromtimestamp(end_training)}
Time: {end_training}
Training duration: {end_training - start_training} seconds
'''
logfile.write(str)
if __name__ == '__main__':
train()