-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathday11.py
221 lines (171 loc) · 6.09 KB
/
day11.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
"""Day 11: Dumbo Octopus."""
from dataclasses import dataclass
from itertools import product
from typing import Final, Optional
import numpy as np
from advent_of_code.checks import check_answer, check_example
from advent_of_code.cli_output import print_single_answer
from advent_of_code.data import get_data_path
DAY: Final[int] = 11
NAME: Final[str] = "Dumbo Octopus"
_small_example_energy_levels = """
11111
19991
19191
19991
11111
"""
_example_energy_levels = """
5483143223
2745854711
5264556173
6141336146
6357385478
4167524645
2176841721
6882881134
4846848554
5283751526
"""
def _parse_energy_level_grid(grid: str) -> np.ndarray:
rows = []
for line in grid.strip().splitlines():
rows.append([int(x) for x in line.strip()])
return np.array(rows)
def _get_small_example_energy_levels() -> np.ndarray:
return _parse_energy_level_grid(_small_example_energy_levels)
def _get_example_energy_levels() -> np.ndarray:
return _parse_energy_level_grid(_example_energy_levels)
def _get_energy_level_data() -> np.ndarray:
data = ""
with open(get_data_path(DAY), "r") as file:
for line in file:
data += line.strip() + "\n"
return _parse_energy_level_grid(data)
def _add_inf_border(grid: np.ndarray) -> np.ndarray:
"""Add negative infinity padding to a grid."""
return np.pad(grid.astype(float), (1, 1), mode="constant", constant_values=-np.inf)
def _padded_grid_position_iter(grid: np.ndarray) -> product:
"""Make an iterator over the octopus grid ignoring the padding."""
dims = grid.shape
return product(range(1, dims[0]), range(1, dims[1]))
def _strip_padding(grid: np.ndarray) -> np.ndarray:
"""Remove the padding of a grid."""
dims = grid.shape
return grid[1 : (dims[0] - 1), 1 : (dims[1] - 1)]
def _get_all_neighbor_positions(i: int, j: int) -> list[tuple[int, int]]:
"""Get the neighboring positions in a grid."""
neighbors = []
for a, b in product(range(-1, 2), range(-1, 2)):
if a == 0 and b == 0:
continue
neighbors.append((i + a, j + b))
return neighbors
def add_one_to_neighbors(grid: np.ndarray, i: int, j: int) -> np.ndarray:
"""Add one to all neighbors (including diagonals) in a grid.
Args:
grid (np.ndarray): Grid of octopuses.
i (int): Row of octopus.
j (int): Column of octopus.
Returns:
np.ndarray: Modified grid.
"""
for a, b in _get_all_neighbor_positions(i, j):
grid[a, b] += 1
return grid
def octopus_step(grid: np.ndarray) -> tuple[np.ndarray, int]:
"""Carry out a single step of the algorithm.
The algorithm:
1. increment all by 1
2. make a copy of the grid
3. add the number of flashes to a running total
4. for each position on the grid, if that octopus has flashed, add 1 to all of the
neighbors and add that position to a collection of positions that have flashed
(they can only flash once)
5. set all octopus that are flashing or have flashed to 0
6. if the total of the grid is different than at the beginning, return to step 2
and repeat
7. else return the new grid and total number of flashes
Args:
grid (np.ndarray): Grid of octopuses (padded with a layer of neg. infinity).
Returns:
tuple[np.ndarray, int]: Resulting grid and number of flashes that occurred.
"""
grid += 1
grid_sum = np.sum(_strip_padding(grid))
_previous_sum = 0
total_flashes = 0
has_flashed: set[tuple[int, int]] = set()
while grid_sum != _previous_sum:
new_grid = grid.copy()
_previous_sum = np.sum(_strip_padding(grid))
total_flashes += np.sum(new_grid > 9.5)
for i, j in _padded_grid_position_iter(grid):
val = grid[i, j]
if val > 9.5:
new_grid = add_one_to_neighbors(new_grid, i=i, j=j)
has_flashed.add((i, j))
new_grid[grid > 9.5] = 0
for a, b in has_flashed:
new_grid[a, b] = 0
grid = new_grid.copy()
grid_sum = np.sum(_strip_padding(grid))
return grid, total_flashes
@dataclass
class OctopusGridResult:
"""Result type for modeling the octopus grid."""
grid: np.ndarray
flashes: int
synchronized_steps: list[int]
def octopus_grid_model(grid: np.ndarray, steps: Optional[int]) -> OctopusGridResult:
"""Model a number of steps for a grid of octopuses.
Args:
grid (np.ndarray): Grid of octopuses.
steps (Optional[int]): Number of steps to model. Set to None to stop only when
the grid is synchronized.
Returns:
OctopusGridResult: Result after the steps.
"""
padded_grid = _add_inf_border(grid.copy())
total_flashes = 0
synced_steps: list[int] = []
_stop_when_sync = False
if steps is None:
_stop_when_sync = True
steps = 100000000
for step in range(1, steps + 1):
padded_grid, n_flashes = octopus_step(padded_grid)
total_flashes += n_flashes
if np.all(padded_grid < 1):
synced_steps.append(step)
if _stop_when_sync:
break
return OctopusGridResult(
grid=_strip_padding(padded_grid),
flashes=total_flashes,
synchronized_steps=synced_steps,
)
def main() -> None:
"""Run code for 'Day 11: Dumbo Octopus'."""
# Part 1.
# Examples
_ex_grid = _get_example_energy_levels()
_ex_res = octopus_grid_model(_ex_grid, steps=100)
check_example(1656, _ex_res.flashes)
# Real
octo_grid = _get_energy_level_data()
octo_grid_res = octopus_grid_model(octo_grid, steps=100)
print_single_answer(DAY, 1, octo_grid_res.flashes)
check_answer(1644, octo_grid_res.flashes, DAY, 1)
# Part 2.
# Example
_ex_grid = _get_example_energy_levels()
_ex_res = octopus_grid_model(_ex_grid, steps=200)
check_example(195, np.min(_ex_res.synchronized_steps))
# Real
octo_grid = _get_energy_level_data()
octo_grid_res = octopus_grid_model(octo_grid, steps=None)
print_single_answer(DAY, 2, octo_grid_res.synchronized_steps[0])
return None
if __name__ == "__main__":
main()