-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathday17.py
389 lines (312 loc) · 11.2 KB
/
day17.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
"""Day 17: Trick Shot."""
from dataclasses import dataclass
from math import floor
from pathlib import Path
from typing import Optional
import matplotlib.pyplot as plt
import numpy as np
from advent_of_code.checks import check_answer, check_example
from advent_of_code.cli_output import print_single_answer
from advent_of_code.data import output_dir, read_data
from advent_of_code.utils import PuzzleInfo
PI = PuzzleInfo(day=17, title="Trick Shot")
_example_target_area = "target area: x=20..30, y=-10..-5"
Point = tuple[int, int]
Trajectory = list[Point]
@dataclass
class Area:
"""An object representing a rectangular area."""
xmin: int
xmax: int
ymin: int
ymax: int
def is_inside(self, pt: tuple[float, float]) -> bool:
"""Determine if some point is inside of the area.
Args:
pt (tuple[float, float]): Point to check.
Returns:
bool: Whether a point is in the area.
"""
x, y = pt
return (self.xmin <= x <= self.xmax) and (self.ymin <= y <= self.ymax)
@property
def center(self) -> tuple[float, float]:
"""Center of the area."""
return ((self.xmin + self.xmax) / 2.0, (self.ymin + self.ymax) / 2.0)
def parse_target_area_input(target_area_str: str) -> Area:
"""Parse target area string data."""
x_range, y_range = target_area_str.replace("target area: ", "").split(
", ", maxsplit=1
)
xs = [abs(int(x)) for x in x_range.replace("x=", "").split("..", maxsplit=1)]
assert len(xs) == 2
ys = [int(x) for x in y_range.replace("y=", "").split("..", maxsplit=1)]
assert len(ys) == 2
return Area(xmin=min(xs), xmax=max(xs), ymin=min(ys), ymax=max(ys))
def get_puzzle_target_area() -> Area:
"""Get puzzle input."""
return parse_target_area_input(read_data(PI.day).strip())
@dataclass
class SimulationResult:
"""Results of a simulation."""
v_initial: tuple[int, int]
hit: bool
passed_through: bool
trajectory: Trajectory
@property
def highest_point(self) -> Point:
"""Highest point reached in the simulation."""
ys = [p[1] for p in self.trajectory]
idx = ys.index(max(ys))
return self.trajectory[idx]
def _get_nearest_point(a: Point, b: Point, area: Area) -> tuple[float, float]:
x: float
y: float
if b[0] == a[0]:
# Points a and b are vertical.
x, y = a[0], area.center[1]
elif b[1] == a[1]:
# Points a and b are horizontal.
x, y = area.center[0], a[1]
else:
# Step 1
m = (b[1] - a[1]) / (b[0] - a[0])
d = a[1] - m * a[0]
# Step 2
_m = 1.0 / m
if _m == m:
# Parallel and therefore the line goes through the middle.
return area.center
# Step 3
c = area.center
f = c[1] - _m * c[0]
# Step 4
x = (f - d) / (m - _m)
y = m * x + d
return x, y
def did_pass_through(a: Point, b: Point, area: Area) -> bool:
"""Check if a line between two points passes through an area.
This algorithm is based off of the fact that this quality can be confirmed by
determining if the point on the line between `a` and `b` that is closest to the
center of the area is in the area.
Algorithm:
1. Find the line, `ab_line`, between `a` and `b`.
2. Use the slope of `ab_line`, `m`, to calculate the slope of the perpendicular,
`_m`.
3. Use that slope and the center of the area `c` to find the line perpendicular to
`ab_line` that passes through `c`.
4. Find the point of intersection between `ab_line` and `c_line`.
5. Is this point in the area?
`ab_line`: y = m * x + d
`c_line`: y = _m * x + f
Args:
a (Point): First point.
b (Point): Second point.
area (Area): Area of intersection.
Returns:
bool: Does the line pass through the area?
"""
# Steps 1-4
nearest_point = _get_nearest_point(a, b, area)
# Step 5
return area.is_inside(nearest_point)
def run_simulation(
v_initial: tuple[int, int],
target_area: Area,
) -> SimulationResult:
"""Run a simulation.
Args:
v_initial (tuple[int, int]): Initial velocity.
target_area (Area): Target area.
Returns:
SimulationResult: Simulation results.
"""
pos = np.array([0, 0], dtype=int)
v = np.array(v_initial, dtype=int)
a = np.array([-1, -1], dtype=int)
hit = False
trajectory: Trajectory = [(0, 0)]
while True:
pos += v
v += a
v[0] = max([v[0], 0])
if trajectory is not None:
trajectory.append((pos[0], pos[1]))
if pos[0] > target_area.xmax or pos[1] < target_area.ymin:
break
if target_area.is_inside((pos[0], pos[1])):
hit = True
break
passed_through = hit
if not hit:
passed_through = did_pass_through(trajectory[-1], trajectory[-2], target_area)
return SimulationResult(
v_initial=v_initial,
hit=hit,
passed_through=passed_through,
trajectory=trajectory,
)
def plot_simulation(
sim: SimulationResult, target: Area, fpath: Optional[Path] = None
) -> None:
"""Plot the results of a simulation."""
x = [p[0] for p in sim.trajectory]
y = [p[1] for p in sim.trajectory]
plt.plot(x, y, "o--")
box_x = [target.xmin, target.xmax, target.xmax, target.xmin, target.xmin]
box_y = [target.ymax, target.ymax, target.ymin, target.ymin, target.ymax]
plt.plot(box_x, box_y, c="r")
if not sim.hit:
nearest_point = _get_nearest_point(
sim.trajectory[-1], sim.trajectory[-2], target
)
plt.plot(
[target.center[0], nearest_point[0]],
[target.center[1], nearest_point[1]],
"g--",
marker="o",
)
high_pt = sim.highest_point
plt.text(high_pt[0] * 1.02, high_pt[1] * 1.02, f"{high_pt}")
title = f"initial velocity: {sim.v_initial}, "
title += f"hit: {sim.hit}, passed through: {sim.passed_through}"
plt.title(title)
if fpath is None:
plt.show()
else:
plt.savefig(fpath)
plt.close()
return None
def plot_simulations(
sims: list[SimulationResult], target: Area, fpath: Optional[Path] = None
) -> None:
"""Plot the results of a simulation."""
for sim in sims:
x = [p[0] for p in sim.trajectory]
y = [p[1] for p in sim.trajectory]
plt.plot(x, y, "-", alpha=0.5)
box_x = [target.xmin, target.xmax, target.xmax, target.xmin, target.xmin]
box_y = [target.ymax, target.ymax, target.ymin, target.ymin, target.ymax]
plt.plot(box_x, box_y, c="k")
if fpath is None:
plt.show()
else:
plt.savefig(fpath)
plt.close()
return None
def _get_possible_x_velocities(target: Area) -> set[int]:
"""Velocities along x for searching for the highest y position reached."""
xs: set[int] = set()
for n in range(target.xmax):
total = sum([n - i for i in range(n)])
if target.xmin <= total <= target.xmax:
xs.add(n)
if total > target.xmax:
break
return xs
def find_highest_accurate_initial_velocity(target: Area) -> Point:
"""Find the initial velocity that hits the target after reaching the highest point.
Args:
target (Area): Target area.
Raises:
BaseException: If no solution is found.
Returns:
Point: Velocity that reaches the highest point and still hits the target.
"""
possible_vx = _get_possible_x_velocities(target)
best_v = (-1, -1)
for vx in possible_vx:
for vy in range(floor(target.center[1]), 200):
res = run_simulation((vx, vy), target)
if res.hit and vy > best_v[1]:
best_v = (vx, vy)
if best_v[0] < 0:
raise BaseException("Did not find any solutions...")
return best_v
def _vx_can_land_in_target(vx: int, target: Area) -> bool:
val = 0
for i in range(vx):
val += vx - i
if target.xmin <= val <= target.xmax:
return True
return False
def _get_all_possible_initial_x_velocities(target: Area) -> set[int]:
xs: set[int] = set()
for vx in range(target.xmax + 1):
if _vx_can_land_in_target(vx, target):
xs.add(vx)
return xs
def find_all_possible_initial_velocities(target: Area) -> set[Point]:
"""Find all possible initial velocities that hit the target.
Args:
target (Area): Target area.
Returns:
set[Point]: Set of viable initial velocities.
"""
max_y = find_highest_accurate_initial_velocity(target)
possible_vx = _get_all_possible_initial_x_velocities(target)
successful_hits: set[Point] = set()
for vx in possible_vx:
for vy in range(target.ymin, max_y[1] + 1):
v = (vx, vy)
res = run_simulation(v, target)
if res.hit:
successful_hits.add(v)
return successful_hits
def main() -> None:
"""Run code for 'Day 17: Trick Shot'."""
# Part 1.
_plot_1 = False
# Examples.
ex_area = parse_target_area_input(_example_target_area)
res = run_simulation((7, 2), ex_area)
check_example(True, res.hit and res.passed_through)
if _plot_1:
plot_simulation(res, ex_area)
res = run_simulation(v_initial=(6, 3), target_area=ex_area)
check_example(True, res.hit and res.passed_through)
plot_simulation(
res, ex_area, fpath=output_dir() / "day17-p1-example-trajectory.jpeg"
)
if _plot_1:
plot_simulation(res, ex_area)
res = run_simulation(v_initial=(9, 0), target_area=ex_area)
check_example(True, res.hit and res.passed_through)
if _plot_1:
plot_simulation(res, ex_area)
res = run_simulation(v_initial=(17, -4), target_area=ex_area)
check_example(True, (not res.hit) and res.passed_through)
if _plot_1:
plot_simulation(res, ex_area)
res = run_simulation(v_initial=(6, 9), target_area=ex_area)
check_example(True, res.hit and res.passed_through)
if _plot_1:
plot_simulation(res, ex_area)
v = find_highest_accurate_initial_velocity(ex_area)
check_example((6, 9), v)
# Real.
target_area = get_puzzle_target_area()
best_initial_v = find_highest_accurate_initial_velocity(target_area)
res = run_simulation(best_initial_v, target_area)
highest_y = res.highest_point[1]
if _plot_1:
plot_simulation(res, target_area)
print_single_answer(PI.day, 1, highest_y)
check_answer(5565, highest_y, day=PI.day, part=1)
# Part 2.
# Examples.
ex_target = parse_target_area_input(_example_target_area)
ex_possible_velocities = find_all_possible_initial_velocities(ex_target)
check_example(112, len(ex_possible_velocities))
# Real
possible_velocities = find_all_possible_initial_velocities(target_area)
num_possible_velocities = len(possible_velocities)
print_single_answer(PI.day, 2, num_possible_velocities)
check_answer(2118, num_possible_velocities, day=PI.day, part=2)
sims = [run_simulation(v, target_area) for v in possible_velocities]
plot_simulations(
sims, target_area, fpath=output_dir() / "day17-p2-simulations.jpeg"
)
return None
if __name__ == "__main__":
main()