-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdiffusion_module.py
764 lines (658 loc) · 31.4 KB
/
diffusion_module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
# Copyright 2024 jimmieliu @ https://github.com/jimmieliu/OpenAlphaFold3
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.nn as nn
from openfold.model.primitives import Linear, LayerNorm, Attention, Linear
from openfold.utils.tensor_utils import permute_final_dims
from typing import Optional
from openfold.utils.tensor_utils import one_hot
from openfold.utils.rigid_utils import rot_vec_mul
ATOM_NUM_PER_RESIDUE = 14 # 37
TRAIN_AUGMENTATION_SAMPLES = 24
def UniformRandomRotation3D():
"""Generate a 3D random rotation matrix.
https://github.com/andreyzhitnikov/randrot
Returns:
torch.tensor: A 3D rotation matrix.
"""
x1, x2, x3 = torch.rand(3)
R = torch.as_tensor([[torch.cos(2 * torch.pi * x1), torch.sin(2 * torch.pi * x1), 0],
[-torch.sin(2 * torch.pi * x1), torch.cos(2 * torch.pi * x1), 0],
[0, 0, 1]])
v = torch.as_tensor([[torch.cos(2 * torch.pi * x2) * torch.sqrt(x3)],
[torch.sin(2 * torch.pi * x2) * torch.sqrt(x3)],
[torch.sqrt(1 - x3)]])
H = torch.eye(3) - 2 * v * v.T
M = -H * R
return M
def batch_uniform_random_rotation_3d(
shape, # (b, 48, 1, 3, 3)
):
x1, x2, x3 = torch.rand(shape[:-2]), torch.rand(shape[:-2]), torch.rand(shape[:-2]) # (b, 48, 1)
R = torch.zeros(shape)
R[...,0,0] = torch.cos(2 * torch.pi * x1)
R[...,0,1] = torch.sin(2 * torch.pi * x1)
R[...,1,0] = -torch.sin(2 * torch.pi * x1)
R[...,1,1] = torch.cos(2 * torch.pi * x1)
R[...,2,2] = 1
v = torch.zeros((*shape[:-1],1)) # (b, 48, 1, 3, 1)
v[...,0,0] = torch.cos(2 * torch.pi * x2) * torch.sqrt(x3)
v[...,1,0] = torch.sin(2 * torch.pi * x2) * torch.sqrt(x3)
v[...,2,0] = torch.sqrt(1 - x3)
if len(shape) == 5:
H = torch.eye(3)[None,None,None,:,:] - 2 * v * permute_final_dims(v, (1, 0))
elif len(shape) == 4:
H = torch.eye(3)[None,None,:,:] - 2 * v * permute_final_dims(v, (1, 0))
else:
assert False
M = -H * R
return M
def centre_random_augmentation(xl, s_trans=1):
xl = xl - xl.mean(dim=-2, keepdim=True) # by l # (b, a, 3) (b, 48, a, 3)
R = batch_uniform_random_rotation_3d(
(*xl.shape[:-2], 1, 3, 3) # (b, 48, 1, 3, 3)
).to(xl.device) # 3x3 Rotation matrix
t = s_trans * torch.rand_like(xl)
xl = rot_vec_mul(R, xl) + t
return xl
class FourierEmbedding(nn.Module):
def __init__(self, c) -> None:
super().__init__()
# Randomly generate weight/bias once before training
def init_fn(w, b):
torch.nn.init.normal_(w, mean=0.0, std=1.0)
torch.nn.init.normal_(b, mean=0.0, std=1.0)
self.w = torch.nn.parameter.Parameter(torch.empty((c,)))
self.b = torch.nn.parameter.Parameter(torch.empty((c,)))
init_fn(self.w, self.b)
def forward(self, t_hat,):
# Compute embeddings
return torch.cos(2*torch.pi*(t_hat*self.w + self.b)) # (c,)
class RelativePositionEncoding(nn.Module):
def __init__(self, r_max=32, s_max=2, cz=128):
super().__init__()
self.r_max = r_max
self.s_max = s_max
self.clip_by_rmax = 2*self.r_max
self.clip_by_zero = 0.0
self.rmax_else = torch.tensor(2*self.r_max+1)
rmax_vbins = torch.arange(
start=0, end=self.rmax_else + 1
)
self.smax_else = torch.tensor(2*self.s_max+1)
smax_vbins = torch.arange(
start=0, end=self.smax_else + 1
)
self.linearnobias = Linear(2*(self.rmax_else + 1) + 1 + (self.smax_else + 1),
cz,
bias=False,
# init="default"
)
self.register_buffer("rmax_vbins", rmax_vbins)
self.register_buffer("smax_vbins", smax_vbins)
def forward(self, feats):
_b,_r = feats["aatype"].shape
bij_same_chain = (
feats["asym_id"].unsqueeze(-1) == feats["asym_id"].unsqueeze(-2)
) # (b, r, r)
bij_same_residue = (
feats["residue_index"].unsqueeze(-1) == feats["residue_index"].unsqueeze(-2)
)
bij_same_entity = (
feats["entity_id"].unsqueeze(-1) == feats["entity_id"].unsqueeze(-2)
)
# ----
dij_residue = (
feats["residue_index"].unsqueeze(-1) == feats["entity_id"].unsqueeze(-2)
)
dij_residue = torch.clip(dij_residue + self.r_max,
self.clip_by_zero,
self.clip_by_rmax)
dij_residue.masked_fill_(~bij_same_chain, self.rmax_else)
#
aij_rel_pos = one_hot(dij_residue, self.rmax_vbins)
# -----
bij_same_chain_and_same_residue = bij_same_chain & bij_same_residue
dij_token = (
feats["token_index"].unsqueeze(-1) == feats["token_index"].unsqueeze(-2)
)
dij_token = torch.clip(dij_token + self.r_max,
self.clip_by_zero,
self.clip_by_rmax).repeat(_b, 1, 1)
dij_token.masked_fill_(~bij_same_chain_and_same_residue, self.rmax_else)
#
aij_rel_token = one_hot(dij_token, self.rmax_vbins)
# -----
dij_chain = (
feats["sym_id"].unsqueeze(-1) == feats["sym_id"].unsqueeze(-2)
)
dij_chain = torch.clip(dij_chain,
self.clip_by_zero,
self.clip_by_rmax)
dij_chain.masked_fill_(~bij_same_chain, self.smax_else)
aij_rel_chain = one_hot(dij_chain, self.smax_vbins)
pij = self.linearnobias(torch.concat([
aij_rel_pos, aij_rel_token, bij_same_entity.unsqueeze(-1), aij_rel_chain
], dim=-1))
return pij # (b, r, r, cz)
def init_method_normal(sigma):
"""Init method based on N(0, sigma)."""
def init_(tensor):
return torch.nn.init.normal_(tensor, mean=0.0, std=sigma)
return init_
class Transition(nn.Module):
def __init__(self, c, n):
super(Transition, self).__init__()
self.c = c
self.n = n
self.layer_norm = LayerNorm(self.c)
self.linear_1 = Linear(self.c, self.n * self.c, init="relu")
self.linear_b = Linear(self.c, self.n * self.c, init="relu")
init_method_normal(0.02)(self.linear_b.weight)
init_method_normal(0.02)(self.linear_1.weight)
self.swish = nn.SiLU()
self.linear_2 = Linear(self.n * self.c, self.c, init="final")
def _transition(self, m, mask=None):
a = self.linear_1(m)
b = self.linear_b(m)
m = self.linear_2(self.swish(a) * b)
if mask is not None:
m = m * mask.unsqueeze(-1)
return m
def forward(
self,
m: torch.Tensor,
mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
m = self.layer_norm(m)
m = self._transition(m, mask)
return m
class DiffusionConditioning(nn.Module):
def __init__(self, config, cz=128, cs=384) -> None:
super().__init__()
cz = config["diffcond"]["cz"]
cs = config["diffcond"]["cs"]
r_max = config["diffcond"]["r_max"]
s_max = config["diffcond"]["s_max"]
self.rela_pos_enc = RelativePositionEncoding(r_max=r_max, s_max=s_max,cz=cz)
# pair
in_cz = config["trunk"]["c_z"]+cz
self.z_linearnobias = Linear(in_dim=in_cz, out_dim=cz, bias=False)
self.z_ln = LayerNorm(in_cz)
self.z_transition1 = Transition(cz, n=2)
self.z_transition2 = Transition(cz, n=2)
# single
in_cs = config["trunk"]["c_m"]+config["trunk"]["c_s"]
self.s_linearnobias = Linear(in_dim=in_cs, out_dim=cs, bias=False)
self.s_ln = LayerNorm(in_cs)
cf = config["diffcond"]["c_fourier"]
self.fourier_embedding = FourierEmbedding(cf)
self.f_ln = LayerNorm(cf)
self.f_linearnobias = Linear(in_dim=cf, out_dim=cs, bias=False)
self.s_transition1 = Transition(cs, n=2)
self.s_transition2 = Transition(cs, n=2)
def forward(self, t_hat, feats, si_inputs, si_trunk, zij_trunk, sigma_data):
# Pair conditioning
zij = torch.concat([zij_trunk, self.rela_pos_enc(feats)], dim=-1)
zij = self.z_linearnobias(self.z_ln(zij))
zij = zij + self.z_transition1(zij)
zij = zij + self.z_transition2(zij)
# Single conditioning
si = torch.concat([si_trunk, si_inputs],dim=-1)
si = self.s_linearnobias(self.s_ln(si))
n = self.fourier_embedding(torch.log(t_hat/sigma_data)/4) # , 256
si = si + self.f_linearnobias(self.f_ln(n))
si = si + self.s_transition1(si)
si = si + self.s_transition2(si)
return si, zij
class CustomAttention(Attention):
def __init__(
self,
c_q: int,
c_k: int,
c_v: int,
c_hidden: int,
no_heads: int,
gating: bool = True,
):
super().__init__(c_q, c_k, c_v, c_hidden, no_heads, gating)
# No Bias compare to parant
self.linear_q = Linear(
self.c_q, self.c_hidden * self.no_heads, init="glorot"
)
# No Bias compare to parant
self.linear_o = Linear(self.c_hidden * self.no_heads, self.c_q, bias=False, init="final")
if self.gating:
# No Bias compare to parant
self.linear_g = Linear(
self.c_q, self.c_hidden * self.no_heads, bias=False, init="gating"
)
class AdaLN(nn.Module):
def __init__(self, dim1, dim2) -> None:
super().__init__()
self.layer_norm_1 = nn.LayerNorm(dim1, elementwise_affine=False, bias=False)
self.layer_norm_2 = nn.LayerNorm(dim2, bias=False)
self.sigmoid = nn.Sigmoid()
self.linear = nn.Linear(dim2, dim1)
self.linear_no_bias = nn.Linear(dim2, dim1, bias=False)
def forward(self,
ai, # (b, r, c)
si, # (b, r, c)
):
ai = self.layer_norm_1(ai)
si = self.layer_norm_2(si)
ai = self.sigmoid(self.linear(si)) * ai + self.linear_no_bias(si)
return ai
class ConditionedTransitionBlock(nn.Module):
def __init__(self, config, multiplier=2, c_token=None, c_s=None):
super().__init__()
self.config = config
self.hidden_dim = config["atom_encoder"]["c_token"] if c_token is None else c_token
self.s_cond_dim = config["diffcond"]["cs"] if c_s is None else c_s
self.ada_layernorm = AdaLN(self.hidden_dim, self.s_cond_dim)
self.linear_1 = nn.Linear(self.hidden_dim, self.hidden_dim * 2, bias=False)
self.linear_2 = nn.Linear(self.hidden_dim, self.hidden_dim * 2, bias=False)
self.linear_3 = nn.Linear(self.hidden_dim * 2, self.hidden_dim, bias=False)
self.swish = nn.SiLU()
gating_s = nn.Linear(self.s_cond_dim, self.hidden_dim)
with torch.no_grad():
gating_s.bias.fill_(-2.0)
self.gating_s = nn.Sequential(gating_s, nn.Sigmoid())
def forward(self, a_i, s_i):
a_i = self.ada_layernorm(a_i, s_i)
b = self.swish(self.linear_1(a_i)) * self.linear_2(a_i)
a_i = self.gating_s(s_i) * a_i * self.linear_3(b)
return a_i
class AttentionPairBias(nn.Module):
def __init__(self, config, n_head=None, c_token=None, c_s=None, c_pair=None) -> None:
super().__init__()
self.config = config
# n_head, hidden will be provided with value if DiffusionTransformer is submodule of atom encoder or atom decoder
self.hidden_dim = config["atom_encoder"]["c_token"] if c_token is None else c_token
self.nhead = config["transformer"]['n_head'] if n_head is None else n_head
self.s_cond_dim = config["diffcond"]["cs"] if c_s is None else c_s
self.z_cond_dim = config["diffcond"]["cz"] if c_pair is None else c_pair
assert self.hidden_dim % self.nhead == 0
self.head_dim = self.hidden_dim // self.nhead
self.mha = CustomAttention(self.hidden_dim, self.hidden_dim, self.hidden_dim, self.head_dim, self.nhead)
self.ada_layernorm = AdaLN(self.hidden_dim, self.s_cond_dim)
self.layernorm_s = nn.LayerNorm(self.s_cond_dim)
self.layernorm_z = nn.LayerNorm(self.z_cond_dim)
self.z_injection = nn.Linear(self.z_cond_dim, self.nhead, bias=False)
gating_s = nn.Linear(self.s_cond_dim, self.hidden_dim)
with torch.no_grad():
gating_s.bias.fill_(-2.0)
self.gating_s = nn.Sequential(gating_s, nn.Sigmoid())
def _prep_inputs(self, a_i, s_i, z_ij, beta_ij=None):
if s_i is not None:
a_i = self.ada_layernorm(a_i, s_i)
else:
a_i = self.layernorm_s(a_i)
z_ij = self.layernorm_z(z_ij)
z_ij = self.z_injection(z_ij) # (b, r, r, cz) -> (b, h, r, r)
z_ij = permute_final_dims(z_ij, (2, 0, 1))
if beta_ij is not None:
beta_ij = beta_ij.unsqueeze(1) # (b, r, r) -> (b, 1, r, r)
return a_i, z_ij, beta_ij
def forward(self, a_i, s_i, z_ij, beta_ij=None):
a_i, z_ij, beta_ij = self._prep_inputs(a_i, s_i, z_ij, beta_ij)
bias = [z_ij]
if beta_ij is not None:
bias.append(beta_ij)
a_i = self.mha(a_i, a_i, bias)
if s_i is not None:
a_i = self.gating_s(s_i) * a_i
return a_i
class DiffusionTransformer(nn.Module):
def __init__(self, config, n_block=None, n_head=None, c_token=None, c_s=None, c_pair=None):
super().__init__()
self.config = config
self.nblock = config["transformer"]['n_block'] if n_block is None else n_block
self.attention_layer = nn.ModuleList([])
self.transition_layer = nn.ModuleList([])
for _ in range(self.nblock):
self.attention_layer.append(AttentionPairBias(config, n_head=n_head, c_token=c_token, c_s=c_s, c_pair=c_pair))
self.transition_layer.append(ConditionedTransitionBlock(config, c_token=c_token, c_s=c_s))
def forward(self, a_i, s_i, z_ij, beta_ij=None):
for attention, transition in zip(self.attention_layer, self.transition_layer):
b = attention(a_i, s_i, z_ij, beta_ij=beta_ij)
a_i = b + transition(a_i, s_i)
return a_i
class InputFeatureEmbedder(nn.Module):
def __init__(self) -> None:
super().__init__()
self.atom_attention_encoder = AtomAttentionEncoder()
def forward(self, feats, ):
a, _, _, _ = self.atom_attention_encoder(feats, # ????
None,
None,
None, c_atom=128, c_atompair=16, c_token=384)
s = torch.concat([a, # (b, r, ?)
feats["restype"], # (b, r, ?)
feats["profile"], # (b, r, ?)
feats["deletion_mean"], # (b, r, 1)
])
return s
class AtomAttentionDecoder(nn.Module):
def __init__(self, config) -> None:
super().__init__()
c_atom = config["c_atom"]
c_atompair = config["c_atompair"]
c_token = config["c_token"]
self.atom_transformer = AtomTransformer(config, config["atom_decoder"]["atom_tfm"],
c_token=c_atom,
c_s=c_atom,
c_pair=c_atompair,)
self.q_linearnobias = Linear(in_dim=c_token,
out_dim=c_atom,
bias=False)
self.r_linearnobias = Linear(in_dim=c_atom,
out_dim=3,
bias=False)
self.r_layernorm = LayerNorm(c_atom)
def forward(self, a, q_skip, c_skip, p_skip, feats):
# Broadcast per-token activiations to per-atom activations and add the skip connection
_b, _r = feats["aatype"].shape
batch_dims = (_b, TRAIN_AUGMENTATION_SAMPLES) if self.training else (_b,)
q = q_skip.view((*batch_dims, _r, ATOM_NUM_PER_RESIDUE, -1)) \
+ self.q_linearnobias(a.view((*batch_dims, _r, 1, -1)))
q = q.reshape(*batch_dims, _r * ATOM_NUM_PER_RESIDUE, -1)
# Cross attention transformer.
q = self.atom_transformer(q, c_skip, p_skip, feats)
# Map to positions update.
r_update = self.r_linearnobias(self.r_layernorm(q)) # (b,a,c)
return r_update
class AtomAttentionEncoder(nn.Module):
def __init__(self, config, withrl=True) -> None:
super().__init__()
c_m = config["trunk"]["c_m"]
c_z = config["trunk"]["c_z"]
c_token = config["c_token"]
c_atom = config["c_atom"]
c_atompair = config["c_atompair"]
self.atom_transformer = AtomTransformer(config,
config["atom_encoder"]["atom_tfm"],
c_token=c_atom,
c_s=c_atom,
c_pair=c_atompair,
)
self.linearnobias1 = Linear(in_dim=3+1+1+128+4*64,
out_dim=c_atom,
bias=False)
self.p_linearnobias1 = Linear(in_dim=3,
out_dim=c_atompair,
bias=False)
self.p_linearnobias2 = Linear(in_dim=1,
out_dim=c_atompair,
bias=False)
self.p_linearnobias3 = Linear(in_dim=1,
out_dim=c_atompair,
bias=False)
if withrl:
self.rl_c_linearnobias = Linear(in_dim=c_m,
out_dim=c_atom,
bias=False)
self.rl_c_ln = LayerNorm(c_m)
self.rl_p_linearnobias = Linear(in_dim=c_z,
out_dim=c_atompair,
bias=False)
self.rl_p_ln = LayerNorm(c_z)
self.rl_q_linearnobias = Linear(in_dim=3,
out_dim=c_atom,
bias=False)
self.relu = torch.nn.ReLU()
self.p_cl_linearnobias = Linear(in_dim=c_atom,
out_dim=c_atompair,
bias=False, init="relu")
self.p_cm_linearnobias = Linear(in_dim=c_atom,
out_dim=c_atompair,
bias=False, init="relu")
self.p_mlp_linearnobias1 = Linear(in_dim=c_atompair,
out_dim=c_atompair,
bias=False, init="relu")
self.p_mlp_linearnobias2 = Linear(in_dim=c_atompair,
out_dim=c_atompair,
bias=False, init="relu")
self.p_mlp_linearnobias3 = Linear(in_dim=c_atompair,
out_dim=c_atompair,
bias=False)
self.q_linearnobias = Linear(in_dim=c_atom,
out_dim=c_token,
bias=False, init="relu")
def forward(self,
feats, # ????
rl, # (b, a, 3)
si_trunk, # (b, r, c)
zij, # (b, r, r, c)
): # 768
# Create the atom single conditioning: Embed per-aton meta data
c = self.linearnobias1(torch.concat([feats["ref_pos"], # (b, a, 3)
feats["ref_charge"], # (b, a, 1)
feats["ref_mask"], # (b, a, 1)
feats["ref_element"], # (b, a, 128)
feats["ref_atom_name_chars"], # (b, a, 4* 64)
],
dim=-1)) # (b, a, c_atom)
# Embed offsets between atom reference positions
# (b, a, 1, 3) - (b, 1, a, 3) -> (b, a, a, 3)
d = feats["ref_pos"].unsqueeze(-2) - feats["ref_pos"].unsqueeze(-3)
# (b,a,1) == (b,1,a) -> (b,a,a,1)
v = (feats["ref_space_uid"].unsqueeze(-1) == feats["ref_space_uid"].unsqueeze(-2)).unsqueeze(-1)
p = self.p_linearnobias1(d) * v # (b, a, a, c_atompair)
# Embed pairwise inverse squared distances, and the valid mask.
p = p + self.p_linearnobias2(1 / (1 + torch.norm(d, dim=-1, keepdim=True))) * v
p = p + self.p_linearnobias3(v.to(p.dtype)) * v
# Initialise the atom single representation as the single conditioning
q = c # (b, a, c_atom)
# If provided, add trunk embeddings and noisy positions
_b,_r = feats["aatype"].shape
_a = _r*ATOM_NUM_PER_RESIDUE
if self.training:
batch_dims = (_b, TRAIN_AUGMENTATION_SAMPLES)
single_dims = (_b, )
else:
batch_dims = (_b, )
single_dims = (_b, )
if rl is not None:
c_reshaped = c.view((*single_dims, _r, ATOM_NUM_PER_RESIDUE, -1))
c_reshaped = c_reshaped + self.rl_c_linearnobias(self.rl_c_ln(
si_trunk
)).unsqueeze(-2)
c = c_reshaped.reshape((*single_dims, _a, -1))
p_reshaped = p.view(*single_dims, _r, ATOM_NUM_PER_RESIDUE, _r, ATOM_NUM_PER_RESIDUE, -1)
p_reshaped = p_reshaped + self.rl_p_linearnobias(self.rl_p_ln(
zij # (b,r,r,c) -> (b,a,a,c)
))[:,:,None,:,None,:]
p = p_reshaped.reshape((*single_dims, _a, _a, -1))
q = (q.unsqueeze(1) if self.training else q) + self.rl_q_linearnobias(rl)
c = c.unsqueeze(1) if self.training else c
p = p.unsqueeze(1) if self.training else p
# Add the combined single conditioning to the pair representation
p = p + self.p_cl_linearnobias(self.relu(c.unsqueeze(-2))) \
+ self.p_cm_linearnobias(self.relu(c.unsqueeze(-3)))
# Run a small MLP on the pair activations
p = p + self.p_mlp_linearnobias3(self.relu(self.p_mlp_linearnobias2(self.relu(self.p_mlp_linearnobias1(self.relu(p))))))
# Cross attention transformer
q = self.atom_transformer(q, c, p, feats) # (b, a, c_atom)
# Aggregate per-atom representation to per-token representation
a = (
self.relu(self.q_linearnobias(q)) # (b, a, c_atom)
).view((*batch_dims, _r, ATOM_NUM_PER_RESIDUE, -1)).mean(-2) # (b, r, al, c) -> (b, r, c)
q_skip, c_skip, p_skip = q, c, p
return a, q_skip, c_skip, p_skip
class AtomTransformer(nn.Module):
def __init__(self, global_config, config, c_token=None, c_s=None, c_pair=None): # , n_block, n_head, n_queries=32, n_keys=128, s_subset_centres={15.5, 47.5, 79.5, ...}) -> None:
super().__init__()
max_seq_len = config["max_seq_len"]
l = torch.arange(max_seq_len)
m = l.unsqueeze(-2) # (1, a)
l.unsqueeze_(-1) # (a, 1)
con = torch.zeros((max_seq_len, max_seq_len)).to(torch.bool)
stop = max_seq_len # + config["atom_encoder"]["atom_tfm"]["n_queries"] + 1
half_nquery = round(config["n_queries"] / 2, 1)
half_nkey = round(config["n_keys"] / 2, 1)
for _c in torch.arange(half_nquery, stop, config["n_queries"]):
# config["atom_encoder"]["atom_tfm"]["s_subset_centres"]: # this can be done with multiple head or can be cached and reused??
con1 = (l - _c).abs() < half_nquery # (a, 1)
con2 = (m - _c).abs() < half_nkey # (1, a)
# print(type(con1), type(con2), con1.dtype, con2.dtype)
_con = con1 & con2
# print(type(_con), _con.dtype)
con = con | _con
beta = torch.ones((max_seq_len, max_seq_len), dtype=torch.float32) * -1e10
beta.masked_fill_(con, 0)
self.register_buffer("beta", beta)
self.diffussion_transformer = DiffusionTransformer(global_config,
n_block=config["n_block"],
n_head=config["n_head"],
c_token=c_token,
c_s=c_s,
c_pair=c_pair,
) # TODO local attention or sliding window
def forward(self,
q, # (b, a, c)
c, # (b, a, c)
p, # (b, a, a, c)
feats
):
# sequence-local atom attention is equivalent to self attention within rectangular blocks along the diagonal
_b, _r = feats["aatype"].shape
assert self.beta.shape[-1] >= _r * ATOM_NUM_PER_RESIDUE
q = self.diffussion_transformer(q, c, p,
self.beta[None,:_r*ATOM_NUM_PER_RESIDUE,:_r*ATOM_NUM_PER_RESIDUE] # (1, a, a)
) # (b, a, c)
return q
class DiffusionModule(nn.Module):
def __init__(self, config) -> None:
super().__init__()
self.diffusion_conditioning = DiffusionConditioning(config)
self.atom_attention_encoder = AtomAttentionEncoder(config)
self.diffusion_transformer = DiffusionTransformer(config)
self.atom_attention_decoder = AtomAttentionDecoder(config)
self.sigma_data = config["sigma_data"]
# sigma_data=16, c_atom=128, c_atompair=16, c_token=768
self.s_layernorm = LayerNorm(config["diffcond"]["cs"])
self.a_linearnobias = Linear(in_dim=config["diffcond"]["cs"], out_dim=config["c_token"], bias=False)
self.a_layernorm = LayerNorm(config["c_token"])
def forward(self,
xl_noisy, # (b, a, 3)
t_hat,
feats,
si_inputs, # (b, r, c)
si_trunk, # (b, r, c)
zij_trunk, # (b, r, r, c)
):
# Conditioning
si, zij = self.diffusion_conditioning(t_hat, feats, si_inputs, si_trunk, zij_trunk,
self.sigma_data)
# Scale positions to dimensionless vectors with approximately unit variance
rl_noisy = xl_noisy / (t_hat**2 + self.sigma_data**2)**0.5 # (b, a, 3)
# Sequnce-local Atom Attention and aggregation to coarse-grained tokens
(
ai, # (b, r, c)
ql_skip, # (b, a, c)
cl_skip, # (b, a, c)
plm_skip # (b, a, a, c)
) = self.atom_attention_encoder(feats, # ????
rl_noisy, # (b, a, 3)
si_trunk, # (b, r, c)
zij, # (b, r, r, c)
)
# Full self-attention on token level
if self.training:
si = si.unsqueeze(1)
zij = zij.unsqueeze(1)
ai = ai + self.a_linearnobias(self.s_layernorm(si))
ai = self.diffusion_transformer(
ai, si, zij,
)
ai = self.a_layernorm(ai)
# Broadcast token activations to atons and run Sequence-local Atom Attention
rl_update = self.atom_attention_decoder(ai, ql_skip, cl_skip, plm_skip, feats) # (b, a, c)
# Rescale updates to positions and combine with input positions
xl_out = self.sigma_data**2 / (self.sigma_data**2 + t_hat**2) * xl_noisy + self.sigma_data * t_hat / (self.sigma_data**2 + t_hat**2)**0.5 * rl_update
return xl_out
def rand_norm(size, mean=0, std=1):
return torch.normal(mean=mean, std=std, size=size)
class SampleDiffusion(nn.Module):
def __init__(self, config) -> None:
super().__init__()
self.diffusion_module = DiffusionModule(config)
self.sigma_data = config["sigma_data"]
def get_noise_schedule(self, num_steps=200):
s_max=160
s_min=4e-4
rho=7
# Time step discretization
num_steps = 200
step_indices = torch.arange(num_steps, dtype=torch.float64) / (num_steps-1)
t_steps = self.sigma_data * (
s_max**(1/rho)
+ step_indices * (s_min**(1/rho)-s_max**(1/rho))
)**rho
return t_steps
def forward(self, feats, # dict
si_inputs, # (b, r, c)
si_trunk, # (b, r, c)
zij_trunk, # (b, r, r, c)
gamma0=0.8, gammamin=1.0, noise_scale_lambda=1.003, step_scale_eta=1.5):
# Training
if self.training:
if ATOM_NUM_PER_RESIDUE == 14:
y = feats["atom14_gt_positions"] # b, r, 14, 3
elif ATOM_NUM_PER_RESIDUE == 37:
y = feats["atom37_gt_positions"] # b, r, 37, 3
else:
assert False, "ATOM_NUM_PER_RESIDUE can only be 14 or 37"
y = y.unsqueeze(1) # b, 1, r, 14, 3
index_repeats = [1] * y.dim()
index_repeats[1] = TRAIN_AUGMENTATION_SAMPLES
y = y.repeat(*index_repeats) # b, 48, r, 14, 3
yshape = y.shape
y = y.view((*yshape[:2], yshape[2] * yshape[3], 3)) # b, 48, r * 14, 3
y = centre_random_augmentation(y)
sigma = self.sigma_data * torch.exp(-1.2 + 1.5 * torch.normal(mean=0, std=1, size=(1,)))
sigma = sigma.to(y.device)
weight = (sigma**2+self.sigma_data**2) / (sigma*self.sigma_data)**2
n = torch.rand_like(y) * sigma
D_yn = self.diffusion_module(y+n, sigma, feats, si_inputs, si_trunk, zij_trunk)
return D_yn, weight
# inference
# Main sampling loop.
if ATOM_NUM_PER_RESIDUE == 14:
x_shape = (*feats["atom14_atom_exists"].shape, 3, ) # (b, r, 14, 3)
elif ATOM_NUM_PER_RESIDUE == 37:
x_shape = (*feats["atom37_atom_exists"].shape, 3, ) # (b, r, 37, 3)
else:
assert False, "ATOM_NUM_PER_RESIDUE can only be 14 or 37"
device = feats["input_sequence_tokens"].device
noise_schedule = self.get_noise_schedule().to(device)
x_shape = (x_shape[0], x_shape[1]*x_shape[2], x_shape[-1])
xl = noise_schedule[0] * rand_norm(x_shape, 0, 1).to(device) # (b, a, 3)
for i, ct in enumerate(noise_schedule):
if i == 0:
continue
# Increase noise temporarily.
xl = centre_random_augmentation(xl) # (b, a, 3)
gamma = gamma0 if ct > gammamin else 0
ct_1 = noise_schedule[i-1]
t_hat = ct_1 * (gamma + 1)
xi_l = noise_scale_lambda * (t_hat**2 - ct_1**2) ** 0.5 * rand_norm(x_shape, 0, 1).to(device) # (b, a, 3)
xl_noisy = xl + xi_l # (b, a, 3)
# Euler step
xl_denoised = self.diffusion_module(xl_noisy, t_hat, feats, si_inputs, si_trunk, zij_trunk) # (b, a, 3)
delta_l = (xl - xl_denoised) / t_hat
dt = ct - t_hat
xl = xl_noisy + step_scale_eta * dt * delta_l
return xl, None