-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
129 lines (116 loc) · 4.76 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# Adapted from https://github.com/HazyResearch/hippo/blob/datasets/benchmark/utils.py
""" Useful functions for writing test code. """
import torch
import torch.utils.benchmark as benchmark
def benchmark_forward(fn, *inputs, min_run_time = 0.2, repeats = 10, desc='', verbose=True, **kwinputs):
""" Use Pytorch Benchmark on the forward pass of an arbitrary function. """
if verbose:
print(desc, '- Forward pass')
t = benchmark.Timer(
stmt='fn(*inputs, **kwinputs)',
globals={'fn': fn, 'inputs': inputs, 'kwinputs': kwinputs},
num_threads=torch.get_num_threads(),
)
m = t.timeit(repeats)
if verbose:
print(m)
return t, m
def benchmark_backward(fn, *inputs, grad=None, repeats=10, desc='', verbose=True, **kwinputs):
""" Use Pytorch Benchmark on the backward pass of an arbitrary function. """
if verbose:
print(desc, '- Backward pass')
y = fn(*inputs, **kwinputs)
if type(y) is tuple:
y = y[0]
if grad is None:
grad = torch.randn_like(y)
else:
if grad.shape != y.shape:
raise RuntimeError('Grad shape does not match output shape')
t = benchmark.Timer(
stmt='y.backward(grad, retain_graph=True)',
globals={'y': y, 'grad': grad},
num_threads=torch.get_num_threads(),
)
m = t.timeit(repeats)
if verbose:
print(m)
return t, m
def benchmark_combined(fn, *inputs, grad=None, repeats=10, desc='', verbose=True, **kwinputs):
""" Use Pytorch Benchmark on the forward+backward pass of an arbitrary function. """
if verbose:
print(desc, '- Forward + Backward pass')
# y = fn(*inputs, **kwinputs)
# if grad is None:
# grad = torch.randn_like(y)
# else:
# if grad.shape != y.shape:
# raise RuntimeError('Grad shape does not match output shape')
# del y
def f(grad, *inputs, **kwinputs):
y = fn(*inputs, **kwinputs)
if type(y) is tuple:
y = y[0]
if grad is None:
grad = torch.randn_like(y)
else:
if grad.shape != y.shape:
raise RuntimeError('Grad shape does not match output shape')
y.backward(grad, retain_graph=True)
t = benchmark.Timer(
stmt='f(grad, *inputs, **kwinputs)',
globals={'f': f, 'fn': fn, 'inputs': inputs, 'grad': grad, 'kwinputs': kwinputs},
num_threads=torch.get_num_threads(),
)
m = t.timeit(repeats)
if verbose:
print(m)
return t, m
def benchmark_all(fn, *inputs, grad=None, repeats=10, desc='', verbose=True, **kwinputs):
""" Use Pytorch Benchmark on the forward+backward pass of an arbitrary function. """
return (
benchmark_forward(fn, *inputs, repeats=repeats, desc=desc, verbose=verbose, **kwinputs),
benchmark_backward(fn, *inputs, grad=grad, repeats=repeats, desc=desc, verbose=verbose,
**kwinputs),
benchmark_combined(fn, *inputs, grad=grad, repeats=repeats, desc=desc, verbose=verbose,
**kwinputs),
)
def pytorch_profiler(fn, *inputs, trace_filename=None, backward=False, amp=False, verbose=True):
""" Wrap benchmark functions in Pytorch profiler to see CUDA information. """
if backward:
g = torch.randn_like(fn(*inputs))
for _ in range(10): # Warm up
with torch.autocast(device_type='cuda', enabled=amp):
if backward:
for x in inputs:
if isinstance(x, torch.Tensor):
x.grad = None
fn(*inputs) if not backward else fn(*inputs).backward(g)
with torch.profiler.profile(
# activities=[torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA,],
activities=[torch.profiler.ProfilerActivity.CUDA,],
record_shapes=True,
# profile_memory=True,
with_stack=True,
) as prof:
with torch.autocast(device_type='cuda', enabled=amp):
if backward:
for x in inputs:
if isinstance(x, torch.Tensor):
x.grad = None
fn(*inputs) if not backward else fn(*inputs).backward(g)
if verbose:
print(prof.key_averages().table(sort_by="self_cuda_time_total", row_limit=50))
if trace_filename is not None:
prof.export_chrome_trace(trace_filename)
def benchmark_memory(fn, *inputs, desc='', verbose=True, **kwinputs):
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
torch.cuda.synchronize()
fn(*inputs, **kwinputs)
torch.cuda.synchronize()
mem = torch.cuda.max_memory_allocated() / ((2 ** 20) * 1000)
if verbose:
print(f'{desc} max memory: ', mem)
torch.cuda.empty_cache()
return mem