-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDoubleInt_t.hpp
635 lines (551 loc) · 23.5 KB
/
DoubleInt_t.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
// C++ BigNum template class
// AKA the integer doubler template.
// Copyright(C) 2007,2015 Jeremy Linton
//
// Source identity: DoubleInt_t.hpp
//
// This started as an amusing exercise in template meta-programming..
// Or in this case nestable classes. AKA std::list<std::list<>>
// But the optimizer can see into the nesting, so the generated assembly
// actually looks really sort of native. Especially since the base class
// is just gcc inline assembly...
//
// So, what we have is actually a pretty good class for "small" bignums
// AKA ones less than say 1k bits. Larger than that and the more intelligent
// algorithms used in GNU MP result in faster code.
//
// This is also an _AWESOME_ test of your compiler. Have you ever seen a
// single module take hours to compile? Well, that is possible with this one
// if the integer types are large enough!!!!! It can also create some crazy big
// functions...
//
// One of the nicer things about this code is the fact that I've created
// an x86 int128 class that can provide information about overflow/carry
// Its this class which is used as the basis for the integer doubler class.
//
// The amusing code is where we have:
// typedef class DoubleInt_t<int128> int256;
// typedef class DoubleInt_t<int256> int512;
// typedef class DoubleInt_t<int512> int1024;
// typedef class DoubleInt_t<int1024> int2048;
//
// While these are called int256/etc they are actually unsigned
// (because at the time, I thought that the default int class in C++ should be
// unsigned with a "signed" keyword to provide for signed math...)
//
// There is a signed template too called SignedInt_t<> which adds a sign
// bit to the given unsigned class, and transforms all the basic operations
// so that they work correctly depending on the state of the sign bit.
//
// combined with some inline assembly to create a integer class
// that could export information about whether an operation had overflow/carry
//
// these classes create an arbitrary size integer similar to GMP
//
// This module is both the template classes as well as some small "unit tests"
// which demonstrate how it can be used. Of particular note is the AsString()
// and FromString() routines which provide human readable input/output from
// the DoubleInt_t
//
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
// of the Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies
// or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
// USE OR OTHER DEALINGS IN THE SOFTWARE.
#ifndef DOUBLEINT_T_HPP
#define DOUBLEINT_T_HPP
#include "int128_t.hpp"
// This is the core doubler template. It takes either itself or the int128_t
// Class and creates a class which has exactly 2x the number of bits. This allows us
// To create somewhat arbitrary sized integers, although its not really useful beyond
// maybe 2k bits. If you need more, consider something like GNU MP.
template<class BaseIntT> class DoubleInt_t
{
public:
// construction/casting
DoubleInt_t() :Hi(0),Lo(0),size(Hi.size*2) {}
DoubleInt_t(const DoubleInt_t &orig):Hi(orig.Hi),Lo(orig.Lo),size(Hi.size*2) {}
DoubleInt_t(const BaseIntT &orig):Hi(0),Lo(orig),size(Hi.size*2) {}
DoubleInt_t(const int64 &orig):Hi(0),Lo(orig),size(Hi.size*2) {}
// assignment
DoubleInt_t &operator= (const DoubleInt_t &rhs) {Hi=rhs.Hi;Lo=rhs.Lo;return *this;}
// compariston
bool operator==(const DoubleInt_t &rhs) { if ((Hi==rhs.Hi) && (Lo==rhs.Lo)) return true; return false;}
bool operator!=(const DoubleInt_t &rhs) { if ((Hi==rhs.Hi) && (Lo==rhs.Lo)) return false; return true;}
bool operator>=(const DoubleInt_t &rhs) { if ((Hi>rhs.Hi) || ( (Hi==rhs.Hi) && (Lo>=rhs.Lo))) return true; return false;}
bool operator<=(const DoubleInt_t &rhs) { if ((Hi<rhs.Hi) || ( (Hi==rhs.Hi) && (Lo<=rhs.Lo))) return true; return false;}
bool operator> (const DoubleInt_t &rhs) { if ((Hi>rhs.Hi) || ( (Hi==rhs.Hi) && (Lo>rhs.Lo ))) return true; return false;}
bool operator< (const DoubleInt_t &rhs) { if ((Hi<rhs.Hi) || ( (Hi==rhs.Hi) && (Lo<rhs.Lo ))) return true; return false;}
// operations (these are exported for user use)
DoubleInt_t &operator>>=(const int rhs) { for (int x=0;x<rhs;x++) shiftright(this,0); return *this;}
DoubleInt_t &operator<<=(const int rhs) { for (int x=0;x<rhs;x++) shiftleft(this,0); return *this;}
DoubleInt_t &operator-=( const DoubleInt_t &rhs) { SubDouble(this,rhs,0); return *this;}
DoubleInt_t &operator+=( const DoubleInt_t &rhs) { AddDouble(this,rhs,0); return *this;}
DoubleInt_t &operator*=( const DoubleInt_t &rhs) { MultiplyDouble(this,rhs); return *this;}
DoubleInt_t &operator/=( const DoubleInt_t &rhs) { DivideDouble(this,rhs); return *this;}
DoubleInt_t &operator%=( const DoubleInt_t &rhs) { *this=DivideDouble(this,rhs); return *this;}
DoubleInt_t &operator&=( const int64 &rhs) { this->Lo&=rhs; return *this;}
DoubleInt_t &operator|=( const int64 &rhs) { this->Lo|=rhs; return *this;}
DoubleInt_t &operator^=( const int64 &rhs) { this->Lo^=rhs; return *this;}
DoubleInt_t &operator&=( const DoubleInt_t &rhs) { this->Lo&=rhs.Lo; this->Hi&=rhs.Hi; return *this;}
DoubleInt_t &operator|=( const DoubleInt_t &rhs) { this->Lo|=rhs.Lo; this->Hi|=rhs.Hi; return *this;}
DoubleInt_t &operator^=( const DoubleInt_t &rhs) { this->Lo^=rhs.Lo; this->Hi^=rhs.Hi; return *this;}
DoubleInt_t operator+( const DoubleInt_t &rhs) { DoubleInt_t tmp=*this; AddDouble(&tmp,rhs,0); return tmp;}
DoubleInt_t operator-( const DoubleInt_t &rhs) { DoubleInt_t tmp=*this; SubDouble(&tmp,rhs,0); return tmp;}
DoubleInt_t operator/( const DoubleInt_t &rhs) { DoubleInt_t tmp=*this; DivideDouble(&tmp,rhs); return tmp;}
DoubleInt_t operator%( const DoubleInt_t &rhs) { DoubleInt_t tmp=*this; tmp=DivideDouble(&tmp,rhs); return tmp;}
DoubleInt_t operator*( const DoubleInt_t &rhs) { DoubleInt_t tmp=*this; MultiplyDouble(&tmp,rhs); return tmp;}
DoubleInt_t operator&( const int64 &rhs) { DoubleInt_t tmp=*this; tmp.Lo&=rhs; return tmp;}
DoubleInt_t operator|( const int64 &rhs) { DoubleInt_t tmp=*this; tmp.Lo|=rhs; return tmp;}
DoubleInt_t operator^( const int64 &rhs) { DoubleInt_t tmp=*this; tmp.Lo^=rhs; return tmp;}
DoubleInt_t operator>>( const int &rhs) { DoubleInt_t tmp=*this; tmp>>=rhs; return tmp;}
DoubleInt_t operator<<( const int &rhs) { DoubleInt_t tmp=*this; tmp<<=rhs; return tmp;}
// consider overridding printf until then use AsString
string AsString(const char *format);
void FromString(const char *Source_prm);
char GetLowByte() {return Lo.GetLowByte();}
// protected:
// these operations are exported for higher level use
// they don't use the this variable...
static int SubDouble(DoubleInt_t *A,const DoubleInt_t &B,const int borrow);
static int AddDouble(DoubleInt_t *A,const DoubleInt_t &B,const int carry);
static DoubleInt_t DivideDouble(DoubleInt_t *A,const DoubleInt_t &B);
static DoubleInt_t MultiplyDouble(DoubleInt_t *A,const DoubleInt_t &B);
static int shiftleft(DoubleInt_t *Value,const int Carry_prm);
static int shiftright(DoubleInt_t *Value,const int Carry_prm);
// private:
BaseIntT Hi;
BaseIntT Lo;
const int size;
};
// throw exceptions on overflow/underflow etc..
template<class BaseInnT> class OverflowException_t
{
};
template<class BaseIntT, class ExponentT> class Floating_t
{
};
// normal number systems don't support -0 so we don't either...
// this class just takes an unsigned base and adds a sign to it,
// it does this without changing the bit encoding of the value, so its
// not exactly efficient for certain operations, on the other hand we don't then have
// to worry about sign extension or anything like that...
template<class BaseIntT> class SignedInt_t
{
public:
// construction/casting
SignedInt_t() :Value(0),Negative(0) {}
SignedInt_t(const SignedInt_t &orig):Value(orig.Value),Negative(orig.Negative) {}
SignedInt_t(const BaseIntT &orig):Value(orig),Negative(0) {}
SignedInt_t(const int64 &orig):Value(orig),Negative(0) { if (orig<0) { Negative=1; Value^=BaseIntT(-1); Value+=BaseIntT(1);}} //ugly!
// assignment
SignedInt_t &operator= (const SignedInt_t &rhs) {Value=rhs.Value; Negative=rhs.Negative; return *this;}
// compariston (some of thse operators could use a little teaking for efficiency)
bool operator==(const SignedInt_t &rhs) { if ((Value==rhs.Value) && (Negative==rhs.Negative)) return true; return false;}
bool operator!=(const SignedInt_t &rhs) { if ((Value==rhs.Value) && (Negative==rhs.Negative)) return false; return true;}
bool operator>=(const SignedInt_t &rhs) { if ((Negative==1) && (rhs.Negative==1)) { if (Value<=rhs.Value) { return true; } return false; }
else if ((Negative==0) && (rhs.Negative==0)) { if (Value>=rhs.Value) { return true; } return false; }
else if (Negative==1) { return false; } else { return true; } return false; }
bool operator<=(const SignedInt_t &rhs) { if (*this==rhs) return true; else if (*this>=rhs) return false; else return true;}
bool operator> (const SignedInt_t &rhs) { if (*this==rhs) return false; else return (*this>=rhs);}
bool operator< (const SignedInt_t &rhs) { if (*this==rhs) return false; else return !(*this>=rhs);}
// operations (these are exported for user use), many of these operations are "wierd" because they don't affect the sign aka shift and bit instructions maintain signage
SignedInt_t &operator>>=(const int rhs) { Value>>=rhs; return *this;}
SignedInt_t &operator<<=(const int rhs) { Value<<=rhs; return *this;}
SignedInt_t &operator-=( const SignedInt_t &rhs) { SubDouble(this,rhs,0); return *this;}
SignedInt_t &operator+=( const SignedInt_t &rhs) { AddDouble(this,rhs,0); return *this;}
SignedInt_t &operator*=( const SignedInt_t &rhs) { MultiplyDouble(this,rhs); return *this;}
SignedInt_t &operator/=( const SignedInt_t &rhs) { DivideDouble(this,rhs); return *this;}
SignedInt_t &operator&=( const int64 &rhs) { Value&=rhs; return *this;}
SignedInt_t &operator|=( const int64 &rhs) { Value|=rhs; return *this;}
SignedInt_t &operator^=( const int64 &rhs) { Value^=rhs; return *this;}
SignedInt_t &operator&=( const SignedInt_t &rhs) { Value&=rhs.Value; return *this;}
SignedInt_t &operator|=( const SignedInt_t &rhs) { Value|=rhs.Value; return *this;}
SignedInt_t &operator^=( const SignedInt_t &rhs) { Value^=rhs.Value; return *this;}
SignedInt_t operator+( const SignedInt_t &rhs) { SignedInt_t tmp=*this; AddDouble(&tmp,rhs,0); return tmp;}
SignedInt_t operator-( const SignedInt_t &rhs) { SignedInt_t tmp=*this; SubDouble(&tmp,rhs,0); return tmp;}
SignedInt_t operator/( const SignedInt_t &rhs) { SignedInt_t tmp=*this; DivideDouble(&tmp,rhs); return tmp;}
SignedInt_t operator*( const SignedInt_t &rhs) { SignedInt_t tmp=*this; MultiplyDouble(&tmp,rhs); return tmp;}
SignedInt_t operator&( const int64 &rhs) { SignedInt_t tmp=*this; tmp.Value&=rhs; return tmp;}
SignedInt_t operator|( const int64 &rhs) { SignedInt_t tmp=*this; tmp.Value|=rhs; return tmp;}
SignedInt_t operator^( const int64 &rhs) { SignedInt_t tmp=*this; tmp.Value^=rhs; return tmp;}
SignedInt_t operator>>( const int &rhs) { SignedInt_t tmp=*this; tmp>>=rhs; return tmp;}
SignedInt_t operator<<( const int &rhs) { SignedInt_t tmp=*this; tmp<<=rhs; return tmp;}
// the following pretty much the same as above, in both cases we are in temp hell
// consider overridding printf until then use AsString
//string AsString(const SignedInt_t &Value,char *format);
string AsString(const char *format) { string ret=Value.AsString(format); if (Negative) ret.insert(0,"-"); return ret;}
void FromString(const char *Source_prm);
char GetLowByte() {return Value.GetLowByte();}
// protected:
// these operations are exported for higher level use
// they don't use the this variable...
static int SubDouble(SignedInt_t *A,const SignedInt_t &B,const int borrow);
static int AddDouble(SignedInt_t *A,const SignedInt_t &B,const int carry);
static SignedInt_t DivideDouble(SignedInt_t *A,const SignedInt_t &B);
static SignedInt_t MultiplyDouble(SignedInt_t *A,const SignedInt_t &B);
static int shiftleft(SignedInt_t *Value_prm,const int Carry_prm) { return shiftleft(Value_prm->Value,Carry_prm);}
static int shiftright(SignedInt_t *Value_prm,const int Carry_prm) { return shiftright(Value_prm->Value,Carry_prm);}
// private:
BaseIntT Value;
int Negative;
};
template<class BaseIntT> int DoubleInt_t<BaseIntT>::SubDouble(DoubleInt_t *A,const DoubleInt_t &B,const int borrow)
{
int ret_borrow;
ret_borrow=BaseIntT::SubDouble(&A->Lo,B.Lo,borrow);
ret_borrow=BaseIntT::SubDouble(&A->Hi,B.Hi,ret_borrow);
return ret_borrow;
}
//
//
// The DoubleInt_t methods
//
//
//
template<class BaseIntT> int DoubleInt_t<BaseIntT>::AddDouble(DoubleInt_t *A,const DoubleInt_t &B,const int carry)
{
int carry_ret=0;
carry_ret=BaseIntT::AddDouble(&A->Lo,B.Lo,carry);
carry_ret=BaseIntT::AddDouble(&A->Hi,B.Hi,carry_ret);
return carry_ret;
}
template<class BaseIntT> DoubleInt_t<BaseIntT> DoubleInt_t<BaseIntT>::MultiplyDouble(DoubleInt_t *A,const DoubleInt_t &B)
{
DoubleInt_t ret;
BaseIntT tmp=0;
BaseIntT col3=0;
// a 128 bit multiply works like when you were in grade school except that instead of the max value per column being
// a 9 the max value is 2^64.
// ab
//* cd
//------
// bd
// ad
// bc
//+ac
//-------
// wxyz
BaseIntT a=A->Hi;
BaseIntT b=A->Lo;
BaseIntT c=B.Hi;
BaseIntT d=B.Lo;
BaseIntT w=0;
BaseIntT x=0;
BaseIntT y=0;
BaseIntT z=0;
int carry=0;
int carry2=0;
BaseIntT xp=0;
y=BaseIntT::MultiplyDouble(&b,d);
z=b; b=A->Lo;
x=BaseIntT::MultiplyDouble(&a,d);
carry=BaseIntT::AddDouble(&y,a,0);// y+=a;
a=A->Hi;
xp=BaseIntT::MultiplyDouble(&b,c);
carry=BaseIntT::AddDouble(&x,xp,carry); //x+=xp+carry;
carry2=BaseIntT::AddDouble(&y,b,0); //y+=b;
w=BaseIntT::MultiplyDouble(&a,c);
carry2=BaseIntT::AddDouble(&x,a,carry2);//x+=a;
// final w fixup
BaseIntT longcarry=carry2;
BaseIntT::AddDouble(&w,longcarry,carry2);
A->Lo=z;
A->Hi=y;
ret.Lo=x;
ret.Hi=w;
return ret;
}
template<class BaseIntT> int DoubleInt_t<BaseIntT>::shiftright(DoubleInt_t *Value,const int Carry_prm)
{
int carry_ret;
carry_ret=BaseIntT::shiftright(&Value->Hi,Carry_prm);
carry_ret=BaseIntT::shiftright(&Value->Lo,carry_ret);
return carry_ret;
}
template<class BaseIntT> int DoubleInt_t<BaseIntT>::shiftleft(DoubleInt_t *Value,const int Carry_prm)
{
int carry_ret;
carry_ret=BaseIntT::shiftleft(&Value->Lo,Carry_prm);
carry_ret=BaseIntT::shiftleft(&Value->Hi,carry_ret);
return carry_ret;
}
template<class BaseIntT> DoubleInt_t<BaseIntT> DoubleInt_t<BaseIntT>::DivideDouble(DoubleInt_t *A,const DoubleInt_t &B)
{
DoubleInt_t quotient=*A;
DoubleInt_t remainder;//==0
if ((DoubleInt_t)(B)==0) //TODO: fix this const mess
{
throw "division by zero";
}
for (int x=0;x<A->size;x++)
{
int hibit=shiftleft("ient,0);
shiftleft(&remainder,hibit);
if (remainder>=B)
{
SubDouble(&remainder,B,0); //remainder-=*B;
quotient.Lo|=1; //quotient|=1;
}
}
*A=quotient;
return remainder;
}
template<class BaseIntT> string DoubleInt_t<BaseIntT>::AsString(const char *format)
{
string ret;
switch (format[1])
{
case 'd':
{
char temp[2];
DoubleInt_t tmp;
int x=0;
tmp=*this;
if (tmp==0)
{
ret="0";
}
else
{
ret="";
temp[1]='\0';
while (tmp!=0)
{
DoubleInt_t remainder=DivideDouble(&tmp,DoubleInt_t(10)); //TODO: convert to something a little faster...
temp[0]=remainder.GetLowByte()+'0';
ret.insert(0,string(temp));
}
}
}
break;
case 'b':
{
DoubleInt_t tmp;
int x=0;
tmp=*this;
char temp[tmp.size+2];
for (int x=0;x<tmp.size;x++)
{
temp[x]=tmp.GetLowByte()&0x01+'0';
shiftright(&tmp,0);
}
temp[tmp.size]='\0';
ret=temp;
}
break;
case 'X':
case 'x':
{
DoubleInt_t tmp;
tmp=*this;
char *temp=new char[(tmp.size>>2)+2];
temp[(tmp.size>>2)]=0;
for (int x=(tmp.size>>2)-1;x>=0;x--)
{
temp[x]=(tmp.Lo).GetLowByte()&0xF;
if (temp[x]>0x9)
{
temp[x]+='A'-10;
}
else
{
temp[x]+='0';
}
shiftright(&tmp,0);
shiftright(&tmp,0);
shiftright(&tmp,0);
shiftright(&tmp,0);
}
ret=temp;
delete temp;
}
break;
}
return ret;
}
// takes the value as a base 10 or base 16 string and converts it to the big integer type
template<class BaseIntT> void DoubleInt_t<BaseIntT>::FromString(const char *Source_prm)
{
int start=0;
int base=10;
Hi=Lo=0;
while (Source_prm[start]!='\0')
{
if (Source_prm[start]=='0')
{
if (Source_prm[start+1]=='x')
{
base=16;
start+=2;
}
break;
}
if ((Source_prm[start]>='0') && (Source_prm[start]<='9'))
{
break;
}
start++;
}
// ok we found the beginning of the string..
if (base==10)
{
DoubleInt_t multconst(10);
while ((Source_prm[start]<='9') && (Source_prm[start]>='0'))
{
char tmp=Source_prm[start]-'0';
MultiplyDouble(this,multconst);
AddDouble(this,DoubleInt_t(tmp),0);
start++;
}
}
else
{
char upper=toupper(Source_prm[start]);
while (((upper<='9') && (upper>='0')) || ((upper>='A') && (upper<='F')))
{
char tmp;
if (upper<='9')
{
tmp=upper-'0';
}
else
{
tmp=upper-'A';
}
shiftleft(this,0);
shiftleft(this,0);
shiftleft(this,0);
shiftleft(this,0);
Lo|=int64(tmp);
start++;
upper=toupper(Source_prm[start]);
}
}
}
template<class BaseIntT> int SignedInt_t<BaseIntT>::AddDouble(SignedInt_t *A,const SignedInt_t &B,const int carry)
{
if (carry!=0)
{
throw "non zero carry passed to SignedInt add";
}
if (A->Negative==B.Negative) //same sign.. just add them, don't modify the sign
{
return BaseIntT::AddDouble(&A->Value,B.Value,carry);
}
else
{
// ok now here is the fun with non two complement numbers
// first detect which one has the larger magnitude
if (A->Value>B.Value)
{
//A will maintain its sign, but subtract B from A
if (BaseIntT::SubDouble(&A->Value,B.Value,0)!=0)
{
throw "borrow nessisary during add!"; //probably a bug...
}
return 0; //there shouldn't be a carry in this case
}
else
{
if (A->Value==B.Value)
{
//rare shortcut....
A->Value=0;
A->Negative=0;
return 0;
}
else // (B.Value>A.Value)
{
//A will have B's Sign..
// this is a lot sucky...
BaseIntT tmp=A->Value;
A->Value=B.Value;
if (BaseIntT::SubDouble(&A->Value,tmp,0)!=0)
{
throw "borrow nessisary during add!"; //probably a bug...
}
A->Negative=B.Negative;
return 0; //there shouldn't be a carry in this case
}
}
}
}
// flip the sign of A and add them...
template<class BaseIntT> int SignedInt_t<BaseIntT>::SubDouble(SignedInt_t *A,const SignedInt_t &B,const int borrow)
{
A->Negative^=1; //negate the sign with xor <chuckle>
return AddDouble(A,B,0);
}
//TODO make a finalizer class which sits between this class and the double template and throws overflow exceptions...
template<class BaseIntT> SignedInt_t<BaseIntT> SignedInt_t<BaseIntT>::MultiplyDouble(SignedInt_t *A,const SignedInt_t &B)
{
BaseIntT::MultiplyDouble(&A->Value,B.Value);
if (A->Value==0)
{
A->Negative=0;
}
else
{
A->Negative^=B.Negative; //flip sign as nessiary
}
}
template<class BaseIntT> SignedInt_t<BaseIntT> SignedInt_t<BaseIntT>::DivideDouble(SignedInt_t *A,const SignedInt_t &B)
{
SignedInt_t tmp;
tmp.Value=BaseIntT::DivideDouble(&A->Value,B.Value);
if (A->Value==0)
{
A->Negative=0;
}
else
{
A->Negative^=B.Negative; //flip sign as nessiary
}
return tmp.Value;
}
template<class BaseIntT> void SignedInt_t<BaseIntT>::FromString(const char *Source_prm)
{
int start=0;
Negative=0;
while (Source_prm[start]!='\0')
{
if (Source_prm[start]=='0')
{
if (Source_prm[start+1]=='x')
{
// hex start
Value.FromString(&Source_prm[start]);
break;
}
}
if ((Source_prm[start]>='0') && (Source_prm[start]<='9'))
{
// normal decimal start
Value.FromString(&Source_prm[start]);
break;
}
if (Source_prm[start]=='-')
{
Negative=1;
}
start++;
}
if (Source_prm[start]=='\0')
{
Value=0;
}
}
#endif // DOUBLEINT_T_HPP