-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathscript_robustness_table_adv.py
executable file
·283 lines (238 loc) · 7.86 KB
/
script_robustness_table_adv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import os
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import torch
from matplotlib import rc
from data_management import load_dataset
from find_adversarial import err_measure_l2, grid_attack
# ----- load configuration -----
import config # isort:skip
import config_robustness as cfg_rob # isort:skip
from config_robustness import methods # isort:skip
# ------ general setup ----------
device = cfg_rob.device
save_path = os.path.join(config.RESULTS_PATH, "attacks")
save_results = os.path.join(save_path, "table_adv.pkl")
do_plot = True
save_plot = True
save_table = True
# ----- data prep -----
X_test, C_test, Y_test = [
tmp.unsqueeze(-2).to(device)
for tmp in load_dataset(config.set_params["path"], subset="test")
]
# ----- attack setup -----
# select samples
samples = tuple(range(50))
it_init = 200
keep_init = 100
# select range relative noise
noise_rel = torch.tensor([0.00, 0.001, 0.005, 0.01, 0.02, 0.04, 0.06])
# select measure for reconstruction error
err_measure = err_measure_l2
# select reconstruction methods
methods_include = [
"L1",
"UNet jit",
"UNet EE jit",
"Tiramisu jit",
"Tiramisu EE jit",
"UNet It jit",
]
methods_plot = ["L1", "UNet jit", "Tiramisu EE jit", "UNet It jit"]
methods = methods.loc[methods_include]
# select methods excluded from (re-)performing attacks
methods_no_calc = ["L1", "UNet jit", "Tiramisu EE jit", "UNet It jit"]
# ----- perform attack -----
# select samples
X_0 = X_test[samples, ...]
Y_0 = Y_test[samples, ...]
# create result table
results = pd.DataFrame(columns=["name", "X_adv_err", "X_ref_err"])
results.name = methods.index
results = results.set_index("name")
# load existing results from file
if os.path.isfile(save_results):
results_save = pd.read_pickle(save_results)
for idx in results_save.index:
if idx in results.index:
results.loc[idx] = results_save.loc[idx]
else:
results_save = results
# perform attacks
for (idx, method) in methods.iterrows():
if idx not in methods_no_calc:
s_len = X_0.shape[0]
results.loc[idx].X_adv_err = torch.zeros(len(noise_rel), s_len)
results.loc[idx].X_ref_err = torch.zeros(len(noise_rel), s_len)
for s in range(s_len):
print("Sample: {}/{}".format(s + 1, s_len))
X_0_s = X_0[s : s + 1, ...].repeat(
it_init, *((X_0.ndim - 1) * (1,))
)
Y_0_s = Y_0[s : s + 1, ...].repeat(
it_init, *((Y_0.ndim - 1) * (1,))
)
X_adv_err_cur, X_ref_err_cur = grid_attack(
method,
noise_rel,
X_0_s,
Y_0_s,
store_data=False,
keep_init=keep_init,
err_measure=err_measure,
)
results.loc[idx].X_adv_err[:, s] = X_adv_err_cur.max(dim=1)[0]
results.loc[idx].X_ref_err[:, s] = X_ref_err_cur.mean(dim=1)
# save results
for idx in results.index:
results_save.loc[idx] = results.loc[idx]
os.makedirs(save_path, exist_ok=True)
results_save.to_pickle(save_results)
# ----- plotting -----
if do_plot:
# LaTeX typesetting
rc("font", **{"family": "serif", "serif": ["Palatino"]})
rc("text", usetex=True)
# +++ visualization of table +++
fig, ax = plt.subplots(clear=True, figsize=(5, 4), dpi=200)
for (idx, method) in methods.loc[methods_plot].iterrows():
err_mean = results.loc[idx].X_adv_err[:, :].mean(dim=-1)
err_std = results.loc[idx].X_adv_err[:, :].std(dim=-1)
plt.plot(
noise_rel,
err_mean,
linestyle=method.info["plt_linestyle"],
linewidth=method.info["plt_linewidth"],
marker=method.info["plt_marker"],
color=method.info["plt_color"],
label=method.info["name_disp"],
)
if idx == "L1" or idx == "UNet It jit":
plt.fill_between(
noise_rel,
err_mean + err_std,
err_mean - err_std,
alpha=0.10,
color=method.info["plt_color"],
)
plt.yticks(np.arange(0, 1, step=0.05))
plt.ylim((-0.01, 0.21))
ax.set_xticklabels(["{:,.0%}".format(x) for x in ax.get_xticks()])
ax.set_yticklabels(["{:,.0%}".format(x) for x in ax.get_yticks()])
plt.legend(loc="upper left", fontsize=12)
if save_plot:
fig.savefig(
os.path.join(save_path, "fig_table_adv.pdf"), bbox_inches="tight"
)
plt.show()
if save_table:
df = results.applymap(
lambda res: {"mean": res.mean(dim=-1), "std": res.std(dim=-1)}
)
# split adv and ref results
df_adv = df[["X_adv_err"]]
df_ref = df[["X_ref_err"]]
# extract mean and std
df_adv_mean = (
df_adv.stack()
.apply(pd.Series)["mean"]
.apply(
lambda res: pd.Series(
res,
index=[
"{{{:.1f}\\%}}".format(noise * 100) for noise in noise_rel
],
)
)
)
df_adv_std = (
df_adv.stack()
.apply(pd.Series)["std"]
.apply(
lambda res: pd.Series(
res,
index=[
"{{{:.1f}\\%}}".format(noise * 100) for noise in noise_rel
],
)
)
)
df_ref_mean = (
df_ref.stack()
.apply(pd.Series)["mean"]
.apply(
lambda res: pd.Series(
res,
index=[
"{{{:.1f}\\%}}".format(noise * 100) for noise in noise_rel
],
)
)
)
df_ref_std = (
df_ref.stack()
.apply(pd.Series)["std"]
.apply(
lambda res: pd.Series(
res,
index=[
"{{{:.1f}\\%}}".format(noise * 100) for noise in noise_rel
],
)
)
)
# find best method per noise level and metric
best_adv_l2 = df_adv_mean.xs("X_adv_err", level=1).idxmin()
best_ref_l2 = df_ref_mean.xs("X_ref_err", level=1).idxmin()
# combine mean and std data into "mean\pmstd" strings
df_adv_combined = df_adv_mean.combine(
df_adv_std,
lambda col1, col2: col1.combine(
col2,
lambda el1, el2: "{:.2f} \\pm {:.2f}".format(el1 * 100, el2 * 100),
),
)
df_ref_combined = df_ref_mean.combine(
df_ref_std,
lambda col1, col2: col1.combine(
col2,
lambda el1, el2: "{:.2f} \\pm {:.2f}".format(el1 * 100, el2 * 100),
),
)
# format best value per noise level as bold
for col, idx in best_adv_l2.iteritems():
df_adv_combined.at[(idx, "X_adv_err"), col] = (
"\\bfseries " + df_adv_combined.at[(idx, "X_adv_err"), col]
)
for col, idx in best_ref_l2.iteritems():
df_ref_combined.at[(idx, "X_ref_err"), col] = (
"\\bfseries " + df_ref_combined.at[(idx, "X_ref_err"), col]
)
# rename rows and columns
df_adv_combined = df_adv_combined.rename(
index={"X_adv_err": "rel.~$\\l{2}$-err. [\\%]"}
)
df_adv_combined = df_adv_combined.rename(
index=methods["info"].apply(lambda res: res["name_disp"]).to_dict()
)
df_ref_combined = df_ref_combined.rename(
index={"X_ref_err": "rel.~$\\l{2}$-err. [\\%]"}
)
df_ref_combined = df_ref_combined.rename(
index=methods["info"].apply(lambda res: res["name_disp"]).to_dict()
)
# save latex tabular
df_adv_combined.to_latex(
os.path.join(save_path, "table_adv.tex"),
column_format=2 * "l" + len(noise_rel) * "S[separate-uncertainty]",
multirow=True,
escape=False,
)
df_ref_combined.to_latex(
os.path.join(save_path, "table_ref.tex"),
column_format=2 * "l" + len(noise_rel) * "S[separate-uncertainty]",
multirow=True,
escape=False,
)