-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkm_container.cpp
421 lines (359 loc) · 10.4 KB
/
km_container.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
#include "km_container.h"
#include <typeinfo>
static const float32 HASH_TABLE_MAX_SIZE_TO_CAPACITY = 0.7f;
// Very simple string hash ( djb2 hash, source http://www.cse.yorku.ca/~oz/hash.html )
uint32 KeyHash(const HashKey& key)
{
uint32 hash = 5381;
for (uint32 i = 0; i < key.s.size; i++) {
hash = ((hash << 5) + hash) + key.s[i];
}
return hash;
}
bool KeyCompare(const HashKey& key1, const HashKey& key2)
{
if (key1.s.size != key2.s.size) {
return false;
}
for (uint32 i = 0; i < key1.s.size; i++) {
if (key1.s[i] != key2.s[i]) {
return false;
}
}
return true;
}
// TODO dumb wrappers until I figure out a better way to do this at compile time
template <typename Allocator>
void* AllocateOrUseDefaultIfNull(Allocator* allocator, uint32 size)
{
if (allocator == nullptr) {
DEBUG_ASSERT(typeid(Allocator) == typeid(StandardAllocator));
return defaultAllocator_.Allocate(size);
}
else {
return allocator->Allocate(size);
}
}
template <typename Allocator>
void* ReAllocateOrUseDefaultIfNull(Allocator* allocator, void* memory, uint32 size)
{
if (allocator == nullptr) {
DEBUG_ASSERT(typeid(Allocator) == typeid(StandardAllocator));
return defaultAllocator_.ReAllocate(memory, size);
}
else {
return allocator->ReAllocate(memory, size);
}
}
template <typename Allocator>
void FreeOrUseDefautIfNull(Allocator* allocator, void* memory)
{
if (allocator == nullptr) {
DEBUG_ASSERT(typeid(Allocator) == typeid(StandardAllocator));
defaultAllocator_.Free(memory);
}
else {
allocator->Free(memory);
}
}
template <typename T, typename Allocator>
DynamicArray<T, Allocator>::DynamicArray(Allocator* allocator, uint32 capacity)
{
Initialize(allocator, capacity);
}
template <typename T, typename Allocator>
DynamicArray<T, Allocator>::DynamicArray(const Array<T>& array, Allocator* allocator)
: DynamicArray(array.size < DYNAMIC_ARRAY_START_CAPACITY ? DYNAMIC_ARRAY_START_CAPACITY : array.size, allocator)
{
FromArray(array);
}
template <typename T, typename Allocator>
Array<T> DynamicArray<T, Allocator>::ToArray() const
{
return *((Array<T>*)this);
}
template <typename T, typename Allocator>
void DynamicArray<T, Allocator>::FromArray(const Array<T>& array)
{
if (capacity < array.size) {
// TODO round to nearest power of 2?
const bool result = UpdateCapacity(array.size);
if (!result) {
DEBUG_PANIC("DynamicArray out of memory\n");
}
}
size = array.size;
for (uint32 i = 0; i < size; i++) {
data[i] = array.data[i];
}
}
template <typename T, typename Allocator>
T* DynamicArray<T, Allocator>::Append()
{
if (size >= capacity) {
const bool result = UpdateCapacity(capacity * 2);
if (!result) {
DEBUG_PANIC("DynamicArray out of memory\n");
return nullptr;
}
}
// NOTE nope. not doing this anymore
//new (&data[size]) T();
return &data[size++];
}
template <typename T, typename Allocator>
T* DynamicArray<T, Allocator>::Append(const T& element)
{
T* slot = Append();
*slot = element;
return slot;
}
template <typename T, typename Allocator>
void DynamicArray<T, Allocator>::Append(const Array<T>& array)
{
Append((const Array<const T>)array);
}
template <typename T, typename Allocator>
void DynamicArray<T, Allocator>::Append(const Array<const T>& array)
{
uint32 newSize = size + array.size;
if (newSize > capacity) {
// TODO round to nearest power of 2?
const bool result = UpdateCapacity(newSize);
if (!result) {
DEBUG_PANIC("DynamicArray out of memory\n");
}
}
for (uint32 i = 0; i < array.size; i++) {
data[size + i] = array.data[i];
}
size = newSize;
}
template <typename T, typename Allocator>
void DynamicArray<T, Allocator>::RemoveLast()
{
DEBUG_ASSERT(size > 0);
size--;
}
template <typename T, typename Allocator>
uint32 DynamicArray<T, Allocator>::IndexOf(const T& value)
{
for (uint32 i = 0; i < size; i++) {
if (data[i] == value) {
return i;
}
}
return size;
}
template <typename T, typename Allocator>
void DynamicArray<T, Allocator>::Clear()
{
size = 0;
}
template <typename T, typename Allocator>
void DynamicArray<T, Allocator>::Initialize(Allocator* allocator, uint32 capacity)
{
size = 0;
data = (T*)AllocateOrUseDefaultIfNull(allocator, capacity * sizeof(T));
DEBUG_ASSERT(data != nullptr);
this->capacity = capacity;
this->allocator = allocator;
}
template <typename T, typename Allocator>
void DynamicArray<T, Allocator>::Free()
{
FreeOrUseDefautIfNull(allocator, data);
}
template <typename T, typename Allocator>
inline T& DynamicArray<T, Allocator>::operator[](uint32 index)
{
ARRAY_BOUNDS_CHECK(index, size);
return data[index];
}
template <typename T, typename Allocator>
inline const T& DynamicArray<T, Allocator>::operator[](uint32 index) const
{
ARRAY_BOUNDS_CHECK(index, size);
return data[index];
}
template <typename T, typename Allocator>
DynamicArray<T, Allocator>& DynamicArray<T, Allocator>::operator=(const DynamicArray<T, Allocator>& other)
{
FromArray(other.ToArray());
return *this;
}
template <typename T, typename Allocator>
bool DynamicArray<T, Allocator>::UpdateCapacity(uint32 newCapacity)
{
DEBUG_ASSERT(capacity != 0);
DEBUG_ASSERT(newCapacity != 0);
void* newMemory = ReAllocateOrUseDefaultIfNull(allocator, data, newCapacity * sizeof(T));
if (newMemory == nullptr) {
return false;
}
capacity = newCapacity;
data = (T*)newMemory;
return true;
}
HashKey::HashKey()
{
s.Clear();
}
HashKey::HashKey(string str)
{
WriteString(str);
}
HashKey::HashKey(const_string str)
{
WriteString(str);
}
HashKey::HashKey(const char* str)
{
WriteString(str);
}
bool HashKey::WriteString(const_string str)
{
if (str.size > MAX_LENGTH) {
return false;
}
MemCopy(s.data, str.data, str.size * sizeof(char));
s.size = str.size;
return true;
}
bool HashKey::WriteString(const char* str)
{
return WriteString(ToString(str));
}
template <typename V, typename Allocator>
HashTable<V, Allocator>::HashTable(Allocator* allocator, uint32 capacity)
{
Initialize(allocator, capacity);
}
template <typename V, typename Allocator>
HashTable<V, Allocator>::~HashTable()
{
for (uint32 i = 0; i < capacity; i++) {
pairs[i].~KeyValuePair<V>();
}
allocator->Free(pairs);
}
template <typename V, typename Allocator>
V* HashTable<V, Allocator>::Add(const HashKey& key)
{
DEBUG_ASSERT(GetPair(key) == nullptr);
if (size >= (uint32)((float32)capacity * HASH_TABLE_MAX_SIZE_TO_CAPACITY)) {
uint32 newCapacity = NextPrime(capacity * 2);
pairs = (KeyValuePair<V>*)allocator->ReAllocate(pairs, sizeof(KeyValuePair<V>) * newCapacity);
if (pairs == nullptr) {
DEBUG_PANIC("not enough memory for HashTable resize (pairs allocation)\n");
}
for (uint32 i = 0; i < capacity; i++) {
// Don't placement new here, probably? Because it'll reset everything...
// new (&pairs[i]) KeyValuePair<V>();
}
KeyValuePair<V>* oldPairs = (KeyValuePair<V>*)allocator->Allocate(sizeof(KeyValuePair<V>) * capacity);
if (oldPairs == nullptr) {
DEBUG_PANIC("not enough memory for HashTable resize (oldPairs allocation)\n");
}
defer(allocator->Free(oldPairs));
MemCopy(oldPairs, pairs, sizeof(KeyValuePair<V>) * capacity);
DEBUG_PANIC("TODO can't resize+rehash yet\n");
// capacity = newCapacity;
}
KeyValuePair<V>* pair = GetFreeSlot(key);
DEBUG_ASSERT(pair != nullptr);
pair->key = key;
size++;
return &(pair->value);
}
template <typename V, typename Allocator>
void HashTable<V, Allocator>::Add(const HashKey& key, const V& value)
{
*(Add(key)) = value;
}
template <typename V, typename Allocator>
V* HashTable<V, Allocator>::GetValue(const HashKey& key)
{
KeyValuePair<V>* pair = GetPair(key);
if (pair == nullptr) {
return nullptr;
}
return &pair->value;
}
template <typename V, typename Allocator>
const V* HashTable<V, Allocator>::GetValue(const HashKey& key) const
{
const KeyValuePair<V>* pair = GetPair(key);
if (pair == nullptr) {
return nullptr;
}
return &pair->value;
}
template <typename V, typename Allocator>
void HashTable<V, Allocator>::Clear()
{
for (uint32 i = 0; i < capacity; i++) {
pairs[i].key.s.size = 0;
}
}
template <typename V, typename Allocator>
void HashTable<V, Allocator>::Initialize(Allocator* allocator, uint32 capacity)
{
size = 0;
uint32 sizeBytes = sizeof(KeyValuePair<V>) * capacity;
pairs = (KeyValuePair<V>*)allocator->Allocate(sizeBytes);
if (pairs == nullptr) {
DEBUG_PANIC("ERROR: not enough memory!\n");
}
for (uint32 i = 0; i < capacity; i++) {
pairs[i].key.s.size = 0;
// NOTE nope. not doing this anymore
// new (&pairs[i]) KeyValuePair<V>();
}
this->capacity = capacity;
this->allocator = allocator;
}
template <typename V, typename Allocator>
void HashTable<V, Allocator>::Free()
{
allocator->Free(pairs);
capacity = 0;
size = 0;
}
template <typename V, typename Allocator>
HashTable<V, Allocator>& HashTable<V, Allocator>::operator=(const HashTable<V, Allocator>& other)
{
DEBUG_ASSERT(capacity == other.capacity); // TODO no rehashing, so we do same-capacity only
size = other.size;
for (uint32 i = 0; i < capacity; i++) {
pairs[i] = other.pairs[i];
}
return *this;
}
template <typename V, typename Allocator>
KeyValuePair<V>* HashTable<V, Allocator>::GetPair(const HashKey& key) const
{
uint32 hashInd = KeyHash(key) % capacity;
for (uint32 i = 0; i < capacity; i++) {
KeyValuePair<V>* pair = pairs + hashInd + i;
if (KeyCompare(pair->key, key)) {
return pair;
}
if (pair->key.s.size == 0) {
return nullptr;
}
}
return nullptr;
}
template <typename V, typename Allocator>
KeyValuePair<V>* HashTable<V, Allocator>::GetFreeSlot(const HashKey& key)
{
uint32 hashInd = KeyHash(key) % capacity;
for (uint32 i = 0; i < capacity; i++) {
KeyValuePair<V>* pair = pairs + hashInd + i;
if (pair->key.s.size == 0) {
return pair;
}
}
return nullptr;
}