-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo33.py
33 lines (25 loc) · 850 Bytes
/
demo33.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
from sklearn import datasets
from sklearn.decomposition import PCA
iris = datasets.load_iris()
pca = PCA(n_components=2)
data = pca.fit(iris.data).transform(iris.data)
datamax = data.max(axis=0) + 1
datamin = data.min(axis=0) - 1
print(datamax, datamin)
import numpy as np
from sklearn import svm
import matplotlib.pyplot as plt
n = 4000
X, Y = np.meshgrid(np.linspace(datamin[0], datamax[0], n),
np.linspace(datamin[1], datamax[1], n))
svc = svm.SVC(C=2000)
svc.fit(data, iris.target)
Z = svc.predict(np.c_[X.ravel(), Y.ravel()])
plt.contour(X, Y, Z.reshape(X.shape), levels=[-0.5, 0.5, 1.5, 2.5], colors=['r', 'g', 'b', 'y'])
for i, c in zip([0, 1, 2], ['r', 'g', 'b']):
d = data[iris.target == i]
plt.scatter(d[:, 0], d[:, 1], c=c)
plt.show()
plt.show()
data = pca.fit(iris.data).transform(iris.data)
print(data)