-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo43.py
32 lines (26 loc) · 1.02 KB
/
demo43.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import numpy as np
from keras.layers import Dense
from keras.models import Sequential
dataset1 = np.loadtxt("data/diabetes.csv", delimiter=",", skiprows=1)
print(type(dataset1))
print(dataset1.shape)
# inputList = dataset1[:, 0:8]
# resultList = dataset1[:, 8]
inputList = dataset1[:, 0:-1]
resultList = dataset1[:, -1]
print("input shape={}".format(inputList.shape))
print("result shape={}".format(resultList.shape))
model = Sequential()
model.add(Dense(64, input_dim=8, activation='relu'))
model.add(Dense(32, activation='relu'))
model.add(Dense(32, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
print(model.summary())
model.fit(inputList, resultList, epochs=200, batch_size=20)
scores = model.evaluate(inputList, resultList)
print("score=", scores)
print(type(model.metrics_names))
print("matrics=", model.metrics_names)
print("%s:%.3f\n" % (model.metrics_names[0], scores[0]))
print("%s:%.3f\n" % (model.metrics_names[1], scores[1]))