-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo48.py
49 lines (41 loc) · 1.76 KB
/
demo48.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import numpy as np
from keras.layers import Dense
from keras.models import Sequential
from sklearn.model_selection import StratifiedKFold, cross_val_score, GridSearchCV
dataset1 = np.loadtxt("data\\diabetes.csv", delimiter=",", skiprows=1)
print(type(dataset1))
print(dataset1.shape)
# inputList = dataset1[:, 0:8]
# resultList = dataset1[:, 8]
inputList = dataset1[:, 0:-1]
resultList = dataset1[:, -1]
print("input shape={}".format(inputList.shape))
print("result shape={}".format(resultList.shape))
print(np.unique(resultList)) # 0/1 only, classification
def create_default_model(optimizer='adam', init='uniform'):
model = Sequential()
model.add(Dense(64, input_dim=8, kernel_initializer=init, activation='relu'))
model.add(Dense(32, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])
print(model.summary())
return model
from keras.wrappers.scikit_learn import KerasClassifier
model1 = KerasClassifier(build_fn=create_default_model, verbose=0)
optimizers = ['rmsprop', 'adam', 'sgd']
inits = ['normal', 'uniform']
epochs = [50, 100, 150]
batches = [5, 10, 15]
#optimizers = ['rmsprop']
#inits = ['normal']
#epochs = [50]
#batches = [5]
param_grid = dict(optimizer=optimizers, epochs=epochs, batch_size=batches, init=inits)
grid = GridSearchCV(estimator=model1, param_grid=param_grid)
grid_result = grid.fit(inputList, resultList)
print("best :%f, using %s" % (grid_result.best_score_, grid_result.best_params_))
means = grid_result.cv_results_['mean_test_score']
stds = grid_result.cv_results_['std_test_score']
params = grid_result.cv_results_['params']
for mean, stdev, param in zip(means, stds, params):
print("%f, (%f), with %r\n" % (mean, stdev, param))