-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo57.py
66 lines (51 loc) · 2.13 KB
/
demo57.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
from keras.datasets import reuters
import numpy
(train_data, train_labels), (test_data, test_labels) = reuters.load_data(num_words=10000)
print(len(train_data), len(train_labels))
print(numpy.unique(train_labels))
word_index = reuters.get_word_index()
reverse_word_index = dict([(v, k) for (k, v) in word_index.items()])
decodedFirstNews = ' '.join([reverse_word_index.get(i - 3, '?') for i in train_data[0]])
print(decodedFirstNews)
decoded10thNews = ' '.join([reverse_word_index.get(i - 3, '?') for i in train_data[9]])
print(decoded10thNews)
import numpy as np
def vectorize_sequences(sequences, dimension=10000):
results = np.zeros((len(sequences), dimension))
for i, sequence in enumerate(sequences):
results[i, sequence] = 1.
return results
x_train = vectorize_sequences(train_data)
x_test = vectorize_sequences(test_data)
def to_one_hot(labels, dimension=46):
results = np.zeros((len(labels), dimension))
for i, label in enumerate(labels):
results[i, label] = 1.
return results
one_hot_train_labels = to_one_hot(train_labels)
one_hot_test_labels = to_one_hot(test_labels)
print(one_hot_train_labels[:10])
print(one_hot_test_labels[:10])
from keras import models, layers
model = models.Sequential()
model.add(layers.Dense(128, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(46, activation='softmax'))
model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
print(model.summary())
history = model.fit(x_train, one_hot_train_labels, epochs=20, batch_size=20,
validation_data=(x_test, one_hot_test_labels))
import matplotlib.pyplot as plt
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(1, len(loss) + 1)
plt.plot(epochs, loss, 'b.-', label='Training loss')
plt.plot(epochs, val_loss, 'ro--', label='validate loss')
plt.show()
plt.clf()
acc = history.history['acc']
val_acc = history.history['val_acc']
epochs = range(1, len(loss) + 1)
plt.plot(epochs, acc, 'b.-', label='Training accuracy')
plt.plot(epochs, val_acc, 'ro--', label='validate accuracy')
plt.show()