-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathgenerate.py
109 lines (95 loc) · 3.84 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
"""
Usage:
python generate.py --checkpoint_path <path to checkpoint> \
--config <path to config> \
--time_delta <time delta> \
--num_samples <number of samples> \
--seed <random seed> \
--device <device to use>
"""
import argparse
import logging
import os
import time
from typing import *
import omegaconf as oc
import torch
import transformers
from text_sed import diffusion, layers, utils
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--checkpoint_path", type=str)
parser.add_argument("--config", type=str, default="configs/default.yaml")
parser.add_argument("--guide_name", type=str, default=None)
parser.add_argument("--guide_scale", type=float, default=1.0)
parser.add_argument("--time_delta", type=float, default=None)
parser.add_argument("--num_steps", type=int, default=None)
parser.add_argument("--num_samples", type=int, default=8)
parser.add_argument("--seed", type=int, default=8)
parser.add_argument("--device", type=str, default="cuda:0")
args = parser.parse_args()
config = oc.OmegaConf.load(args.config)
if args.checkpoint_path is not None:
oc.OmegaConf.update(config.train, "checkpoint_path", args.checkpoint_path)
if args.seed is not None:
oc.OmegaConf.update(config, "seed", args.seed)
if args.time_delta is not None:
oc.OmegaConf.update(config.model, "time_delta", args.time_delta)
if torch.cuda.is_available():
torch.backends.cuda.matmul.allow_tf32 = True
utils.set_seed(config.seed, use_device_specific_seeds=True)
logger.info("⏳ Loading tokenizer...")
os.environ["TOKENIZERS_PARALLELISM"] = "false" # Turn off HF parallelism warnings
tokenizer = transformers.AutoTokenizer.from_pretrained(
config.model.embed_model_name,
use_fast=config.data.use_fast_tokenizer,
use_auth_token=config.data.use_auth_token,
)
embed_mat, embed_dim = layers.auto_extract_embed_mat(config.model.embed_model_name)
inner_model = layers.MaskConditionalTransformer(
embed_dim=utils.default(config.model.bottleneck_dim, embed_dim),
model_dim=config.model.model_dim,
max_seq_len=config.model.seq_len,
head_dim=config.model.head_dim,
num_heads=config.model.num_heads,
)
model = diffusion.TextSed(
model=inner_model,
embed_mat=embed_mat,
noise_schedule=diffusion.get_noise_schedule(config.model.noise_schedule),
bottleneck_dim=config.model.bottleneck_dim,
)
logger.info(f"⏳ Loading checkpoint from {config.train.checkpoint_path}")
checkpoint = torch.load(config.train.checkpoint_path)
# Load EMA model state for inference
model.load_state_dict(checkpoint["model_ema"], strict=True)
if torch.cuda.is_available():
model.cuda()
shape = (
config.train.num_samples,
config.model.seq_len,
utils.default(config.model.bottleneck_dim, embed_dim),
)
logger.info("🏁 Starting generation...")
# Generate...
model.eval()
start_time = time.perf_counter()
samples = model.generate(
shape=shape,
num_steps=utils.default(args.num_steps, config.model.num_gen_steps),
sampler=diffusion.get_sampler(config.model.sampler),
time_delta=config.model.time_delta,
guide_scale=utils.default(args.guide_scale, config.model.guide_scale),
guide_name=args.guide_name,
use_clamp=False,
device=args.device,
)
end_time = time.perf_counter()
samples = tokenizer.batch_decode(samples, skip_special_tokens=True)
sample_log = "💬 Generating samples..."
for sample in samples:
sample_log += f"\n➜ {sample}"
logger.info(sample_log)
logger.info(f"🕒 Generation took {end_time - start_time:.2f} seconds.")