forked from cmu-phil/Spectral
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcolim.hlean
590 lines (488 loc) · 22 KB
/
colim.hlean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
-- authors: Floris van Doorn, Egbert Rijke, Stefano Piceghello
import hit.colimit types.fin homotopy.chain_complex types.pointed2
open seq_colim pointed algebra eq is_trunc nat is_equiv equiv sigma sigma.ops chain_complex
namespace seq_colim
definition pseq_colim [constructor] {X : ℕ → Type*} (f : Πn, X n →* X (n+1)) : Type* :=
pointed.MK (seq_colim f) (@sι _ _ 0 pt)
definition inclusion_pt {X : ℕ → Type*} (f : Πn, X n →* X (n+1)) (n : ℕ)
: inclusion f (Point (X n)) = Point (pseq_colim f) :=
begin
induction n with n p,
reflexivity,
exact (ap (sι f) (respect_pt _))⁻¹ᵖ ⬝ (!glue ⬝ p)
end
definition pinclusion [constructor] {X : ℕ → Type*} (f : Πn, X n →* X (n+1)) (n : ℕ)
: X n →* pseq_colim f :=
pmap.mk (inclusion f) (inclusion_pt f n)
definition seq_diagram [reducible] (A : ℕ → Type) : Type := Π⦃n⦄, A n → A (succ n)
definition pseq_diagram [reducible] (A : ℕ → Type*) : Type := Π⦃n⦄, A n →* A (succ n)
structure Seq_diagram : Type :=
(carrier : ℕ → Type)
(struct : seq_diagram carrier)
definition is_equiseq [reducible] {A : ℕ → Type} (f : seq_diagram A) : Type :=
forall (n : ℕ), is_equiv (@f n)
structure Equi_seq : Type :=
(carrier : ℕ → Type)
(maps : seq_diagram carrier)
(prop : is_equiseq maps)
protected abbreviation Mk [constructor] := Seq_diagram.mk
attribute Seq_diagram.carrier [coercion]
attribute Seq_diagram.struct [coercion]
variables {A : ℕ → Type} (f : seq_diagram A)
include f
definition rep0 [reducible] (k : ℕ) : A 0 → A k :=
begin
intro a,
induction k with k x,
exact a,
exact f x
end
definition is_equiv_rep0 [constructor] [H : is_equiseq f] (k : ℕ) :
is_equiv (rep0 f k) :=
begin
induction k with k IH,
{ apply is_equiv_id},
{ apply is_equiv_compose (@f _) (rep0 f k)},
end
local attribute is_equiv_rep0 [instance]
definition rep0_back [reducible] [H : is_equiseq f] (k : ℕ) : A k → A 0 :=
(rep0 f k)⁻¹
section generalized_rep
variable {n : ℕ}
definition rep [reducible] (k : ℕ) (a : A n) : A (n + k) :=
by induction k with k x; exact a; exact f x
definition rep_f (k : ℕ) (a : A n) : pathover A (rep f k (f a)) (succ_add n k) (rep f (succ k) a) :=
begin
induction k with k IH,
{ constructor},
{ apply pathover_ap, exact apo f IH}
end
definition rep_back [H : is_equiseq f] (k : ℕ) (a : A (n + k)) : A n :=
begin
induction k with k g,
exact a,
exact g ((@f (n + k))⁻¹ a),
end
definition is_equiv_rep [constructor] [H : is_equiseq f] (k : ℕ) :
is_equiv (λ (a : A n), rep f k a) :=
begin
fapply adjointify,
{ exact rep_back f k},
{ induction k with k IH: intro b,
{ reflexivity},
unfold rep,
unfold rep_back,
fold [rep f k (rep_back f k ((@f (n+k))⁻¹ b))],
refine ap (@f (n+k)) (IH ((@f (n+k))⁻¹ b)) ⬝ _,
apply right_inv (@f (n+k))},
induction k with k IH: intro b,
exact rfl,
unfold rep_back,
unfold rep,
fold [rep f k b],
refine _ ⬝ IH b,
exact ap (rep_back f k) (left_inv (@f (n+k)) (rep f k b))
end
definition rep_rep (k l : ℕ) (a : A n) :
pathover A (rep f k (rep f l a)) (nat.add_assoc n l k) (rep f (l + k) a) :=
begin
induction k with k IH,
{ constructor},
{ apply pathover_ap, exact apo f IH}
end
definition f_rep (k : ℕ) (a : A n) : f (rep f k a) = rep f (succ k) a := idp
end generalized_rep
section shift
definition shift_diag [unfold_full] : seq_diagram (λn, A (succ n)) :=
λn a, f a
definition kshift_diag [unfold_full] (k : ℕ) : seq_diagram (λn, A (k + n)) :=
λn a, f a
definition kshift_diag' [unfold_full] (k : ℕ) : seq_diagram (λn, A (n + k)) :=
λn a, transport A (succ_add n k)⁻¹ (f a)
end shift
section constructions
omit f
definition constant_seq (X : Type) : seq_diagram (λ n, X) :=
λ n x, x
definition seq_diagram_arrow_left [unfold_full] (X : Type) : seq_diagram (λn, X → A n) :=
λn g x, f (g x)
-- inductive finset : ℕ → Type :=
-- | fin : forall n, finset n → finset (succ n)
-- | ftop : forall n, finset (succ n)
definition seq_diagram_fin : seq_diagram fin :=
λn, fin.lift_succ
definition id0_seq (x y : A 0) : ℕ → Type :=
λ k, rep0 f k x = rep0 f k y
definition id0_seq_diagram (x y : A 0) : seq_diagram (id0_seq f x y) :=
λ (k : ℕ) (p : rep0 f k x = rep0 f k y), ap (@f k) p
definition id_seq (n : ℕ) (x y : A n) : ℕ → Type :=
λ k, rep f k x = rep f k y
definition id_seq_diagram (n : ℕ) (x y : A n) : seq_diagram (id_seq f n x y) :=
λ (k : ℕ) (p : rep f k x = rep f k y), ap (@f (n + k)) p
end constructions
section over
variable {A}
variable (P : Π⦃n⦄, A n → Type)
definition seq_diagram_over : Type := Π⦃n⦄ {a : A n}, P a → P (f a)
variable (g : seq_diagram_over f P)
variables {f P}
definition seq_diagram_of_over [unfold_full] {n : ℕ} (a : A n) :
seq_diagram (λk, P (rep f k a)) :=
λk p, g p
definition seq_diagram_sigma [unfold 6] : seq_diagram (λn, Σ(x : A n), P x) :=
λn v, ⟨f v.1, g v.2⟩
variables {n : ℕ} (f P)
theorem rep_f_equiv [constructor] (a : A n) (k : ℕ) :
P (rep f k (f a)) ≃ P (rep f (succ k) a) :=
equiv_apd011 P (rep_f f k a)
theorem rep_rep_equiv [constructor] (a : A n) (k l : ℕ) :
P (rep f (l + k) a) ≃ P (rep f k (rep f l a)) :=
(equiv_apd011 P (rep_rep f k l a))⁻¹ᵉ
end over
omit f
-- do we need to generalize this to the case where the bottom sequence consists of equivalences?
definition seq_diagram_pi {X : Type} {A : X → ℕ → Type} (g : Π⦃x n⦄, A x n → A x (succ n)) :
seq_diagram (λn, Πx, A x n) :=
λn f x, g (f x)
namespace ops
abbreviation ι [constructor] := @inclusion
abbreviation pι [constructor] {A} (f) {n} := @pinclusion A f n
abbreviation pι' [constructor] [parsing_only] := @pinclusion
abbreviation ι' [constructor] [parsing_only] {A} (f n) := @inclusion A f n
end ops
open seq_colim.ops
definition rep0_glue (k : ℕ) (a : A 0) : ι f (rep0 f k a) = ι f a :=
begin
induction k with k IH,
{ reflexivity},
{ exact glue f (rep0 f k a) ⬝ IH}
end
definition shift_up [unfold 3] (x : seq_colim f) : seq_colim (shift_diag f) :=
begin
induction x,
{ exact ι _ (f a)},
{ exact glue _ (f a)}
end
definition shift_down [unfold 3] (x : seq_colim (shift_diag f)) : seq_colim f :=
begin
induction x,
{ exact ι f a},
{ exact glue f a}
end
definition shift_equiv [constructor] : seq_colim f ≃ seq_colim (shift_diag f) :=
equiv.MK (shift_up f)
(shift_down f)
abstract begin
intro x, induction x,
{ esimp, exact glue _ a},
{ apply eq_pathover,
rewrite [▸*, ap_id, ap_compose (shift_up f) (shift_down f), ↑shift_down,
elim_glue],
apply square_of_eq, apply whisker_right, exact !elim_glue⁻¹}
end end
abstract begin
intro x, induction x,
{ exact glue _ a},
{ apply eq_pathover,
rewrite [▸*, ap_id, ap_compose (shift_down f) (shift_up f), ↑shift_up,
elim_glue],
apply square_of_eq, apply whisker_right, exact !elim_glue⁻¹}
end end
definition pshift_equiv [constructor] {A : ℕ → Type*} (f : Πn, A n →* A (succ n)) :
pseq_colim f ≃* pseq_colim (λn, f (n+1)) :=
begin
fapply pequiv_of_equiv,
{ apply shift_equiv },
{ exact ap (ι _) (respect_pt (f 0)) }
end
definition pshift_equiv_pinclusion {A : ℕ → Type*} (f : Πn, A n →* A (succ n)) (n : ℕ) :
psquare (pinclusion f n) (pinclusion (λn, f (n+1)) n) (f n) (pshift_equiv f) :=
phomotopy.mk homotopy.rfl begin
refine !idp_con ⬝ _, esimp,
induction n with n IH,
{ esimp[inclusion_pt], esimp[shift_diag], exact !idp_con⁻¹ },
{ esimp[inclusion_pt], refine !con_inv_cancel_left ⬝ _,
rewrite ap_con, rewrite ap_con,
refine _ ⬝ whisker_right _ !con.assoc,
refine _ ⬝ (con.assoc (_ ⬝ _) _ _)⁻¹,
xrewrite [-IH],
esimp[shift_up], rewrite [elim_glue, ap_inv, -ap_compose'], esimp,
rewrite [-+con.assoc], apply whisker_right,
rewrite con.assoc, apply !eq_inv_con_of_con_eq,
symmetry, exact eq_of_square !natural_square
}
end
section functor
variable {f}
variables {A' : ℕ → Type} {f' : seq_diagram A'}
variables (g : Π⦃n⦄, A n → A' n) (p : Π⦃n⦄ (a : A n), g (f a) = f' (g a))
include p
definition seq_colim_functor [unfold 7] : seq_colim f → seq_colim f' :=
begin
intro x, induction x with n a n a,
{ exact ι f' (g a)},
{ exact ap (ι f') (p a) ⬝ glue f' (g a)}
end
theorem seq_colim_functor_glue {n : ℕ} (a : A n)
: ap (seq_colim_functor g p) (glue f a) = ap (ι f') (p a) ⬝ glue f' (g a) :=
!elim_glue
omit p
definition is_equiv_seq_colim_functor [constructor] [H : Πn, is_equiv (@g n)]
: is_equiv (seq_colim_functor @g p) :=
adjointify _ (seq_colim_functor (λn, (@g _)⁻¹) (λn a, inv_commute' g f f' p a))
abstract begin
intro x, induction x,
{ esimp, exact ap (ι _) (right_inv (@g _) a)},
{ apply eq_pathover,
rewrite [ap_id, ap_compose (seq_colim_functor g p) (seq_colim_functor _ _),
seq_colim_functor_glue _ _ a, ap_con, ▸*,
seq_colim_functor_glue _ _ ((@g _)⁻¹ a), -ap_compose, ↑[function.compose],
ap_compose (ι _) (@g _),ap_inv_commute',+ap_con, con.assoc,
+ap_inv, inv_con_cancel_left, con.assoc, -ap_compose],
apply whisker_tl, apply move_left_of_top, esimp,
apply transpose, apply square_of_pathover, apply apd}
end end
abstract begin
intro x, induction x,
{ esimp, exact ap (ι _) (left_inv (@g _) a)},
{ apply eq_pathover,
rewrite [ap_id, ap_compose (seq_colim_functor _ _) (seq_colim_functor _ _),
seq_colim_functor_glue _ _ a, ap_con,▸*, seq_colim_functor_glue _ _ (g a),
-ap_compose, ↑[function.compose], ap_compose (ι f) (@g _)⁻¹, inv_commute'_fn,
+ap_con, con.assoc, con.assoc, +ap_inv, con_inv_cancel_left, -ap_compose],
apply whisker_tl, apply move_left_of_top, esimp,
apply transpose, apply square_of_pathover, apply apd}
end end
definition seq_colim_equiv [constructor] (g : Π{n}, A n ≃ A' n)
(p : Π⦃n⦄ (a : A n), g (f a) = f' (g a)) : seq_colim f ≃ seq_colim f' :=
equiv.mk _ (is_equiv_seq_colim_functor @g p)
definition seq_colim_rec_unc [unfold 4] {P : seq_colim f → Type}
(v : Σ(Pincl : Π ⦃n : ℕ⦄ (a : A n), P (ι f a)),
Π ⦃n : ℕ⦄ (a : A n), Pincl (f a) =[glue f a] Pincl a)
: Π(x : seq_colim f), P x :=
by induction v with Pincl Pglue; exact seq_colim.rec f Pincl Pglue
definition pseq_colim_pequiv' [constructor] {A A' : ℕ → Type*} {f : Πn, A n →* A (n+1)}
{f' : Πn, A' n →* A' (n+1)} (g : Πn, A n ≃* A' n)
(p : Π⦃n⦄, g (n+1) ∘* f n ~ f' n ∘* g n) : pseq_colim @f ≃* pseq_colim @f' :=
pequiv_of_equiv (seq_colim_equiv g p) (ap (ι _) (respect_pt (g _)))
definition pseq_colim_pequiv [constructor] {A A' : ℕ → Type*} {f : Πn, A n →* A (n+1)}
{f' : Πn, A' n →* A' (n+1)} (g : Πn, A n ≃* A' n)
(p : Πn, g (n+1) ∘* f n ~* f' n ∘* g n) : pseq_colim @f ≃* pseq_colim @f' :=
pseq_colim_pequiv' g (λn, @p n)
definition seq_colim_equiv_constant [constructor] {A : ℕ → Type*} {f f' : Π⦃n⦄, A n → A (n+1)}
(p : Π⦃n⦄ (a : A n), f a = f' a) : seq_colim f ≃ seq_colim f' :=
seq_colim_equiv (λn, erfl) p
definition pseq_colim_equiv_constant' [constructor] {A : ℕ → Type*} {f f' : Πn, A n →* A (n+1)}
(p : Π⦃n⦄, f n ~ f' n) : pseq_colim @f ≃* pseq_colim @f' :=
pseq_colim_pequiv' (λn, pequiv.rfl) p
definition pseq_colim_equiv_constant [constructor] {A : ℕ → Type*} {f f' : Πn, A n →* A (n+1)}
(p : Πn, f n ~* f' n) : pseq_colim @f ≃* pseq_colim @f' :=
pseq_colim_pequiv (λn, pequiv.rfl) (λn, !pid_pcompose ⬝* p n ⬝* !pcompose_pid⁻¹*)
definition pseq_colim_pequiv_pinclusion {A A' : ℕ → Type*} {f : Πn, A n →* A (n+1)}
{f' : Πn, A' n →* A' (n+1)} (g : Πn, A n ≃* A' n)
(p : Π⦃n⦄, g (n+1) ∘* f n ~* f' n ∘* g n) (n : ℕ) :
psquare (pinclusion f n) (pinclusion f' n) (g n) (pseq_colim_pequiv g p) :=
phomotopy.mk homotopy.rfl begin
esimp, refine !idp_con ⬝ _,
induction n with n IH,
{ esimp[inclusion_pt], exact !idp_con⁻¹ },
{ esimp[inclusion_pt], rewrite [+ap_con, -+ap_inv, +con.assoc, +seq_colim_functor_glue],
xrewrite[-IH],
rewrite[-+ap_compose', -+con.assoc],
apply whisker_right, esimp,
rewrite[(eq_con_inv_of_con_eq (to_homotopy_pt (@p _)))],
rewrite[ap_con], esimp,
rewrite[-+con.assoc, ap_con, -ap_compose', +ap_inv],
rewrite[-+con.assoc],
refine _ ⬝ whisker_right _ (whisker_right _ (whisker_right _ (whisker_right _ !con.left_inv⁻¹))),
rewrite[idp_con, +con.assoc], apply whisker_left,
rewrite[ap_con, -ap_compose', con_inv, +con.assoc], apply whisker_left,
refine eq_inv_con_of_con_eq _,
symmetry, exact eq_of_square !natural_square
}
end
definition seq_colim_equiv_constant_pinclusion {A : ℕ → Type*} {f f' : Πn, A n →* A (n+1)}
(p : Πn, f n ~* f' n) (n : ℕ) :
pseq_colim_equiv_constant p ∘* pinclusion f n ~* pinclusion f' n :=
begin
transitivity pinclusion f' n ∘* !pid,
refine phomotopy_of_psquare !pseq_colim_pequiv_pinclusion,
exact !pcompose_pid
end
/-
definition seq_colim_equiv_zigzag (g : Π⦃n⦄, A n → A' n) (h : Π⦃n⦄, A' n → A (succ n))
(p : Π⦃n⦄ (a : A n), h (g a) = f a) (q : Π⦃n⦄ (a : A' n), g (h a) = f' a) :
seq_colim f ≃ seq_colim f' :=
sorry
-/
definition is_equiv_seq_colim_rec (P : seq_colim f → Type) :
is_equiv (seq_colim_rec_unc :
(Σ(Pincl : Π ⦃n : ℕ⦄ (a : A n), P (ι f a)),
Π ⦃n : ℕ⦄ (a : A n), Pincl (f a) =[glue f a] Pincl a)
→ (Π (aa : seq_colim f), P aa)) :=
begin
fapply adjointify,
{ intro s, exact ⟨λn a, s (ι f a), λn a, apd s (glue f a)⟩},
{ intro s, apply eq_of_homotopy, intro x, induction x,
{ reflexivity},
{ apply eq_pathover_dep, esimp, apply hdeg_squareover, apply rec_glue}},
{ intro v, induction v with Pincl Pglue, fapply ap (sigma.mk _),
apply eq_of_homotopy2, intros n a, apply rec_glue},
end
/- universal property -/
definition equiv_seq_colim_rec (P : seq_colim f → Type) :
(Σ(Pincl : Π ⦃n : ℕ⦄ (a : A n), P (ι f a)),
Π ⦃n : ℕ⦄ (a : A n), Pincl (f a) =[glue f a] Pincl a) ≃ (Π (aa : seq_colim f), P aa) :=
equiv.mk _ !is_equiv_seq_colim_rec
end functor
definition pseq_colim.elim' [constructor] {A : ℕ → Type*} {B : Type*} {f : Πn, A n →* A (n+1)}
(g : Πn, A n →* B) (p : Πn, g (n+1) ∘* f n ~ g n) : pseq_colim f →* B :=
begin
fapply pmap.mk,
{ intro x, induction x with n a n a,
{ exact g n a },
{ exact p n a }},
{ esimp, apply respect_pt }
end
definition pseq_colim.elim [constructor] {A : ℕ → Type*} {B : Type*} {f : Πn, A n →* A (n+1)}
(g : Πn, A n →* B) (p : Πn, g (n+1) ∘* f n ~* g n) : pseq_colim @f →* B :=
pseq_colim.elim' g p
definition pseq_colim.elim_pinclusion {A : ℕ → Type*} {B : Type*} {f : Πn, A n →* A (n+1)}
(g : Πn, A n →* B) (p : Πn, g (n+1) ∘* f n ~* g n) (n : ℕ) :
pseq_colim.elim g p ∘* pinclusion f n ~* g n :=
begin
refine phomotopy.mk phomotopy.rfl _,
refine !idp_con ⬝ _,
esimp,
induction n with n IH,
{ esimp, esimp[inclusion_pt], exact !idp_con⁻¹ },
{ esimp, esimp[inclusion_pt],
rewrite ap_con, rewrite ap_con,
rewrite elim_glue,
rewrite [-ap_inv],
rewrite [-ap_compose'], esimp,
rewrite [(eq_con_inv_of_con_eq (!to_homotopy_pt))],
rewrite [IH],
rewrite [con_inv],
rewrite [-+con.assoc],
refine _ ⬝ whisker_right _ !con.assoc⁻¹,
rewrite [con.left_inv], esimp,
refine _ ⬝ !con.assoc⁻¹,
rewrite [con.left_inv], esimp,
rewrite [ap_inv],
rewrite [-con.assoc],
refine !idp_con⁻¹ ⬝ whisker_right _ !con.left_inv⁻¹,
}
end
definition prep0 [constructor] {A : ℕ → Type*} (f : pseq_diagram A) (k : ℕ) : A 0 →* A k :=
pmap.mk (rep0 (λn x, f x) k)
begin induction k with k p, reflexivity, exact ap (@f k) p ⬝ !respect_pt end
definition respect_pt_prep0_succ {A : ℕ → Type*} (f : pseq_diagram A) (k : ℕ)
: respect_pt (prep0 f (succ k)) = ap (@f k) (respect_pt (prep0 f k)) ⬝ respect_pt (@f k) :=
by reflexivity
theorem prep0_succ_lemma {A : ℕ → Type*} (f : pseq_diagram A) (n : ℕ)
(p : rep0 (λn x, f x) n pt = rep0 (λn x, f x) n pt)
(q : prep0 f n (Point (A 0)) = Point (A n))
: loop_equiv_eq_closed (ap (@f n) q ⬝ respect_pt (@f n))
(ap (@f n) p) = Ω→(@f n) (loop_equiv_eq_closed q p) :=
by rewrite [▸*, con_inv, ↑ap1_gen, +ap_con, ap_inv, +con.assoc]
definition succ_add_tr_rep {n : ℕ} (k : ℕ) (x : A n)
: transport A (succ_add n k) (rep f k (f x)) = rep f (succ k) x :=
begin
induction k with k p,
reflexivity,
exact tr_ap A succ (succ_add n k) _ ⬝ (fn_tr_eq_tr_fn (succ_add n k) f _)⁻¹ ⬝ ap (@f _) p,
end
definition succ_add_tr_rep_succ {n : ℕ} (k : ℕ) (x : A n)
: succ_add_tr_rep f (succ k) x = tr_ap A succ (succ_add n k) _ ⬝
(fn_tr_eq_tr_fn (succ_add n k) f _)⁻¹ ⬝ ap (@f _) (succ_add_tr_rep f k x) :=
by reflexivity
definition code_glue_equiv [constructor] {n : ℕ} (k : ℕ) (x y : A n)
: rep f k (f x) = rep f k (f y) ≃ rep f (succ k) x = rep f (succ k) y :=
begin
refine eq_equiv_fn_eq_of_equiv (equiv_ap A (succ_add n k)) _ _ ⬝e _,
apply eq_equiv_eq_closed,
exact succ_add_tr_rep f k x,
exact succ_add_tr_rep f k y
end
theorem code_glue_equiv_ap {n : ℕ} {k : ℕ} {x y : A n} (p : rep f k (f x) = rep f k (f y))
: code_glue_equiv f (succ k) x y (ap (@f _) p) = ap (@f _) (code_glue_equiv f k x y p) :=
begin
rewrite [▸*, +ap_con, ap_inv, +succ_add_tr_rep_succ, con_inv, inv_con_inv_right, +con.assoc],
apply whisker_left,
rewrite [- +con.assoc], apply whisker_right, rewrite [- +ap_compose'],
note s := (eq_top_of_square (natural_square_tr
(λx, fn_tr_eq_tr_fn (succ_add n k) f x ⬝ (tr_ap A succ (succ_add n k) (f x))⁻¹) p))⁻¹ᵖ,
rewrite [inv_con_inv_right at s, -con.assoc at s], exact s
end
section
parameters {X : ℕ → Type} (g : seq_diagram X) (x : X 0)
definition rep_eq_diag ⦃n : ℕ⦄ (y : X n) : seq_diagram (λk, rep g k (rep0 g n x) = rep g k y) :=
proof λk, ap (@g (n + k)) qed
definition code_incl ⦃n : ℕ⦄ (y : X n) : Type :=
seq_colim (rep_eq_diag y)
definition code [unfold 4] : seq_colim g → Type :=
seq_colim.elim_type g code_incl
begin
intro n y,
refine _ ⬝e !shift_equiv⁻¹ᵉ,
fapply seq_colim_equiv,
{ intro k, exact code_glue_equiv g k (rep0 g n x) y },
{ intro k p, exact code_glue_equiv_ap g p }
end
definition encode [unfold 5] (y : seq_colim g) (p : ι g x = y) : code y :=
transport code p (ι' _ 0 idp)
definition decode [unfold 4] (y : seq_colim g) (c : code y) : ι g x = y :=
begin
induction y,
{ esimp at c, exact sorry },
{ exact sorry }
end
definition decode_encode (y : seq_colim g) (p : ι g x = y) : decode y (encode y p) = p :=
sorry
definition encode_decode (y : seq_colim g) (c : code y) : encode y (decode y c) = c :=
sorry
definition seq_colim_eq_equiv_code [constructor] (y : seq_colim g) : (ι g x = y) ≃ code y :=
equiv.MK (encode y) (decode y) (encode_decode y) (decode_encode y)
definition seq_colim_eq {n : ℕ} (y : X n) : (ι g x = ι g y) ≃ seq_colim (rep_eq_diag y) :=
proof seq_colim_eq_equiv_code (ι g y) qed
end
definition rep0_eq_diag {X : ℕ → Type} (f : seq_diagram X) (x y : X 0)
: seq_diagram (λk, rep0 f k x = rep0 f k y) :=
proof λk, ap (@f k) qed
definition seq_colim_eq0 {X : ℕ → Type} (f : seq_diagram X) (x y : X 0) :
(ι f x = ι f y) ≃ seq_colim (rep0_eq_diag f x y) :=
begin
refine !seq_colim_eq ⬝e _,
fapply seq_colim_equiv,
{ intro n, exact sorry},
{ intro n p, exact sorry }
end
definition pseq_colim_loop {X : ℕ → Type*} (f : Πn, X n →* X (n+1)) :
Ω (pseq_colim f) ≃* pseq_colim (λn, Ω→(f n)) :=
begin
fapply pequiv_of_equiv,
{ refine !seq_colim_eq0 ⬝e _,
fapply seq_colim_equiv,
{ intro n, exact loop_equiv_eq_closed (respect_pt (prep0 f n)) },
{ intro n p, apply prep0_succ_lemma }},
{ exact sorry }
end
definition pseq_colim_loop_pinclusion {X : ℕ → Type*} (f : Πn, X n →* X (n+1)) (n : ℕ) :
pseq_colim_loop f ∘* Ω→ (pinclusion f n) ~* pinclusion (λn, Ω→(f n)) n :=
sorry
-- open succ_str
-- definition pseq_colim_succ_str_change_index' {N : succ_str} {B : N → Type*} (n : N) (m : ℕ)
-- (h : Πn, B n →* B (S n)) :
-- pseq_colim (λk, h (n +' (m + succ k))) ≃* pseq_colim (λk, h (S n +' (m + k))) :=
-- sorry
-- definition pseq_colim_succ_str_change_index {N : succ_str} {B : ℕ → N → Type*} (n : N)
-- (h : Π(k : ℕ) n, B k n →* B k (S n)) :
-- pseq_colim (λk, h k (n +' succ k)) ≃* pseq_colim (λk, h k (S n +' k)) :=
-- sorry
-- definition pseq_colim_index_eq_general {N : succ_str} (B : N → Type*) (f g : ℕ → N) (p : f ~ g)
-- (pf : Πn, S (f n) = f (n+1)) (pg : Πn, S (g n) = g (n+1)) (h : Πn, B n →* B (S n)) :
-- @pseq_colim (λn, B (f n)) (λn, ptransport B (pf n) ∘* h (f n)) ≃*
-- @pseq_colim (λn, B (g n)) (λn, ptransport B (pg n) ∘* h (g n)) :=
-- sorry
end seq_colim