-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_plots.py
57 lines (43 loc) · 1.65 KB
/
generate_plots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import matplotlib.pyplot as plt
import numpy as np
import random
import math
from sklearn.metrics import mean_squared_error
def plot(y_train):
plt.figure()
plt.subplot(211)
# TRAINING PREDICTIONS
y_train = [[random.random()] for _ in range(10)]
trainPred = [[random.random()] for _ in range(10)]
y_train = np.reshape([y_train], (len(y_train), 1))
trainPred = np.reshape(trainPred, (len(trainPred), 1))
trainScore = math.sqrt(mean_squared_error(y_train, trainPred))
print('Train Score: %.2f RMSE' % (trainScore))
#testScore = math.sqrt(mean_squared_error(y_test[0], testPred[:, 0]))
#print('Test Score: %.2f RMSE' % (testScore))
#plt.plot(y_train, color='blue', label='Real Likes', linestyle="",marker="*",markersize=1)
plt.plot(trainPred, color='green', label='Predicted Likes',linestyle="dashdot")
plt.xlabel('samples')
plt.ylabel('Likes')
plt.ylim([0, 1])
plt.title('Training')
plt.figlegend(loc='upper right')
plt.show()
"""
# TESTING PREDICTIONS
plt.subplot(212)
y_train = [random.random() for _ in range(500)]
trainPred = [random.random() for _ in range(500)]
y_train = np.reshape([y_train], (len(y_train), 1))
trainPred = np.reshape([trainPred], (len(trainPred), 1))
plt.plot(y_train, color='black', label='Real Likes (Training)')
plt.plot(trainPred, color='green', label='Predicted Likes (Training)')
plt.xlabel('samples')
plt.ylabel('Likes')
plt.title('Testing')
plt.ylim([0,1])
plt.subplots_adjust(left=None, bottom=None, right=None, top=None,
wspace=1, hspace=1)
plt.savefig("plts.png")
"""
plot([1,1])